Prioritisation of Barriers According to Their Impact on Migratory Fish in the Lowland River Basin District
Abstract
:1. Introduction
2. Materials and Methods
2.1. Delineation of the River Network
2.2. Estimation of the Total and Potentially Suitable Area Upstream of the Barrier
2.3. Calculation of the Potential Abundance of Spawners Based on Area of Suitable Habitat and Barrier Passability
- IMP refers to a river section flooded by impoundment;
- RIV refers to the river network above the flooded section;
- Nspadulttoti—total number of adults of a species above the i-th migration barrier, ind.;
- Nspadult—number of adults of a species in each separate river network element above the barrier, ind.;
- Rpass—the species-specific barrier passability rate (efficiency of the fishway, if any), from 0 (impassable) to 1 (fully passable);
- Racc—species-specific rate of access to the migration barrier, ranging from 0 (no access) to 1 (free access). Calculated by multiplying the Rpass of other barriers below the barrier of interest, or set to 1 if there are now other barriers downstream;
- Dsaljuv—density of ≥ 1 year old salmonid juveniles, ind./100 m2;
- Asuit—area of suitable spawning habitat in a river network element, 100 m2;
- Atot—total area of a river network element, 100 m2;
- Slo—average slope of the riverbed in a river network element, m/km.
- S—≥1 year old salmonid juvenile to adult survival rate, equal to 0.1;
- k—species-specific abundance coefficient (1 for salmonids, 3 for vimba bream and river lamprey).
2.4. Prioritisation of Migration Barriers
- Rbarri—the rank of the i-th barrier among all the barriers compared;
- Nspadultratioi—the ratio of the number of individuals of a species estimated above the i-th migration barrier to the maximum number of individuals of the species among all the barriers compared;
- Nspadulttotmax—the maximum number of individuals of the species among all the barriers compared, ind.
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Appendix A
SE | R2 | F | SS | df | |
---|---|---|---|---|---|
Asuit/Atot ratio | 0.013 | 0.605 | 36.8 | 0.161 | 24 |
SE | R2 | F(1.77) | P | t(77) | |
---|---|---|---|---|---|
Density of salmonid parr, ind./100 m2 | 3.478 | 0.403 | 51.9 | <0.01 | 7.207 |
River | Žeimena | Vilnia | Siesartis | Mera |
---|---|---|---|---|
Atot, km2 | 0.98 | 0.14 | 0.09 | 0.18 |
Asuit, km2 | 0.11 | 0.04 | 0.02 | 0.03 |
Mean number of spawners based on redd counts (Nb of redds × 2) | 306 | 344 | 66 | 114 |
SD of the number of spawners | 78.3 | 69.6 | 14.8 | 25.6 |
Modelled number of spawners | 274 | 368.4 | 73.8 | 104 |
Z-score | −0.409 | 0.351 | 0.525 | −0.389 |
References
- Grill, G.; Lehner, B.; Thieme, M.; Geenen, B.; Tickner, D.; Antonelli, F.; Babu, S.; Borrelli, P.; Cheng, L.; Crochetiere, H.; et al. Mapping the world’s free-flowing rivers. Nature 2019, 569, 215–221. [Google Scholar] [CrossRef] [PubMed]
- Schmutz, S.; Moog, O. Dams: Ecological Impacts and Management. In Riverine Ecosystem Management. Aquatic Ecology Series; Schmutz, S., Sendzimir, J., Eds.; Springer: Cham, Switzerland, 2018; Volume 8, pp. 111–127. [Google Scholar] [CrossRef]
- Belletti, B.; Garcia de Leaniz, C.; Jones, J.; Bizzi, S.; Börger, L.; Segura, G.; Castelletti, A.; van de Bund, W.; Aarestrup, K.; Barry, J.; et al. More than one million barriers fragment Europe’s rivers. Nature 2020, 588, 436–441. [Google Scholar] [CrossRef] [PubMed]
- Kemp, P.S. Impoundments, barriers and abstractions: Impact on fishes and fisheries, mitigation and future directions. In Freshwater Fisheries Ecology; Craig, J.F., Ed.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2015; pp. 717–769. [Google Scholar] [CrossRef]
- Duda, J.J.; Bellmore, J.R. Dam Removal and River Restoration. In Encyclopedia of Inland Waters, 2nd ed.; Mehner, T., Tockner, K., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; Volume 2, pp. 576–585. [Google Scholar] [CrossRef]
- O’Connor, J.E.; Duda, J.J.; Grant, G.E. 1000 dams down and counting. Science 2015, 348, 496–497. [Google Scholar] [CrossRef] [PubMed]
- Guetz, K.; Joyal, T.; Dickson, B.; Perry, D. Prioritizing dams for removal to advance restoration and conservation efforts in the western United States. Restor. Ecol. 2021, 30, e13583. [Google Scholar] [CrossRef]
- Mouchlianitis, F.A. Dam Removal Progress 2022. World Fish Migration Foundation. Available online: https://damremoval.eu/wp-content/uploads/2023/04/DRE-Progress-Report-2022.pdf (accessed on 4 January 2024).
- Leaniz, C.G.; O’Hanley, J.R. Operational methods for prioritizing the removal of river barriers: Synthesis and guidance. Sci. Total Environ. 2022, 848, 157471. [Google Scholar] [CrossRef]
- Kemp, P.S.; O’Hanley, J.R. Procedures for evaluating and prioritising the removal of fish passage barriers: A synthesis. Fish. Manag. Ecol. 2010, 17, 297–322. [Google Scholar] [CrossRef]
- Jumani, S.; Deitch, M.J.; Kaplan, D.; Anderson, E.P.; Krishnaswamy, J.; Lecours, V.; Whiles, M.R. River fragmentation and flow alteration metrics: A review of methods and directions for future research. Environ. Res. Lett. 2020, 15, 123009. [Google Scholar] [CrossRef]
- Branco, P.; Segurado, P.; Santos, J.M.; Ferreira, M.T.; Strecker, A. Prioritizing barrier removal to improve functional connectivity of rivers. J. Appl. Ecol. 2014, 51, 1197–1206. [Google Scholar] [CrossRef]
- Jumani, S.; Deitch, M.J.; Valle, D.; Machado, S.; Lecours, V.; Kaplan, D.; Krishnaswamy, J.; Howard, J. A new index to quantify longitudinal river fragmentation: Conservation and management implications. Ecol. Indic. 2022, 136, 108680. [Google Scholar] [CrossRef]
- Steel, E.A.; Feist, B.E.; Jenson, D.; Pess, G.R.; Sheer, M.B.; Brauner, J.; Bilby, R.E. Landscape models to understand steelhead (Oncorhynchus mykiss) distribution and help prioritize barrier removals in the Willamette Basin, OR., USA. Can. J. Fish. Aquat. Sci. 2004, 61, 999–1011. [Google Scholar] [CrossRef]
- Nunn, A.D.; Cowx, I.G. Restoring river connectivity: Prioritizing passage improvements for diadromous fishes and lampreys. AMBIO 2012, 41, 402–409. [Google Scholar] [CrossRef]
- Buddendorf, W.B.; Jackson, F.L.; Malcolm, I.A.; Millidine, K.J.; Geris, J.; Wilkinson, M.E.; Soulsby, C. Integration of juvenile habitat quality and river connectivity models to understand and prioritise the management of barriers for Atlantic salmon populations across spatial scales. Sci. Total Environ. 2019, 655, 557–566. [Google Scholar] [CrossRef] [PubMed]
- Grenouillet, G.; Roset, N.; Goffaux, D.; Breine, J.; Simoens, I.; De Leeuw, J.J.; Kestemont, P. Fish assemblages in European Western Highlands and Western Plains: A type-specific approach to assess ecological quality of running waters. Fish. Manag. Ecol. 2007, 14, 509–517. [Google Scholar] [CrossRef]
- Virbickas, T.; Kesminas, V. Development of fish-based assessment method for the ecological status of rivers in the Baltic region. Fish. Manag. Ecol. 2007, 14, 531–539. [Google Scholar] [CrossRef]
- Cowx, I.G.; Welcomme, R.L. (Eds.) Rehabilitation of Rivers for Fish; Food and Agricultural Organization of the United Nations and Fishing News Books: Oxford, UK, 1998; pp. 11–42. [Google Scholar]
- De Vocht, A.; Baras, E. Effect of hydropeaking on migrations and home range of adult Barbel (Barbus barbus) in the river Meuse. In Proceedings of the Fifth Conference on Fish Telemetry, Europe, Ustica, Italy, 9–13 June 2003. [Google Scholar]
- Louhi, P.; Mäki-Petäys, A.; Erkinaro, J. Spawning habitat of Atlantic salmon and brown trout: General criteria and intragravel factors. River Res. Appl. 2008, 24, 330–339. [Google Scholar] [CrossRef]
- Melcher, A.H.; Schmutz, S. The importance of structural features for spawning habitat of nase Chondrostoma nasus (L.) and barbel Barbus barbus (L.) in a pre-Alpine river. River Syst. 2010, 19, 33–42. [Google Scholar] [CrossRef]
- Nika, N.; Virbickas, T. Brown trout Salmo trutta redd superimposition by spawning Lampetra species in a Lithuanian stream. J. Fish Biol. 2010, 77, 2358–2372. [Google Scholar] [CrossRef]
- Gailiušis, B.; Jablonskis, J.; Kovalenkovienė, M. Lithuanian Rivers. Hydrography and Runoff; Lietuvos Energetikos Institutas: Kaunas, Lithuania, 2001; pp. 77–123. [Google Scholar]
- Pedersen, S.; Degerman, E.; Debowski, P.; Petereit, C. Assessment and recruitment status of Baltic sea trout populations. In Sea Trout: Science and Management; Harris, G., Ed.; Proceedings of the 2nd International Sea Trout Symposium; Troubador Publishing: Leicester, UK, 2017; pp. 423–441. Available online: https://www.researchgate.net/publication/334784497_Assessment_and_recruitment_status_of_Baltic_sea_trout_populations (accessed on 18 March 2024).
- Friedland, K.D.; Dannewitz, J.; Romakkaniemi, A.; Palm, S.; Pulkkinen, H.; Pakarinen, T.; Oeberst, R. Post-smolt survival of Baltic salmon in context to changing environmental conditions and predators. ICES J. Mar. Sci. 2017, 74, 1344–1355. [Google Scholar] [CrossRef]
- Milner, N.J.; Karlsson, L.; Degerman, E.; Johlander, A.; MacLean, J.C.; Hansen, L.P. Sea trout (Salmo trutta L.) in European salmon (Salmo salar L.) rivers. In Sea Trout: Biology, Conservation and Management; Harris, G., Milner, N., Eds.; Blackwell Publishing Ltd.: Hoboken, NJ, USA, 2007; pp. 139–153. [Google Scholar] [CrossRef]
- Walker, A.M.; Bayliss, B.D. The Spawning Habitat Requirements of Sea Trout: A Multi-Scale Approach. In Sea Trout: Biology, Conservation and Management; Harris, G., Milner, N., Eds.; Blackwell Publishing Ltd.: Hoboken, NJ, USA, 2007; pp. 327–341. [Google Scholar] [CrossRef]
- Hesthagen, T.; Larsen, B.M.; Bolstad, G.; Fiske, P.; Jonsson, B. Mitigation of acidified salmon rivers—Effects of liming on young brown trout Salmo trutta. J. Fish Biol. 2017, 91, 1350–1364. [Google Scholar] [CrossRef]
- Kottelat, M.; Freyhof, J. Handbook of European Freshwater Fishes; Publications Kottelat, Cornol and Freyhof: Berlin, Germany, 2007; p. 646. ISBN 978-2-8399-0298-4. [Google Scholar]
- Zherdev, N.A.; Vlasenko, E.S.; Guskova, O.S. Distribution of the juveniles of common roach Rutilus rutilus, common bream Abramis brama, vimba bream Vimba vimba, and zander Sander lucioperca in the Lower Don in low-water year of 2017. Aquat. Bioresour. Environ. 2020, 3, 42–53. Available online: https://journal.azniirkh.ru/uploads/files/journal/42_53_Jerdev_6_61.pdf (accessed on 9 October 2023). [CrossRef]
- Froese, R.; Pauly, D. (Eds.) FishBase, version (10/2023); World Wide Web Electronic Publication: Washington, DC, USA, 2023. Available online: https://www.fishbase.org (accessed on 9 October 2023).
- Laine, A.; Kamula, R.; Hooli, J. Fish and lamprey passage in a combined Denil and vertical slot fishway. Fish. Manag. Ecol. 1998, 5, 31–44. [Google Scholar] [CrossRef]
- Foulds, W.L.; Lucas, M.C. Extreme inefficiency of two conventional, technical fishways used by European river lamprey (Lampetra fluviatilis). Ecol. Eng. 2013, 58, 423–433. [Google Scholar] [CrossRef]
- Tummersa, J.S.; Wintera, E.; Silvaa, S.; O’Briend, P.; Jange, M.; Lucas, M.C. Evaluating the effectiveness of a Larinier super active baffle fish pass for European river lamprey Lampetra fluviatilis before and after modification with wall-mounted studded tiles. Ecol. Eng. 2016, 91, 183–194. [Google Scholar] [CrossRef]
- Adam, B. Fish ladders on the River Elbe near Geesthacht. In From Sea to Source; International Guidance for the Restoration of Fish Migration Highways; Gough, P., Philipsen, P., Schollema, P.P., Wanningen, H., Eds.; Regional Water Authority Hunze en Aas, AD: Veendam, The Netherlands, 2012; pp. 214–217. Available online: https://worldfishmigrationfoundation.com/portfolio-item/from-sea-to-source/ (accessed on 10 January 2024).
- Elliott, J.M.; Elliott, J.A. Temperature requirements of Atlantic salmon Salmo salar, brown trout Salmo trutta and Arctic charr Salvelinus alpinus: Predicting the effects of climate change. J. Fish Biol. 2010, 77, 1793–1817. [Google Scholar] [CrossRef]
- Šarauskienė, D.; Akstinas, V.; Kriaučiūnienė, J.; Jakimavičius, D.; Bukantis, A.; Kažys, J.; Povilaitis, A.; Ložys, L.; Kesminas, V.; Virbickas, T.; et al. Projection of Lithuanian river runoff, temperature and their extremes under climate change. Hydrol. Res. 2018, 49, 344–362. [Google Scholar] [CrossRef]
- Nazarenko, S.; Šarauskienė, D.; Putrenko, V.; Kriaučiūnienė, J. Evaluating Hydrological Drought Risk in Lithuania. Water 2023, 15, 2830. [Google Scholar] [CrossRef]
- McKay, S.; Cooper, A.; Diebel, M.; Elkins, D.; Oldford, G.; Roghair, C.; Wieferich, D. Informing Watershed Connectivity Barrier Prioritization Decisions: A Synthesis. River Res. Appl. 2016, 33, 847–862. [Google Scholar] [CrossRef]
- Finn, R.J.R.; Chalifour, L.L.; Gergel, S.E.; Hinch, S.G.; Scott, D.C.; Martin, T.G. Quantifying lost and inaccessible habitat for Pacific salmon in Canada’s Lower Fraser River. Ecosphere 2021, 12, e03646. [Google Scholar] [CrossRef]
- O’Hanley, J.R.; Tomberlin, D. Optimizing the removal of small fish passage barriers. Environ. Model. Assess. 2005, 10, 85–98. [Google Scholar] [CrossRef]
- Van Treeck, R.; Wolter, C.; Cowx, I.G.; Noble, R.A.A.; King, M.; van Zyll de Jong, M.; Radinger, J. Risk Assessment and Decision Making on Mitigation Measures. In Novel Developments for Sustainable Hydropower; Rutschmann, P., Kampa, E., Wolter, C., Albayrak, I., David, L., Stoltz, U., Schletterer, M., Eds.; Springer Nature: Cham, Switzerland, 2022; pp. 167–215. [Google Scholar] [CrossRef]
- Schwinn, M.; Baktoft, H.; Aarestrup, K.; Koed, A. A comparison of the survival and migration of wild and F1-hatchery-reared brown trout (Salmo trutta) smolts traversing an artificial lake. Fish. Res. 2017, 196, 47–55. [Google Scholar] [CrossRef]
- Schwinn, M.; Aarestrup, K.; Baktoft, H.; Koed, A. Survival of migrating Sea Trout (Salmo trutta) smolts during their passage of an artificial lake in a Danish lowland stream. River Res. Appl. 2017, 33, 558–566. [Google Scholar] [CrossRef]
- Schwinn, M.; Baktoft, H.; Aarestrup, K.; Koed, A. Artificial lakes delay the migration of brown trout Salmo trutta smolts: A comparison of migratory behaviour in a stream and through an artificial lake. J. Fish Biol. 2019, 94, 745–751. [Google Scholar] [CrossRef]
- Van Treeck, R.; Radinger, J.; Noble, R.A.A.; Geiger, F.; Wolter, C. The European Fish Hazard Index—An assessment tool for screening hazard of hydropower plants for fish. Sustain. Energy Technol. Assess. 2021, 43, 100903. [Google Scholar] [CrossRef]
- Sheer, M.B.; Steel, E.A. Lost watersheds: Barriers, aquatic habitat connectivity, and salmon persistence in the Willamette and lower Columbia River Basins. T. Am. Fish. Soc. 2006, 135, 1654–1669. [Google Scholar] [CrossRef]
- Guillaume, D.; Catherine, B.; Marion, H.L.; Etienne, E. Estimating spatial distribution of Atlantic salmon escapement using redd counts despite changes over time in counting procedure: Application to the Allier River population. Ecol. Freshw. Fish 2013, 22, 626–636. [Google Scholar] [CrossRef]
- Buddendorf, W.B.; Malcolm, I.A.; Geris, J.; Wilkinson, M.E.; Soulsby, C. Metrics to assess how longitudinal channel network connectivity and in-stream Atlantic salmon habitats are impacted by hydropower regulation. Hydrol. Process. 2017, 31, 2132–2142. [Google Scholar] [CrossRef]
Barrier Code | Total Length, km | Atot, km2 | Asuit, km2 | Nsal, thou. ind. | Nvim, thou. ind. | Nlam, thou. ind. | Rbarri |
---|---|---|---|---|---|---|---|
Nem | 676 | 44.89 | 2.15 | 4.77 | 11.59 | 14.3 | 3.0 |
Jur1 * | 117 | 1.57 | 0.25 | 0.13 | 0.91 | 3.04 | 0.32 |
Nev1 | 157 | 3.43 | 0.21 | - | 1.0 | 2.17 | 0.24 |
Sve2 | 117 | 2.97 | 0.25 | 0.62 | 1.1 | 0.13 | 0.23 |
Sve1 * | 69 | 1.43 | 0.18 | 0.17 | 0.81 | 1.48 | 0.21 |
Sus1 | 44 | 0.78 | 0.12 | - | 1.09 | 1.30 | 0.19 |
Sie1 * | 44 | 0.53 | 0.1 | 0.16 | 0.49 | 1.45 | 0.18 |
Jur2 | 115 | 1.4 | 0.19 | 0.47 | 0.72 | 0.08 | 0.17 |
Vok1 | 7 | 0.11 | 0.03 | 0.24 | 0.73 | 0.73 | 0.16 |
Anc | 34 | 0.25 | 0.05 | 0.23 | - | 0.7 | 0.1 |
Dub | 12 | 0.15 | 0.02 | 0.1 | 0.29 | 0.31 | 0.07 |
Var1 | 34 | 0.39 | 0.06 | 0.07 | 0.44 | 0.2 | 0.07 |
Luk | 11 | 0.07 | 0.02 | 0.13 | - | 0.39 | 0.06 |
Kra | 24 | 0.27 | 0.03 | 0.08 | 0.23 | 0.23 | 0.05 |
Arm | 6 | 0.06 | 0.01 | 0.1 | - | 0.31 | 0.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Virbickas, T.; Kesminas, V. Prioritisation of Barriers According to Their Impact on Migratory Fish in the Lowland River Basin District. Fishes 2024, 9, 113. https://doi.org/10.3390/fishes9040113
Virbickas T, Kesminas V. Prioritisation of Barriers According to Their Impact on Migratory Fish in the Lowland River Basin District. Fishes. 2024; 9(4):113. https://doi.org/10.3390/fishes9040113
Chicago/Turabian StyleVirbickas, Tomas, and Vytautas Kesminas. 2024. "Prioritisation of Barriers According to Their Impact on Migratory Fish in the Lowland River Basin District" Fishes 9, no. 4: 113. https://doi.org/10.3390/fishes9040113
APA StyleVirbickas, T., & Kesminas, V. (2024). Prioritisation of Barriers According to Their Impact on Migratory Fish in the Lowland River Basin District. Fishes, 9(4), 113. https://doi.org/10.3390/fishes9040113