From Waters to Fish: A Multi-Faceted Analysis of Contaminants’ Pollution Sources, Distribution Patterns, and Ecological and Human Health Consequences
Abstract
:1. Introduction
2. Materials and Methods
- -
- BLK_RO_RG_TT03: Northern stations, under the Danube’s direct influence, up to a 30 m depth isobath.
- -
- BLK_RO_RG_CT: Stations in the coastal zone, neighboring harbor activities, shipping, tourism, wastewater discharges, up to a 20 m depth isobath.
- -
- BLK_RO_RG_MT01: Stations in shelf waters, including maritime activities, vessel traffic, and industrial activities, from a 30 m depth to 200 m (Figure 1).
2.1. Sampling and Preliminary Preparation Methods
2.2. Analytical Methods
2.2.1. Heavy Metals in Seawater, Sediments, and Biota
2.2.2. POPs’ (OCPs and PCBs) Extraction in Biota
2.2.3. PAHs’ Extraction in Biota
2.2.4. POPs’ and PAHs’ Extraction in Seawater and Sediments
2.2.5. Gas-Chromatographic Conditions for Organic Pollutants
2.3. Human Health Risk Assessment
2.3.1. Estimated Daily Intake (EDI) and Estimated Weekly Intake (EWI)
2.3.2. Carcinogenic Risk Index (CRI)
3. Results
3.1. Heavy Metals
3.2. Human Health Risk Assessment
3.3. Persistent Organic Pollutants—POPs (PCBs and OCPs)—In Biota, Seawater, and Sediments
3.4. Organic Pollutants—PAHs—in Biota, Seawater, and Sediments
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Elliott, M.; Whitfield, A.K. Challenging Paradigms in Estuarine Ecology and Management. Estuar. Coast. Shelf Sci. 2011, 94, 306–314. [Google Scholar] [CrossRef]
- Damir, N.A.; Coatu, V.; Pantea, E.D.; Galațchi, M.; Botez, E.; Birghilă, S. Assessment of Polycyclic Aromatic Hydrocarbons Content in Marine Organisms of Commercial Interest from the Romanian Black Sea Coast. Polycycl. Aromat. Compd. 2022, 42, 7595–7606. [Google Scholar] [CrossRef]
- Coatu, V. Influente Ale Poluarii Chimice a Apei Marii Negre Asupra Unor Procese Biochimice La Moluste; Ed. Ex Ponto: Constanta, Romania, 2017; Volume 502. [Google Scholar]
- Ángel Rodríguez-Hernández, Á.; Camacho, M.; Henríquez-Hernández, L.A.; Boada, L.D.; Ruiz-Suárez, N.; Valerón, P.F.; Luzardo, O.P. Assessment of Human Health Hazards Associated with the Dietary Exposure to Organic and Inorganic Contaminants through the Consumption of Fishery Products in Spain. Sci. Total Environ. 2016, 557–558, 808–818. [Google Scholar] [CrossRef] [PubMed]
- EEA. Hazardous Substances in Marine Organisms. Available online: https://www.eea.europa.eu/Data-and-Maps/Indicators/Hazardous-Substances-in-Marine-Organisms-3/Assessment (accessed on 27 May 2024).
- Yunus, K.; Zuraidah, M.; John, A. A Review on the Accumulation of Heavy Metals in Coastal Sediment of Peninsular Malaysia. Ecofeminism Clim. Change 2020, 1, 21–35. [Google Scholar] [CrossRef]
- Chiarelli, R.; Roccheri, M.C. Marine Invertebrates as Bioindicators of Heavy Metal Pollution. Open J. Met. 2014, 04, 93–106. [Google Scholar] [CrossRef]
- Sun, Y.; Wu, S.; Gong, G. Trends of Research on Polycyclic Aromatic Hydrocarbons in Food: A 20-Year Perspective from 1997 to 2017. Trends Food Sci. Technol. 2019, 83, 86–98. [Google Scholar] [CrossRef]
- Venkateswarlu, V.; Venkatrayulu, C. Bioaccumulation of Heavy Metals in Edible Marine Fish from Coastal Areas of Nellore, Andhra Pradesh, India. Biol. Pharm. Sci. 2020, 10, 018–024. [Google Scholar] [CrossRef]
- Bat, L.; Gökkurt, O.; Sezgin, M.; Üstün, F.; Sahin, F. Evaluation of the Black Sea Land Based Sources of Pollution the Coastal Region of Turkey. Open Mar. Biol. J. 2009, 3, 112–124. [Google Scholar] [CrossRef]
- Ismail, T.H.T.; Adnan, N.A.F.; Samah, M.A.A. Study on Accumulation of Fe, Pb, Zn, Ni and Cd in Nerita Lineata and Thais Bitubercularis from Tanjung Harapan and Teluk Kemang, Malaysia. J. Clean WAS 2017, 1, 6–16. [Google Scholar] [CrossRef]
- Morankar, N. An Overview of the Impact of Heavy Metal Accumulation on Marine Molluscs. Int. J. Multidiscip. Res. Growth Eval. 2023, 4, 760–764. [Google Scholar] [CrossRef]
- Amos-Tautua, B.M.W.; Inengite, A.K.; Abasi, C.Y.; Amirize, G.C. Evaluation of Polycyclic Aromatic Hydrocarbons and Some Heavy Metals in Roasted Food Snacks in Amassoma, Niger Delta, Nigeria. Afr. J. Environ. Sci. Technol. 2013, 7, 961–966. [Google Scholar] [CrossRef]
- Bouwman, H.; Kylin, H.; Yive, N.S.C.K.; Tatayah, V.; Løken, K.; Skaare, J.U.; Polder, A. First Report of Chlorinated and Brominated Hydrocarbon Pollutants in Marine Bird Eggs from an Oceanic Indian Ocean Island.Environmental Research. Environ. Res. 2012, 118, 53–64. [Google Scholar] [CrossRef] [PubMed]
- Bouwman, H. POPs in Southern Africa. In The Handbook of Environmental Chemistry; Springer: Berlin/Heidelberg, Germany, 2003; pp. 297–320. [Google Scholar] [CrossRef]
- Schecter, A.; Wikoff, D.; Fitzgerald, L.; Birnbaum, L. Persistent Organic Pollutants: An Overview. In Dioxins and Health: Including Other Persistent Organic Pollutants and Endocrine Disruptors; Wiley: Hoboken, NJ, USA, 2012; pp. 1–35. [Google Scholar] [CrossRef]
- Lallas, P.L. The Stockholm Convention on persistent organic pollutants. Am. J. Int. Law 2001, 95, 692–708. [Google Scholar] [CrossRef]
- Danilov, D.; Dediu, L.; Damir, N.A.; Coatu, V.; Lazar, L. Screening for Organic Pollutants in the Black Sea Turbot (Scophthalmus maeoticus). Fishes 2023, 8, 265. [Google Scholar] [CrossRef]
- Masato Honda, N.S. Toxicities of Polycyclic Aromatic Hydrocarbons for Aquatic Animals. Int. J. Environ. Res. Public Health 2020, 17, 1363. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Shafy, H.I.; Mansour, M.S.M. A Review on Polycyclic Aromatic Hydrocarbons: Source, Environmental Impact, Effect on Human Health and Remediation. Egypt. J. Pet. 2016, 25, 107–123. [Google Scholar] [CrossRef]
- Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 Establishing a Framework for Community Action in the Field of Water Policy. I. Establishing a Framework for Community Action in the Field of Water Policy. 2000. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32000L0060 (accessed on 1 July 2024).
- Pratt, M.M.; John, K.; Maclean, A.B.; Afework, S.; Phillips, D.H.; Poirier, M.C. Polycyclic Aromatic Hydrocarbon (PAH) Exposure and DNA Adduct Semi-Quantitation in Archived Human Tissues. Int. J. Environ. Res. Public Health 2011, 8, 2675–2691. [Google Scholar] [CrossRef] [PubMed]
- Tongo, I.; Ogbeide, O.; Ezemonye, L. Human Health Risk Assessment of Polycyclic Aromatic Hydrocarbons (PAHs) in Smoked Fish Species from Markets in Southern Nigeria. Toxicol. Rep. 2017, 4, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Perra, G.; Renzi, M.; Guerranti, C.; E Focardi, S. Polycyclic Aromatic Hydrocarbons Pollution in Sediments: Distribution and Sources in a Lagoon System (Orbetello, Central Italy). Transit. Water Bull. 2009, 3, 45–58. [Google Scholar] [CrossRef]
- Damir, N.; Danilov, D.; Oros, A.; Lazăr, L.; Coatu, V. Chemical Status Evaluation of the Romanian Black Sea Marine Environment Based on Benthic Organisms’ Contamination. Mar. Res. 2022, 52, 52–77. [Google Scholar] [CrossRef]
- Commission Regulation (EU). 2023/915 Maximum Levels for Certain Contaminants in Food and Repealing Regulation (EC) No 1881/2006 2023/915 of 25 April 2023 on Maximum Levels for Certain Contaminants in Food and Repealing Regulation (EC) No 1881/2006. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32023R0915 (accessed on 1 July 2024).
- Bat, L.; Yardım, Ö.; Arıcı, E.; Hasançavuşoğlu, Z.; Öztekin, A. Heavy Metals Risk Assesement for Consumption of Wild Mediterranean Mussels Mytilus Galloprovincialis LAMARCK, 1819 along Samsun Coasts of the Black Sea. Pak. J. Mar. Sci. 2023, 32, 129–144. [Google Scholar]
- Niță, V.; Nenciu, M.; Galațchi, M. Speciile de Pești de la Litoralul Românesc. Atlas Actualizat/Fish Species of the Romanian Coast. Updated Atlas; Editura CD Press: Bucharest, Romania, 2022. [Google Scholar]
- Bisinicu, E.; Totoiu, A. Mesozooplankton in the Diet of the Black Sea Shad Alosa tanaica (Grim, 1901) (Clupeiformes: Clupeidae) from the Northern Part of the Romanian Black Sea Waters. Acta Zool. Bulg. 2022, 74, 417–424. [Google Scholar]
- Bișinicu, E.; Harcotă, G.-E.; Lazăr, L.; Niță, V.; Țoțoiu, A.; Țiganov, G. Fish Abundance and Mesozooplankton Resource: A Study on Sprattus sprattus (Linnaeus, 1758) (Actinopterygii: Clupeidae) in the Romanian Black Sea Waters. Acta Zool. Bulg. 2024, 76. Available online: https://acta-zoologica-bulgarica.eu/2024/002732.pdf (accessed on 1 July 2024).
- Bisinicu, E.; Totoiu, A.; Timofte, F.; Harcota, G.E.; Oprea, L. Inter-relations between the mesozooplankton community and Sprattus sprattus from the Romanian Black Sea area. Sci. Pap. Ser. D Anim. Sci. 2020, 63. Available online: https://animalsciencejournal.usamv.ro/pdf/2020/issue_2/Art83.pdf (accessed on 1 July 2024).
- Țoțoiu, A.; Zaharia, T.; Nenciu, M.-I.; Niță, V.; Nicolaev, A.; Danilov, C.; Galațchi, M.; Golumbeanu, M.; Radu, G.; Maximov, V. Specific Diversity of the Romanian Black Sea Fish Fauna. Cercetări Marine-Rech. Mar. 2018, 48, 50–58. [Google Scholar] [CrossRef]
- Grasshoff, K.; Kremling, K.; Ehrhardt, M. (Eds.) Methods of Seawater Analysis; Willey-VCH: Weinheim, Germany, 1999. [Google Scholar]
- IAEA-MEL. Training Manual on the Measurement of Heavy Metals in Environmental Samples; IAEA-MEL: Monaco, 1999. [Google Scholar]
- IAEA-MEL. Training Manual on the Measurement of Organochlorine and Petroleum Hydrocarbons in Environmental Samples; IAEA-MEL: Monaco, 1995. [Google Scholar]
- Bat, L.; Kaya, Y.; Oztekin, H.C. Heavy Metal Levels in the Black Sea Anchovy (Engraulis encrasicolus) as Biomonitor and Potential Risk of Human Health. Turk. J. Fish. Aquat. Sci. 2014, 14, 845–851. [Google Scholar] [CrossRef] [PubMed]
- Pipoyan, D.; Stepanyan, S.; Beglaryan, M.; Stepanyan, S.; Mendelsohn, R.; Deziel, N.C. Health Risks of Heavy Metals in Food and Their Economic Burden in Armenia. Environ. Int. 2023, 172, 107794. [Google Scholar] [CrossRef] [PubMed]
- Available online: Https://Www.Fao.Org/Faostat/ (accessed on 27 May 2024).
- Bat, L.; Yardım, Ö.; Öztekin, A.; Arıcı, E. Assessment of heavy metal concentrations in Scophthalmus maximus (Linnaeus, 1758) from the Black Sea coast: Implications for food safety and human health. J. Hazard. Mater. Adv. 2023, 12, 100384. [Google Scholar] [CrossRef]
- RAIS. Available online: Https://Rais.Ornl.Gov/Cgi-Bin/Tools/TOX_search (accessed on 27 May 2024).
- USEPA. Available online: Https://Www.Epa.Gov/Risk/Regional-Screening-Levels-Rsls-Generic-Tables (accessed on 27 May 2024).
- Alexander, J.; Benford, D.; Boobis, A.; Ceccatelli, S.; Cravedi, J.P.; Di Domenico, A.; van Leeuwen, R. Scientific opinion on lead in food EFSA panel on contaminants in the food chain (CONTAM). EFSA J. 2010, 8, 1570. [Google Scholar]
- Schrenk, D.; Bignami, M.; Bodin, L.; Chipman, J.K.; Del Mazo, J.; Nielsen, E. Update of the Risk Assessment of Nickel in Food and Drinking Water. EFSA J. 2020, 18, e06268. [Google Scholar]
- Alexander, J.; Benford, D.; Boobis, A.; Ceccatelli, S.; Cravedi, J.P.; Di Domenico, A.; van Leeuwen, R. Statement on Tolerable Weekly Intake for Cadmium. EFSA J. 2011, 9, 1975. [Google Scholar]
- Order 147/2004 for the Approval of Veterinary Sanitary Rules and Food Safety Regarding Pesticide Residues in Products of Animal and Non-Animal Origin and Residues of Veterinary Drugs in Products of Animal. Available online: https://eur-lex.europa.eu/legal-content/RO/TXT/HTML/?uri=LEGISSUM:3005_2 (accessed on 1 July 2024).
- Available online: Https://Www.Info-Delta.Ro/Agricultura-Delta-Dunarii/ (accessed on 27 May 2024).
- Arici, E.; Öztekin, A.; Bat, L. Human Health Risk Assessment of Heavy Metals in the Black Sea: Evaluating Mussels. Curr. World Environ. 2018, 13, 15–31. [Google Scholar] [CrossRef]
- Bat, L.; Arıcı, E.; Sezgin, M.; Şahin, F. Heavy Metals in Edible Tissues of Benthic Organisms from Samsun Coasts South Black Sea, Turkey and Their Potential. J. Food Health Sci. 2016, 2, 57–66. [Google Scholar] [CrossRef]
- Bakan, G.; Özkoç, H.B. An Ecological Risk Assessment of The Impact of Heavy Metals in Surface Sediments on Biota from The Mid-Black Sea Coast of Turkey. Int. J. Environ. Stud. 2007, 64, 45–57. [Google Scholar] [CrossRef]
- Jitar, O.; Teodosiu, C.; Oros, A.; Plavan, G.; Nicoara, M. Bioaccumulation Of Heavy Metals In Marine Organisms From The Romanian Sector Of The Black Sea. New Biotechnol. 2014, 32, 369–378. [Google Scholar] [CrossRef]
- Levent, B.A.T.; Öztekin, H.C. Heavy Metals in Mytilus Galloprovincialis, Rapana Venosa and Eriphia Verrucosa from The Black Sea Coasts of Turkey As Bioindicators of Pollution. Walailak J. Sci. Technol. 2015, 13, 715–728. [Google Scholar]
- Zhelyazkov, G.; Yankovska-Stefanova, T.; Mineva, E.; Stratev, D.; Vashin, I.; Dospatliev, L.; Popova, T. Risk Assessment Of Some Heavy Metals In Mussels (Mytilus galloprovincialis) And Veined Rapa Whelks (Rapana venosa) For Human Health. Mar. Pollut. Bull. 2018, 128, 197–201. [Google Scholar] [CrossRef]
- Copat, C.; Bella, F.; Castaing, M.; Fallico, R.; Sciacca, S.; Ferrante, M. Heavy Metals Concentrations in Fish from Sicily (Mediterranean Sea) and Evaluation of Possible Health Risks to Consumers. Bull. Environ. Contam. Toxicol. 2011, 88, 78–83. [Google Scholar] [CrossRef]
- Younis, E.M.; Abdel-Warith AW, A.; Al-Asgah, N.A.; Elthebite, S.A.; Rahman, M.M. Nutritional Value and Bioaccumulation of Heavy Metals in Muscle Tissues of Five Commercially Important Marine Fish Species from The Red Sea. Saudi J. Biol. Sci. 2020, 28, 1860–1866. [Google Scholar] [CrossRef]
- Fazio, F.; D’Iglio, C.; Capillo, G.; Saoca, C.; Peycheva, K.; Piccione, G.; Makedonski, L. Environmental Investigations and Tissue Bioaccumulation of Heavy Metals in Grey Mullet from The Black Sea (Bulgaria) and The Ionian Sea (Italy). Animals 2020, 10, 1739. [Google Scholar] [CrossRef]
- Korkmaz Görür, F.; Keser, R.; Akçay, N.; Dizman, S. Radioactivity And Heavy Metal Concentrations Of Some Commercial Fish Species Consumed In The Black Sea Region Of Turkey. Chemosphere 2012, 87, 356–361. [Google Scholar] [CrossRef] [PubMed]
- Galaţchi, M.; Oros, A.; Coatu, V.; Costache, M.; Coprean, D.; Galaţchi, L.D. Pollutant Bioaccumulation in Anchovy (Engraulis encrasicolus) Tissue, Fish Species of Commercial Interest at The Romanian Black Sea Coast. Ovidius Univ. Ann. Chem. 2017, 28, 11–17. [Google Scholar] [CrossRef]
- Makedonski, L.; Peycheva, K.; Stancheva, M. Determination of Heavy Metals in Selected Black Sea Fish Species. Food Control 2017, 72, 313–318. [Google Scholar] [CrossRef]
- Simionov, I.A.; Cristea, V.; Petrea, S.M.; Mogodan, A.; Nicoara, M.; Baltag, E.S.; Faggio, C. Bioconcentration of Essential and Nonessential Elements in Black Sea Turbot (Psetta Maxima Maeotica Linnaeus, 1758) in Relation to Fish Gender. J. Mar. Sci. Eng. 2019, 7, 466. [Google Scholar] [CrossRef]
- Azizi, G.; Akodad, M.; Baghour, M.; Layachi, M.; Moumen, A. The Use of Mytilus Spp. Mussels as Bioindicators of Heavy Metal Pollution in the Coastal Environment. A Review. J. Mater. Environ. Sci. 2018, 9, 1170–1181. [Google Scholar] [CrossRef]
- Barhoumi, B.; El Megdiche, Y.; Clérandeau, C.; Ameur, W.B.; Mekni, S.; Bouabdallah, S.; Driss, M.R. Occurrence of Polycyclic Aromatic Hydrocarbons (PAHs) in Mussel (Mytilus galloprovincialis) and Eel (Anguilla anguilla) from Bizerte Lagoon, Tunisia, and Associated Human Health Risk Assessment. Cont. Shelf Res. 2016, 124, 104–116. [Google Scholar] [CrossRef]
- Balcıoglu, E.B. Assessment of Polycyclic Aromatic Hydrocarbons (PAHs) in Mussels (Mytilus galloprovincialis) of Prince Islands, Marmara Sea. Mar. Pollut. Bull. 2016, 109, 640–642. [Google Scholar] [CrossRef] [PubMed]
- Kucuksezgin, F.; Pazi, I.; Yucel-Gier, G.; Akcali, B.; Galgani, F. Monitoring of Heavy Metal and Organic Compound Levels along the Eastern Aegean Coast with Transplanted Mussels. Chemosphere 2013, 93, 1511–1518. [Google Scholar] [CrossRef]
- León, V.M.; Martínez-Gómez, C.; García, I.; Campillo, J.A.; Benedicto, J. Spatial Distribution and Temporal Trends of Polycyclic Aromatic Hydrocarbons in Mytilus Galloprovincialis from the Iberian Mediterranean Coast. Environ. Monit. Assess. 2013, 185, 1055–1070. [Google Scholar] [CrossRef]
- Storelli, M.M.; Marcotrigiano, G.O. Polycyclic Aromatic Hydrocarbons in Mussels (Mytilus galloprovincialis) from the Ionian Sea, Italy. J. Food Prot. 2001, 64, 405–409. [Google Scholar] [CrossRef]
- Valavanidis, A.; Vlachogianni, T.; Triantafillaki, S.; Dassenakis, M.; Androutsos, F.; Scoullos, M. Polycyclic Aromatic Hydrocarbons in Surface Seawater and in Indigenous Mussels (Mytilus galloprovincialis) from Coastal Areas of the Saronikos Gulf (Greece). Estuar. Coast. Shelf Sci. 2008, 79, 733–739. [Google Scholar] [CrossRef]
- Oros, A.; Coatu, V.; Tolun, L.G.; Atabay, H.; Denga, Y.; Damir, N.; Kolosov, V. ANEMONE Deliverable 3.1. Hazardous Substances Assessment in Black Sea Biota; Editura CD Press: London, UK, 2021. [Google Scholar]
- Andersen, J.H.; Murray, C.; Larsen, M.M.; Green, N.; Høgåsen, T.; Dahlgren, E.; Garnaga-Budrė, G.; Gustavson, K.; Haarich, M.; Kallenbach, E.M.F.; et al. Development and Testing of a Prototype Tool for Integrated Assessment of Chemical Status in Marine Environments. Environ. Monit. Assess. 2016, 188, 115. [Google Scholar] [CrossRef] [PubMed]
- Oros, A.; Coatu, V.; Tolun, L.G.; Atabay, H.; Denga, Y.; Damir, N.; Danilov, D.; Aslan, E.; Litvinova, M.; Oleinik, Y.; et al. Hazardous Substances Assessment in Black Sea Biota. Cercet. Mar.—Rech. Mar. 2021, 51, 27–48. [Google Scholar] [CrossRef]
Marine Organisms | Type of Marine Organisms | Species | Year of Sampling | Sampling Period | Depth (m) |
---|---|---|---|---|---|
Mollusks | Bivalve mollusks | Mytilus galloprovincialis | 2016–2023 | Spring, Summer, Autumn, Winter | 5–72 |
Gastropods | Rapana venosa | 2016–2021 | Spring, Summer, Autumn | 15–36 | |
Fish | Pelagic species | Sprattus sprattus (sprat) | 2019 | Summer | 54 |
Engraulis encrasicolus (anchovy) | 2016, 2019 | Summer | 8–20 | ||
Trachurus mediterraneus (horse mackerel) | 2016, 2019 | Spring, Summer | 20–39 | ||
Chelon auratus (golden gray mullet) | 2016 | Summer, Autumn | 20 | ||
Alosa immaculata (pontic shad) | 2016 | Summer, Autumn | 20–30 | ||
Belone belone (garfish) | 2016 | Summer | 20 | ||
Sarda sarda (atlantic bonito) | 2016 | Summer | 20 | ||
Mullus barbatus ponticus (blunt-snouted mullet) | 2019 | Spring | 43 | ||
Pomatomus saltatrix (bluefish) | 2016 | Autumn | 36 | ||
Alosa tanaica (Black Sea shad) | 2016 | Autumn | 30 | ||
Benthic species | Neogobius melanostomus (round goby) | 2019 | Spring | 42 | |
Scophthalmus maeoticus (turbot) | 2019 | Spring | 20 | ||
Squalus acanthias (picked dogfish) | 2019 | Spring | 20 |
Descriptive Statistics (Mytilus galloprovincialis) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Variable | N | Mean (µg/g ww) | Median (µg/g ww) | Minimum (µg/g ww) | Maximum (µg/g ww) | 25th Percentile (µg/g ww) | 75th Percentile (µg/g ww) | Coef. Var. | Skewness | Kurtosis |
Cu | 46 | 2.112 | 2.154 | 0.460 | 5.110 | 1.038 | 2.756 | 56.536 | 0.540 | −0.311 |
Cd | 46 | 0.520 | 0.377 | 0.143 | 2.018 | 0.276 | 0.630 | 71.461 | 2.169 | 5.969 |
Pb | 46 | 0.149 | 0.034 | 0.002 | 1.587 | 0.0192 | 0.102 | 196.19 | 3.445 | 13.486 |
Ni | 46 | 1.005 | 0.758 | 0.143 | 5.744 | 0.450 | 1.140 | 98.097 | 3.090 | 12.160 |
Cr | 46 | 0.957 | 0.390 | 0.080 | 4.384 | 0.233 | 1.169 | 119.59 | 1.748 | 2.091 |
Descriptive Statistics (Rapana venosa) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Variable | N | Mean (µg/g ww) | Median (µg/g ww) | Minimum (µg/g ww) | Maximum (µg/g ww) | 25th Percentile (µg/g ww) | 75th Percentile (µg/g ww) | Coef. Var. | Skewness | Kurtosis |
Cu | 15 | 5.994 | 5.2180 | 0.93 | 12.867 | 4.640 | 7.672 | 55.47 | 0.643 | 0.450 |
Cd | 15 | 0.814 | 0.578 | 0.111 | 2.915 | 0.192 | 1.199 | 100.657 | 1.480 | 1.827 |
Pb | 15 | 0.137 | 0.023 | 0.001 | 1.310 | 0.010 | 0.065 | 245.915 | 3.443 | 12.292 |
Ni | 15 | 0.432 | 0.386 | 0.010 | 1.208 | 0.040 | 0.744 | 85.49 | 0.493 | −0.612 |
Cr | 15 | 0.843 | 0.5765 | 0.116 | 2.376 | 0.324 | 1.390 | 81.921 | 1.052 | 0.495 |
Descriptive Statistics (Fish) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Variable | N | Mean (µg/g ww) | Median (µg/g ww) | Minimum (µg/g ww) | Maximum (µg/g ww) | 25th Percentile (µg/g ww) | 75th Percentile (µg/g ww) | Coef. Var. | Skewness | Kurtosis |
Cu | 21 | 2.990 | 2.592 | 0.565 | 7.907 | 1.275 | 4.725 | 68.518 | 0.770 | −0.263 |
Cd | 21 | 0.065 | 0.030 | 0.007 | 0.230 | 0.016 | 0.075 | 109.52 | 1.295 | 0.323 |
Pb | 21 | 0.601 | 0.260 | 0.002 | 4.625 | 0.003 | 0.520 | 175.92 | 3.134 | 10.949 |
Ni | 21 | 4.245 | 3.172 | 0.092 | 18.46 | 0.332 | 5.808 | 127.52 | 1.758 | 2.736 |
Cr | 21 | 0.235 | 0.215 | 0.028 | 0.880 | 0.135 | 0.277 | 74.113 | 2.614 | 9.363 |
Metal | EDIs (mg/kg/day) | EWIs (mg/kg/week) | THQs | CRIs | Health-Based GUIDANCE Values (EFSA) (mg/kg/day) | ||||
---|---|---|---|---|---|---|---|---|---|
Children | Adults | Children | Adults | Children | Adults | Children | Adults | ||
Copper (Cu) | 8.27 × 10−5 | 3.54 × 10−5 | 5.79 × 10−4 | 2.48 × 10−4 | 2.07 × 10−3 | 8.86 × 10−4 | |||
Cadmium (Cd) | 1.89 × 10−5 | 8.09 × 10−6 | 1.32 × 10−4 | 5.66 × 10−5 | 1.89 × 10−1 | 8.09 × 10−2 | 3.6 × 10−4 | ||
Chromium (Cr) | 3.88 × 10−5 | 1.66 × 10−5 | 2.72 × 10−4 | 1.17 × 10−4 | 1.29 × 10−2 | 5.55 × 10−3 | |||
Nickel (Ni) | 4.12 × 10−5 | 1.77 × 10−5 | 2.88 × 10−4 | 1.24 × 10−4 | 2.06 × 10−3 | 8.83 × 10−4 | 1.3 × 10−2 | ||
Lead (Pb) | 1.05 × 10−5 | 4.52 × 10−6 | 7.38 × 10−5 | 3.16 × 10−5 | 8.96 × 10−8 | 3.84 × 10−8 | 6.3 × 10−4 | ||
TTHQ | 2.06 × 10−1 | 8.81 × 10−2 |
Descriptive Statistics (M. galloprovincialis) | ||||||||
---|---|---|---|---|---|---|---|---|
Variable | N | Mean (µg/g ww) | Median (µg/g ww) | Minimum (µg/g ww) | Maximum (µg/g ww) | 25th Percentile (µg/g ww) | 75th Percentile (µg/g ww) | Coef. Var. |
HCB | 46 | 0.0335 | 0.00021 | 0.00008 | 0.4505 | 0.00008 | 0.0176 | 0.0858 |
Lindane | 46 | 0.3312 | 0.00324 | 0.00006 | 7.3458 | 0.00006 | 0.1041 | 1.2112 |
Heptachlor | 46 | 0.4533 | 0.00005 | 0.00005 | 9.0988 | 0.00005 | 0.0415 | 1.5225 |
Aldrin | 46 | 0.0050 | 0.00005 | 0.00005 | 0.0577 | 0.00005 | 0.0019 | 0.0121 |
Dieldrin | 46 | 0.0827 | 0.00032 | 0.00005 | 1.4328 | 0.00003 | 0.0137 | 0.2893 |
Endrin | 46 | 0.0857 | 0.00212 | 0.00006 | 0.7117 | 0.00006 | 0.0893 | 0.1721 |
p,p’ DDE | 46 | 0.0589 | 0.00041 | 0.00003 | 1.1550 | 0.00003 | 0.0103 | 0.2073 |
p,p’ DDD | 46 | 0.5189 | 0.00089 | 0.00003 | 15.1661 | 0.00003 | 0.0553 | 2.2678 |
p,p’ DDT | 46 | 0.1560 | 0.00003 | 0.00003 | 5.3864 | 0.00003 | 0.0025 | 0.8001 |
Descriptive Statistics (M. galloprovincialis) | ||||||||
---|---|---|---|---|---|---|---|---|
Variable | N | Mean (µg/g ww) | Median (µg/g ww) | Minimum (µg/g ww) | Maximum (µg/g ww) | 25th Percentile (µg/g ww) | 75th Percentile (µg/g ww) | Coef. Var. |
PCB28 | 46 | 0.0497 | 0.0001 | 0.00006 | 1.3773 | 0.00006 | 0.0011 | 0.2139 |
PCB52 | 46 | 0.0555 | 0.0003 | 0.00005 | 0.9289 | 0.00005 | 0.0540 | 0.1515 |
PCB101 | 46 | 0.0195 | 0.0004 | 0.00009 | 0.1863 | 0.00009 | 0.0091 | 0.0458 |
PCB118 | 46 | 0.0188 | 0.0005 | 0.00006 | 0.1260 | 0.00006 | 0.0296 | 0.0310 |
PCB153 | 46 | 0.0068 | 0.0001 | 0.00009 | 0.0688 | 0.00009 | 0.0010 | 0.0182 |
PCB138 | 46 | 0.0856 | 0.0001 | 0.00011 | 2.1570 | 0.00011 | 0.0047 | 0.3439 |
PCB180 | 46 | 0.0045 | 0.0002 | 0.00005 | 0.0547 | 0.00005 | 0.0048 | 0.0102 |
Descriptive Statistics (Rapana venosa, 2016–2021) | ||||||||
---|---|---|---|---|---|---|---|---|
Variable | N | Mean (µg/g ww) | Median (µg/g ww) | Minimum (µg/g ww) | Maximum (µg/g ww) | 25th Percentile (µg/g ww) | 75th Percentile (µg/g ww) | Coef. Var. |
HCB | 15 | 0.0084 | 0.0037 | 0.0001 | 0.0323 | 0.0003 | 0.0161 | 0.0105 |
Lindane | 15 | 0.0596 | 0.0044 | 0.0001 | 0.3320 | 0.0003 | 0.1252 | 0.1009 |
Heptachlor | 15 | 0.2029 | 0.0062 | 0.0001 | 1.2954 | 0.0009 | 0.0977 | 0.4271 |
Aldrin | 15 | 0.1592 | 0.0020 | 0.0001 | 1.2146 | 0.0001 | 0.0925 | 0.3744 |
Dieldrin | 15 | 0.3487 | 0.0238 | 0.0001 | 1.9202 | 0.0001 | 0.3265 | 0.6307 |
Endrin | 15 | 0.2421 | 0.0168 | 0.0001 | 1.3636 | 0.0077 | 0.2814 | 0.4306 |
p,p’ DDE | 15 | 0.0029 | 0.0001 | 0.0001 | 0.0185 | 0.0001 | 0.0026 | 0.0057 |
p,p’ DDD | 15 | 1.2885 | 0.0020 | 0.0001 | 10.6067 | 0.0001 | 0.6253 | 2.9083 |
p,p’ DDT | 15 | 0.4965 | 0.0289 | 0.0001 | 3.7823 | 0.0001 | 0.0983 | 1.1062 |
Descriptive Statistics (Rapana venosa) | ||||||||
---|---|---|---|---|---|---|---|---|
Variable | N | Mean (µg/g ww) | Median (µg/g ww) | Minimum (µg/g ww) | Maximum (µg/g ww) | 25th Percentile (µg/g ww) | 75th Percentile (µg/g ww) | Coef. Var. |
PCB28 | 15 | 0.0043 | 0.0005 | 0.0001 | 0.0290 | 0.0001 | 0.0016 | 0.0100 |
PCB52 | 15 | 0.0204 | 0.0063 | 0.0001 | 0.1169 | 0.0012 | 0.0417 | 0.0330 |
PCB101 | 15 | 0.0055 | 0.0005 | 0.0002 | 0.0383 | 0.0002 | 0.0061 | 0.0111 |
PCB118 | 15 | 0.0044 | 0.0001 | 0.0001 | 0.0300 | 0.0001 | 0.0023 | 0.0099 |
PCB153 | 15 | 0.0074 | 0.0002 | 0.0002 | 0.0549 | 0.0002 | 0.0017 | 0.0164 |
PCB138 | 15 | 0.0084 | 0.0002 | 0.0002 | 0.0545 | 0.0002 | 0.0044 | 0.0177 |
PCB180 | 15 | 0.0090 | 0.0002 | 0.0001 | 0.0692 | 0.0001 | 0.0069 | 0.0189 |
Descriptive Statistics (Fish) | ||||||||
---|---|---|---|---|---|---|---|---|
Variable | N | Mean (µg/g ww) | Median (µg/g ww) | Minimum (µg/g ww) | Maximum (µg/g ww) | 25th Percentile (µg/g ww) | 75th Percentile (µg/g ww) | Coef. Var. |
HCB | 21 | 0.0315 | 0.0197 | 0.0001 | 0.2223 | 0.0001 | 0.0285 | 0.0537 |
Lindane | 21 | 0.0100 | 0.0001 | 0.0001 | 0.0875 | 0.0001 | 0.0049 | 0.0210 |
Heptachlor | 21 | 0.0251 | 0.0020 | 0.0001 | 0.1974 | 0.0001 | 0.0271 | 0.0483 |
Aldrin | 21 | 0.0089 | 0.0001 | 0.0001 | 0.0844 | 0.0001 | 0.0020 | 0.0205 |
Dieldrin | 21 | 0.0536 | 0.0101 | 0.0001 | 0.5735 | 0.0001 | 0.0283 | 0.1333 |
Endrin | 21 | 0.0326 | 0.0040 | 0.0001 | 0.2291 | 0.0001 | 0.0107 | 0.0663 |
p,p’ DDE | 21 | 0.0155 | 0.0033 | 0.0001 | 0.1288 | 0.0019 | 0.0096 | 0.0312 |
p,p’ DDD | 21 | 0.0688 | 0.0053 | 0.0001 | 0.4481 | 0.0031 | 0.0406 | 0.1272 |
p,p’ DDT | 21 | 0.0309 | 0.0028 | 0.0001 | 0.2195 | 0.0008 | 0.0081 | 0.0659 |
Descriptive Statistics (Fish) | ||||||||
---|---|---|---|---|---|---|---|---|
Variable | N | Mean (µg/g ww) | Median (µg/g ww) | Minimum (µg/g ww) | Maximum (µg/g ww) | 25th Percentile (µg/g ww) | 75th Percentile (µg/g ww) | Coef. Var. |
PCB28 | 21 | 0.0108 | 0.0008 | 0.0001 | 0.0516 | 0.0001 | 0.0164 | 0.0163 |
PCB52 | 21 | 0.0147 | 0.0014 | 0.0001 | 0.1636 | 0.0001 | 0.0074 | 0.0370 |
PCB101 | 21 | 0.0260 | 0.0006 | 0.0002 | 0.2390 | 0.0004 | 0.0138 | 0.0649 |
PCB118 | 21 | 0.0342 | 0.0008 | 0.0001 | 0.1939 | 0.0001 | 0.0822 | 0.0579 |
PCB153 | 21 | 0.0265 | 0.0003 | 0.0002 | 0.2220 | 0.0002 | 0.0052 | 0.0558 |
PCB138 | 21 | 0.0205 | 0.0002 | 0.0002 | 0.1126 | 0.0002 | 0.0485 | 0.0335 |
PCB180 | 21 | 0.0082 | 0.0005 | 0.0001 | 0.1262 | 0.0001 | 0.0025 | 0.0274 |
Variable | Descriptive Statistics (M. galloprovincialis) | ||||||||
---|---|---|---|---|---|---|---|---|---|
N | Mean (µg/g ww) | Median (µg/g ww) | Minimum (µg/g ww) | Maximum (µg/g ww) | Lower Quartile (µg/g ww) | Upper Quartile (µg/g ww) | Std. Dev. (µg/g ww) | Coef. Var. | |
Naphthalene | 31 | 0.032076 | 0.001742 | 0.000015 * | 0.308768 | 0.000015 | 0.025195 | 0.078211 | 243.83 |
Acenaphtylene | 31 | 0.000934 | 0.000015 | 0.000015 | 0.026547 | 0.000015 | 0.000015 | 0.004762 | 509.67 |
Acenaphtene | 31 | 0.001006 | 0.000015 | 0.000015 | 0.028228 | 0.000015 | 0.000015 | 0.005063 | 503.50 |
Fluorene | 31 | 0.088276 | 0.000030 | 0.000015 | 0.916860 | 0.000015 | 0.003438 | 0.267027 | 302.49 |
Phenanthrene | 31 | 0.148162 | 0.000210 | 0.000015 | 1.110000 | 0.000015 | 0.164808 | 0.297260 | 200.63 |
Anthracene | 31 | 0.046467 | 0.000015 | 0.000015 | 1.077823 | 0.000015 | 0.016141 | 0.192963 | 415.27 |
Fluoranthene | 31 | 0.015393 | 0.000015 | 0.000015 | 0.121370 | 0.000015 | 0.001036 | 0.036919 | 239.84 |
Pyrene | 31 | 0.044270 | 0.000015 | 0.000015 | 0.753889 | 0.000015 | 0.001592 | 0.144784 | 327.05 |
Benzo[a]anthracene | 31 | 0.022441 | 0.000015 | 0.000015 | 0.686550 | 0.000015 | 0.000015 | 0.123260 | 549.26 |
Crysene | 31 | 0.001378 | 0.000015 | 0.000015 | 0.030450 | 0.000015 | 0.000015 | 0.005518 | 400.30 |
Benzo[b]fluoranthene | 31 | 0.010828 | 0.000015 | 0.000015 | 0.146306 | 0.000015 | 0.000015 | 0.029524 | 272.66 |
Benzo[k]fluoranthene | 31 | 0.003217 | 0.000015 | 0.000015 | 0.058868 | 0.000015 | 0.000015 | 0.012589 | 391.34 |
Benzo[a]pyrene | 31 | 0.007407 | 0.000015 | 0.000015 | 0.088664 | 0.000015 | 0.000420 | 0.022052 | 297.73 |
Benzo(g,h,i) perylene | 31 | 0.001741 | 0.000015 | 0.000015 | 0.023093 | 0.000015 | 0.000015 | 0.005778 | 331.90 |
Dibenzo(a,h) anthracene | 31 | 0.001463 | 0.000015 | 0.000015 | 0.022823 | 0.000015 | 0.000015 | 0.005540 | 378.65 |
Indeno (1,2,3-c,d)pyrene | 31 | 0.001704 | 0.000015 | 0.000015 | 0.025751 | 0.000015 | 0.000015 | 0.006410 | 376.09 |
Variable | Descriptive Statistics (Rapana venosa) | ||||||||
---|---|---|---|---|---|---|---|---|---|
N | Mean (µg/g ww) | Median (µg/g ww) | Minimum (µg/g ww) | Maximum (µg/g ww) | Lower Quartile (µg/g ww) | Upper Quartile (µg/g ww) | Std. Dev. (µg/g ww) | Coef. Var. | |
Naphthalene | 9 | 0.002772 | 0.000015 * | 0.000015 | 0.012087 | 0.000015 | 0.002928 | 0.004226 | 152.47 |
Acenaphtylene | 9 | Nd ** | Nd | Nd | Nd | Nd | Nd | Nd | Nd |
Acenaphtene | 9 | 0.000194 | 0.000015 | 0.000015 | 0.001622 | 0.000015 | 0.000015 | 0.000536 | 276.72 |
Fluorene | 9 | 0.001602 | 0.000015 | 0.000015 | 0.009835 | 0.000015 | 0.000015 | 0.003422 | 213.64 |
Phenanthrene | 9 | 0.034381 | 0.001800 | 0.000015 | 0.135450 | 0.000015 | 0.049054 | 0.049464 | 143.87 |
Anthracene | 9 | 0.001062 | 0.000015 | 0.000015 | 0.008889 | 0.000015 | 0.000015 | 0.002941 | 276.86 |
Fluoranthene | 9 | 0.001909 | 0.000015 | 0.000015 | 0.011486 | 0.000015 | 0.002597 | 0.003790 | 198.59 |
Pyrene | 9 | 0.002751 | 0.000015 | 0.000015 | 0.017988 | 0.000015 | 0.002387 | 0.005912 | 214.89 |
Benzo[a]anthracene | 9 | 0.000229 | 0.000015 | 0.000015 | 0.001937 | 0.000015 | 0.000015 | 0.000641 | 280.29 |
Crysene | 9 | 0.000053 | 0.000015 | 0.000015 | 0.000354 | 0.000015 | 0.000015 | 0.000113 | 214.56 |
Benzo[b]fluoranthene | 9 | 0.001499 | 0.000015 | 0.000015 | 0.011766 | 0.000015 | 0.000015 | 0.003887 | 259.35 |
Benzo[k]fluoranthene | 9 | 0.000200 | 0.000015 | 0.000015 | 0.001681 | 0.000015 | 0.000015 | 0.000555 | 277.49 |
Benzo[a]pyrene | 9 | 0.004659 | 0.000083 | 0.000015 | 0.037211 | 0.000015 | 0.002173 | 0.012242 | 262.75 |
Benzo(g,h,i) perylene | 9 | 0.002821 | 0.000015 | 0.000015 | 0.023204 | 0.000015 | 0.000298 | 0.007666 | 271.73 |
Dibenzo(a,h) anthracene | 9 | 0.001609 | 0.000015 | 0.000015 | 0.014360 | 0.000015 | 0.000015 | 0.004782 | 297.20 |
Indeno (1,2,3-c,d) | 9 | 0.002246 | 0.000015 | 0.000015 | 0.020095 | 0.000015 | 0.000015 | 0.006693 | 297.99 |
Variable | Descriptive Statistics (Fish) | ||||||||
---|---|---|---|---|---|---|---|---|---|
N | Mean (µg/g ww) | Median (µg/g ww) | Minimum (µg/g ww) | Maximum (µg/g ww) | Lower Quartile (µg/g ww) | Upper Quartile (µg/g ww) | Std. Dev. (µg/g ww) | Coef. Var. | |
Naphthalene | 8 | 0.012518 | 0.001779 | 0.000025 * | 0.077349 | 0.000025 | 0.009582 | 0.026718 | 213.43 |
Acenaphtylene | 8 | 0.002305 | 0.000129 | 0.000025 | 0.011294 | 0.000025 | 0.003406 | 0.004157 | 180.37 |
Acenaphtene | 8 | 0.002648 | 0.000171 | 0.000025 | 0.012942 | 0.000025 | 0.003914 | 0.004763 | 179.85 |
Fluorene | 8 | 0.002759 | 0.000262 | 0.000025 | 0.013670 | 0.000025 | 0.003901 | 0.004977 | 180.39 |
Phenanthrene | 8 | 0.014600 | 0.003483 | 0.000025 | 0.071160 | 0.000132 | 0.019192 | 0.024433 | 167.36 |
Anthracene | 8 | 0.011465 | 0.000147 | 0.000025 | 0.078800 | 0.000025 | 0.006276 | 0.027360 | 238.63 |
Fluoranthene | 8 | 0.002575 | 0.000084 | 0.000025 | 0.013209 | 0.000025 | 0.003575 | 0.004911 | 190.70 |
Pyrene | 8 | 0.002675 | 0.000191 | 0.000025 | 0.013076 | 0.000025 | 0.003933 | 0.004805 | 179.66 |
Benzo[a]anthracene | 8 | 0.002717 | 0.000196 | 0.000025 | 0.013280 | 0.000025 | 0.003994 | 0.004871 | 179.29 |
Crysene | 8 | 0.002695 | 0.000187 | 0.000025 | 0.013139 | 0.000025 | 0.003987 | 0.004829 | 179.17 |
Benzo[b]fluoranthene | 8 | 0.001783 | 0.000113 | 0.000025 | 0.008647 | 0.000025 | 0.002657 | 0.003187 | 178.74 |
Benzo[k]fluoranthene | 8 | 0.001872 | 0.000161 | 0.000025 | 0.009068 | 0.000025 | 0.002757 | 0.003329 | 177.82 |
Benzo[a]pyrene | 8 | 0.001945 | 0.000136 | 0.000025 | 0.009466 | 0.000025 | 0.002873 | 0.003479 | 178.91 |
Benzo(g,h,i) perylene | 8 | 0.000804 | 0.000089 | 0.000025 | 0.005192 | 0.000025 | 0.000494 | 0.001793 | 223.08 |
Dibenzo(a,h) anthracene | 8 | 0.000855 | 0.000100 | 0.000025 | 0.005523 | 0.000025 | 0.000521 | 0.001907 | 223.12 |
Indeno (1,2,3-c,d)pyrene | 8 | 0.002062 | 0.000098 | 0.000025 | 0.010115 | 0.000025 | 0.003053 | 0.003721 | 180.50 |
Location | Concentration Range (ng/g dw) | References |
---|---|---|
Bizerte lagoon (north Tunisia) | 107.4–430.7 | Barhoumi et al. [61] |
Prince Islands (Marmara, Turkey) | 664–9083 | Balcıoğlu [62] |
Eastern Aegean Coast (Turkey) | 29.4–64.2 | Küçüksezgin et al. [63] |
Iberian Mediterranean Coastal area (Spain) | 75–390 | Leon et al. [64] |
Ionian Sea (Italy) | 14.8–645.3 | Storelli et al. [65] |
Saronikos Gulf (Greece) | 1480–2400 | Valavanidis et al. [66] |
Black Sea coast (Romania) | 3.80–17,758.8 | Present study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Damir, N.; Coatu, V.; Danilov, D.; Lazăr, L.; Oros, A. From Waters to Fish: A Multi-Faceted Analysis of Contaminants’ Pollution Sources, Distribution Patterns, and Ecological and Human Health Consequences. Fishes 2024, 9, 274. https://doi.org/10.3390/fishes9070274
Damir N, Coatu V, Danilov D, Lazăr L, Oros A. From Waters to Fish: A Multi-Faceted Analysis of Contaminants’ Pollution Sources, Distribution Patterns, and Ecological and Human Health Consequences. Fishes. 2024; 9(7):274. https://doi.org/10.3390/fishes9070274
Chicago/Turabian StyleDamir, Nicoleta, Valentina Coatu, Diana Danilov, Luminita Lazăr, and Andra Oros. 2024. "From Waters to Fish: A Multi-Faceted Analysis of Contaminants’ Pollution Sources, Distribution Patterns, and Ecological and Human Health Consequences" Fishes 9, no. 7: 274. https://doi.org/10.3390/fishes9070274
APA StyleDamir, N., Coatu, V., Danilov, D., Lazăr, L., & Oros, A. (2024). From Waters to Fish: A Multi-Faceted Analysis of Contaminants’ Pollution Sources, Distribution Patterns, and Ecological and Human Health Consequences. Fishes, 9(7), 274. https://doi.org/10.3390/fishes9070274