Decoding the Transcriptome of Sharks, Rays, and Chimaeras: Insights into Their Physiology, Morphology, Evolution, and Biomedical Applications
Abstract
:1. Introduction
2. The Chondrichthyes
3. Evolution of Transcriptomics Technologies
4. Chondrichthyes and Their Transcriptomes
5. Main Findings of Elasmobranch’s Transcriptome Studies
5.1. Evolutionary Findings
5.1.1. Pancreas
5.1.2. Eyes
5.1.3. Heart
5.1.4. Reproduction
5.1.5. Metabolism
5.2. Physiology and Morphology
5.2.1. Fin Development
5.2.2. Digestive System
5.2.3. Osmoregulation
5.2.4. Climatic Adaptation
5.2.5. Electric Organs
5.2.6. Bioluminescence
5.2.7. Anoxia Response
5.3. Biomedical Relevance
5.3.1. Venom
5.3.2. Kidney and Spleen
5.3.3. Antibodies
5.3.4. Liver
6. Challenges and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Teneva, L.; Strong, A.L.; Agostini, V.; Bagstad, K.J.; Drakou, E.G.; Ancona, Z.; Gjerde, K.; Hume, A.C.; Jickling, N. Estimating the Pelagic Ocean’s Benefits to Humanity Can Enhance Ocean Governance. Mar. Policy 2022, 136, 104906. [Google Scholar] [CrossRef]
- Sandifer, P.A.; Sutton-Grier, A.E. Connecting Stressors, Ocean Ecosystem Services, and Human Health. Nat. Resour. Forum 2014, 38, 157–167. [Google Scholar] [CrossRef]
- Heithaus, M.; Frid, A.; Vaudo, J.; Worm, B.; Wirsing, A. Unraveling the Ecological Importance of Elasmobranchs. In Sharks and Their Relatives II; CRC Press: Boca Raton, FL, USA, 2010; pp. 611–637. [Google Scholar] [CrossRef]
- Baum, J.K.; Worm, B. Cascading Top-down Effects of Changing Oceanic Predator Abundances. J. Anim. Ecol. 2009, 78, 699–714. [Google Scholar] [CrossRef] [PubMed]
- Abreo, N.A.S.; Blatchley, D.; Superio, M.D. Stranded Whale Shark (Rhincodon typus) Reveals Vulnerability of Filter-Feeding Elasmobranchs to Marine Litter in the Philippines. Mar. Pollut. Bull. 2019, 141, 79–83. [Google Scholar] [CrossRef] [PubMed]
- Heithaus, M.R. Predator-Prey and Competitive Interactions between Sharks (order Selachii) and Dolphins (suborder Odontoceti): A Review. J. Zool. 2001, 253, 53–68. [Google Scholar] [CrossRef]
- Tucker, J.P.; Vercoe, B.; Santos, I.R.; Dujmovic, M.; Butcher, P.A. Whale Carcass Scavenging by Sharks. Glob. Ecol. Conserv. 2019, 19, e00655. [Google Scholar] [CrossRef]
- Lea, J.S.E.; Daly, R.; Leon, C.; Daly, C.A.K.; Clarke, C.R. Life after Death: Behaviour of Multiple Shark Species Scavenging a Whale Carcass. Mar. Freshw. Res. 2019, 70, 302–306. [Google Scholar] [CrossRef]
- Roff, G.; Doropoulos, C.; Rogers, A.; Bozec, Y.M.; Krueck, N.C.; Aurellado, E.; Priest, M.; Birrell, C.; Mumby, P.J. The Ecological Role of Sharks on Coral Reefs. Trends Ecol. Evol. 2016, 31, 395–407. [Google Scholar] [CrossRef]
- NOAA Office of Ocean Exploration and Research. Dive 07: Oh My Grouper, Look at That Shark: Windows to the Deep 2019: Exploration of the Deep-Sea Habitats of the Southeastern United States. Available online: https://oceanexplorer.noaa.gov/okeanos/explorations/ex1903/dailyupdates/june28/media/sharks-log.html (accessed on 5 May 2022).
- Higgs, N.D.; Gates, A.R.; Jones, D.O.B. Fish Food in the Deep Sea: Revisiting the Role of Large Food-Falls. PLoS ONE 2014, 9, e96016. [Google Scholar] [CrossRef]
- Mariani, G.; Cheung, W.W.L.; Lyet, A.; Sala, E.; Mayorga, J.; Velez, L.; Gaines, S.D.; Dejean, T.; Troussellier, M.; Mouillot, D. Let More Big Fish Sink: Fisheries Prevent Blue Carbon Sequestration-Half in Unprofitable Areas. Sci. Adv. 2020, 6, eabb4848. [Google Scholar] [CrossRef]
- Skubel, R.A.; Shriver-Rice, M.; Maranto, G.M. Introducing Relational Values as a Tool for Shark Conservation, Science, and Management. Front. Mar. Sci. 2019, 6, 53. [Google Scholar] [CrossRef]
- Gallagher, A.J.; Huveneers, C.P.M. Emerging Challenges to Shark-Diving Tourism. Mar. Policy 2018, 96, 9–12. [Google Scholar] [CrossRef]
- Gallagher, A.J.; Hammerschlag, N. Global Shark Currency: The Distribution Frequency and Economic Value of Shark Ecotourism. Curr. Issues Tour. 2011, 14, 797–812. [Google Scholar] [CrossRef]
- Pacoureau, N.; Rigby, C.L.; Kyne, P.M.; Sherley, R.B.; Winker, H.; Carlson, J.K.; Fordham, S.V.; Barreto, R.; Fernando, D.; Francis, M.P.; et al. Half a Century of Global Decline in Oceanic Sharks and Rays. Nature 2021, 589, 567–571. [Google Scholar] [CrossRef]
- Lemos, M.F.L. Biomarker Studies in Stress Biology: From the Gene to Population, from the Organism to the Application. Biology 2021, 10, 1340. [Google Scholar] [CrossRef] [PubMed]
- Connon, R.E.; Jeffries, K.M.; Komoroske, L.M.; Todgham, A.E.; Fangue, N.A. The Utility of Transcriptomics in Fish Conservation. J. Exp. Biol. 2018, 221, jeb148833. [Google Scholar] [CrossRef]
- Morozova, O.; Hirst, M.; Marra, M.A. Applications of New Sequencing Technologies for Transcriptome Analysis. Annu. Rev. Genom. Hum. Genet. 2009, 10, 135–151. [Google Scholar] [CrossRef] [PubMed]
- Lowe, R.; Shirley, N.; Bleackley, M.; Dolan, S.; Shafee, T. Transcriptomics Technologies. PLoS Comput. Biol. 2017, 13, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Stark, R.; Grzelak, M.; Hadfield, J. RNA Sequencing: The Teenage Years. Nat. Rev. Genet. 2019, 20, 631–656. [Google Scholar] [CrossRef]
- Wen, J.; Egan, A.N.; Dikow, R.B.; Zimmer, E.A. Utility of Transcriptome Sequencing for Phylogenetic Inference and Character Evolution. In Next-Generation Sequencing in Plant Systematics; International Association for Plant Taxonomy (IAPT): Stockholm, Sweden, 2015; pp. 1–42. [Google Scholar] [CrossRef]
- Supplitt, S.; Karpinski, P.; Sasiadek, M.; Laczmanska, I. Current Achievements and Applications of Transcriptomics in Personalized Cancer Medicine. Int. J. Mol. Sci. 2021, 22, 1422. [Google Scholar] [CrossRef]
- Oliverio, A.L.; Bellomo, T.; Mariani, L.H. Evolving Clinical Applications of Tissue Transcriptomics in Kidney Disease. Front. Pediatr. 2019, 7, 306. [Google Scholar] [CrossRef]
- Domingues, R.R.; Bunholi, I.V.; Pinhal, D.; Antunes, A.; Mendonça, F.F. From Molecule to Conservation: DNA-Based Methods to Overcome Frontiers in the Shark and Ray Fin Trade. Conserv. Genet. Resour. 2021, 13, 231–247. [Google Scholar] [CrossRef]
- Johri, S.; Doane, M.P.; Allen, L.; Dinsdale, E.A. Taking Advantage of the Genomics Revolution for Monitoring and Conservation of Chondrichthyan Populations. Diversity 2019, 11, 49. [Google Scholar] [CrossRef]
- Pearce, J.; Fraser, M.W.; Sequeira, A.M.M.M.; Kaur, P. State of Shark and Ray Genomics in an Era of Extinction. Front. Mar. Sci. 2021, 8, 744986. [Google Scholar] [CrossRef]
- Lee, J.; Valkova, N.; White, M.P.; Kültz, D. Proteomic Identification of Processes and Pathways Characteristic of Osmoregulatory Tissues in Spiny Dogfish Shark (Squalus acanthias). Comp. Biochem. Physiol. Part D Genom. Proteom. 2006, 1, 328–343. [Google Scholar] [CrossRef] [PubMed]
- Marancik, D.P.; Fast, M.D.; Camus, A.C. Proteomic Characterization of the Acute-Phase Response of Yellow Stingrays Urobatis jamaicensis after Injection with a Vibrio anguillarum-ordalii Bacterin. Fish Shellfish Immunol. 2013, 34, 1383–1389. [Google Scholar] [CrossRef]
- Perry, C.T.; Pratte, Z.A.; Clavere-Graciette, A.; Ritchie, K.B.; Hueter, R.E.; Newton, A.L.; Fischer, G.C.; Dinsdale, E.A.; Doane, M.P.; Wilkinson, K.A.; et al. Elasmobranch Microbiomes: Emerging Patterns and Implications for Host Health and Ecology. Anim. Microbiome 2021, 3, 61. [Google Scholar] [CrossRef]
- Doane, M.P.; Johnson, C.J.; Johri, S.; Kerr, E.N.; Morris, M.M.; Desantiago, R.; Turnlund, A.C.; Goodman, A.; Mora, M.; Lima, L.F.O.; et al. The Epidermal Microbiome Within an Aggregation of Leopard Sharks (Triakis semifasciata) Has Taxonomic Flexibility with Gene Functional Stability Across Three Time-Points. Microb. Ecol. 2022, 1, 3. [Google Scholar] [CrossRef]
- Black, C.; Merly, L.; Hammerschlag, N. Bacterial Communities in Multiple Tissues across the Body Surface of Three Coastal Shark Species. Zool. Stud. 2021, 60, 60–69. [Google Scholar] [CrossRef]
- Stein, R.W.; Mull, C.G.; Kuhn, T.S.; Aschliman, N.C.; Davidson, L.N.K.; Joy, J.B.; Smith, G.J.; Dulvy, N.K.; Mooers, A.O. Global Priorities for Conserving the Evolutionary History of Sharks, Rays and Chimaeras. Nat. Ecol. Evol. 2018, 2, 288–298. [Google Scholar] [CrossRef]
- Marra, N.J.; Stanhope, M.J.; Jue, N.K.; Wang, M.; Sun, Q.; Bitar, P.P.; Richards, V.P.; Komissarov, A.; Rayko, M.; Kliver, S.; et al. White Shark Genome Reveals Ancient Elasmobranch Adaptations Associated with Wound Healing and the Maintenance of Genome Stability. Proc. Natl. Acad. Sci. USA 2019, 116, 4446–4455. [Google Scholar] [CrossRef] [PubMed]
- Marconi, A.; Hancock-Ronemus, A.; Gillis, J.A. Adult Chondrogenesis and Spontaneous Cartilage Repair in the Skate, Leucoraja erinacea. eLife 2020, 9, e53414. [Google Scholar] [CrossRef]
- Alves, L.M.F.; Lemos, M.F.L.; Cabral, H.; Novais, S.C. Elasmobranchs as Bioindicators of Pollution in the Marine Environment. Mar. Pollut. Bull. 2022, 176, 113418. [Google Scholar] [CrossRef] [PubMed]
- Andreev, P.; Coates, M.I.; Karatajute-Talimaa, V.; Shelton, R.M.; Cooper, P.R.; Wang, N.Z.; Sansom, I.J. The Systematics of the Mongolepidida (Chondrichthyes) and the Ordovician Origins of the Clade. PeerJ 2016, 2016, e1850. [Google Scholar] [CrossRef]
- White, W.T.; O’Neill, H.L.; Naylor, G.J.P. Taxonomy and Diversity of Extant Elasmobranchs. In Biology of Sharks and Their Relatives; CRC Press: Boca Raton, FL, USA, 2022; pp. 31–57. ISBN 9781003262190. [Google Scholar]
- Techera, E.J.; Klein, N. Fragmented Governance: Reconciling Legal Strategies for Shark Conservation and Management. Mar. Policy 2011, 35, 73–78. [Google Scholar] [CrossRef]
- Roemer, R.P.; Gallagher, A.J.; Hammerschlag, N. Shallow Water Tidal Flat Use and Associated Specialized Foraging Behavior of the Great Hammerhead Shark (Sphyrna mokarran). Mar. Freshw. Behav. Physiol. 2016, 49, 235–249. [Google Scholar] [CrossRef]
- Weigmann, S. Annotated Checklist of the Living Sharks, Batoids and Chimaeras (Chondrichthyes) of the World, with a Focus on Biogeographical Diversity. J. Fish Biol. 2016, 88, 837–1037. [Google Scholar] [CrossRef]
- Engelbrecht, A.; Mörs, T.; Reguero, M.A.; Kriwet, J. Skates and Rays (Elasmobranchii, Batomorphii) from the Eocene La Meseta and Submeseta Formations, Seymour Island, Antarctica. Hist. Biol. 2018, 31, 1028–1044. [Google Scholar] [CrossRef]
- Pikitch, E.K.; Chapman, D.D.; Babcock, E.A.; Shivji, M.S. Habitat Use and Demographic Population Structure of Elasmobranchs at a Caribbean Atoll (Glover’s Reef, Belize). Mar. Ecol. Prog. Ser. 2005, 302, 187–197. [Google Scholar] [CrossRef]
- Ruocco, N.L.; Lucifora, L.O. Ecological Singularity of Temperate Mesopredatory Myliobatoid Rays (Chondrichthyes: Myliobatiformes). Mar. Freshw. Res. 2017, 68, 1098. [Google Scholar] [CrossRef]
- Myers, R.A.; Baum, J.K.; Shepherd, T.D.; Powers, S.P.; Peterson, C.H. Cascading Effects of the Loss of Apex Predatory Sharks from a Coastal Ocean. Science 2007, 315, 1846–1850. [Google Scholar] [CrossRef] [PubMed]
- Moss, S. Feeding Mechanisms in Sharks. Integr. Comp. Biol. 1977, 17, 355–364. [Google Scholar] [CrossRef]
- Misty Paig-Tran, E.W.; Summers, A.P. Comparison of the Structure and Composition of the Branchial Filters in Suspension Feeding Elasmobranchs. Anat. Rec. 2014, 297, 701–715. [Google Scholar] [CrossRef] [PubMed]
- Dulvy, N.K.; Pacoureau, N.; Rigby, C.L.; Pollom, R.A.; Jabado, R.W.; Ebert, D.A.; Finucci, B.; Pollock, C.M.; Cheok, J.; Derrick, D.H.; et al. Overfishing Drives over One-Third of All Sharks and Rays toward a Global Extinction Crisis. Curr. Biol. 2021, 31, 4773–4787.e8. [Google Scholar] [CrossRef] [PubMed]
- DiBattista, J.D. Patterns of Genetic Variation in Anthropogenically Impacted Populations. Conserv. Genet. 2008, 9, 141–156. [Google Scholar] [CrossRef]
- Liu, K.M.; Wu, C.B.; Joung, S.J.; Tsai, W.P.; Su, K.Y. Multi-Model Approach on Growth Estimation and Association With Life History Trait for Elasmobranchs. Front. Mar. Sci. 2021, 8, 108. [Google Scholar] [CrossRef]
- Nielsen, J.; Hedeholm, R.B.; Heinemeier, J.; Bushnell, P.G.; Christiansen, J.S.; Olsen, J.; Ramsey, C.B.; Brill, R.W.; Simon, M.; Steffensen, K.F.; et al. Eye Lens Radiocarbon Reveals Centuries of Longevity in the Greenland Shark (Somniosus microcephalus). Science 2016, 353, 702–704. [Google Scholar] [CrossRef]
- Dent, F.; Clarke, S. State of the Global Market for Shark Products; FAO Fishereis and Aquaculture Technical Paper, No. 590; FAO: Rome, Italy, 2015; p. 187. [Google Scholar]
- Bornatowski, H.; Braga, R.R.; Vitule, J.R.S.; Simões Vitule, J.R. Shark Mislabeling Threatens Biodiversity. Science 2013, 340, 923. [Google Scholar] [CrossRef]
- Pazartzi, T.; Siaperopoulou, S.; Gubili, C.; Maradidou, S.; Loukovitis, D.; Chatzispyrou, A.; Griffiths, A.M.; Minos, G.; Imsiridou, A. High Levels of Mislabeling in Shark Meat—Investigating Patterns of Species Utilization with DNA Barcoding in Greek Retailers. Food Control 2019, 98, 179–186. [Google Scholar] [CrossRef]
- Lack, M.; Sant, G. Illegal, Unreported and Unregulated Shark Catch: A Review of Current Knowledge and Action; Traffic: Canaberra, Australia, 2008; p. 62. [Google Scholar]
- Mucientes, G.; Vedor, M.; Sims, D.W.; Queiroz, N. Unreported Discards of Internationally Protected Pelagic Sharks in a Global Fishing Hotspot Are Potentially Large. Biol. Conserv. 2022, 269, 109534. [Google Scholar] [CrossRef]
- Baeta, F.; Batista, M.; Maia, A.; Costa, M.J.; Cabral, H. Elasmobranch Bycatch in a Trammel Net Fishery in the Portuguese West Coast. Fish. Res. 2010, 102, 123–129. [Google Scholar] [CrossRef]
- Storai, T.; Zinzula, L.; Repetto, S.; Zuffa, M.; Morgan, A.; Mandelman, J. Bycatch of Large Elasmobranchs in the Traditional Tuna Traps (Tonnare) of Sardinia from 1990 to 2009. Fish. Res. 2011, 109, 74–79. [Google Scholar] [CrossRef]
- Cross, H. Elasmobranch Capture by Commercial Small-Scale Fisheries in the Bijagós Archipelago, Guinea Bissau. Fish. Res. 2015, 168, 105–108. [Google Scholar] [CrossRef]
- Spaet, J.L.Y.; Berumen, M.L. Fish Market Surveys Indicate Unsustainable Elasmobranch Fisheries in the Saudi Arabian Red Sea. Fish. Res. 2015, 161, 356–364. [Google Scholar] [CrossRef]
- Navia, A.F.; Mejía-Falla, P.A. Fishing Effects on Elasmobranchs from the Pacific Coast of Colombia. Univ. Sci. 2016, 21, 9–22. [Google Scholar] [CrossRef]
- Lynch, A.M.J.; Sutton, S.G.; Simpfendorfer, C.A. Implications of Recreational Fishing for Elasmobranch Conservation in the Great Barrier Reef Marine Park. Aquat. Conserv. 2010, 20, 312–318. [Google Scholar] [CrossRef]
- Gallagher, A.J.; Hammerschlag, N.; Danylchuk, A.J.; Cooke, S.J. Shark Recreational Fisheries: Status, Challenges, and Research Needs. Ambio 2017, 46, 385–398. [Google Scholar] [CrossRef]
- Cardeñosa, D. Genetic Identification of Threatened Shark Species in Pet Food and Beauty Care Products. Conserv. Genet. 2019, 20, 1383–1387. [Google Scholar] [CrossRef]
- Diogo, G.S.; Carneiro, F.; Freitas-Ribeiro, S.; Sotelo, C.G.; Pérez-Martín, R.I.; Pirraco, R.P.; Reis, R.L.; Silva, T.H. Prionace Glauca Skin Collagen Bioengineered Constructs as a Promising Approach to Trigger Cartilage Regeneration. Mater. Sci. Eng. C 2020, 120, 111587. [Google Scholar] [CrossRef]
- Seixas, M.J.; Martins, E.; Reis, R.L.; Silva, T.H. Extraction and Characterization of Collagen from Elasmobranch Byproducts for Potential Biomaterial Use. Mar. Drugs 2020, 18, 617. [Google Scholar] [CrossRef]
- Cho, J.J.; Kim, Y.T. Sharks: A Potential Source of Antiangiogenic Factors and Tumor Treatments. Mar. Biotechnol. 2002, 4, 521–525. [Google Scholar] [CrossRef] [PubMed]
- Rabbani-chadegani, A.; Abdossamadi, S.; Bargahi, A.; Yousef-masboogh, M. Identification of Low-Molecular-Weight Protein (SCP1) from Shark Cartilage with Anti-Angiogenesis Activity and Sequence Similarity to Parvalbumin. J. Pharm. Biomed. Anal. 2008, 46, 563–567. [Google Scholar] [CrossRef] [PubMed]
- Ostrander, G.K.; Cheng, K.C.; Wolf, J.C.; Wolfe, M.J. Shark Cartilage, Cancer and the Growing Threat of Pseudoscience. Cancer Res. 2004, 64, 8485–8491. [Google Scholar] [CrossRef] [PubMed]
- Sansom, I.J.; Davies, N.S.; Coates, M.I.; Nicoll, R.S.; Ritchie, A. Chondrichthyan-like Scales from the Middle Ordovician of Australia. Palaeontology 2012, 55, 243–247. [Google Scholar] [CrossRef]
- Whitenack, L.B.; Kim, S.L.; Sibert, E.C. Bridging the Gap Between Chondrichthyan Paleobiology and Biology. In Biology of Sharks and Their Relatives; CRC Press: Boca Raton, FL, USA, 2022; pp. 1–29. [Google Scholar] [CrossRef]
- King, B.L.; Gillis, J.A.; Carlisle, H.R.; Dahn, R.D. A Natural Deletion of the HoxC Cluster in Elasmobranch Fishes. Science 2011, 334, 1517. [Google Scholar] [CrossRef]
- Domingues, R.R.; Hilsdorf, A.W.S.; Gadig, O.B.F. The Importance of Considering Genetic Diversity in Shark and Ray Conservation Policies. Conserv. Genet. 2018, 19, 501–525. [Google Scholar] [CrossRef]
- Wang, B.; Tseng, E.; Regulski, M.; Clark, T.A.; Hon, T.; Jiao, Y.; Lu, Z.; Olson, A.; Stein, J.C.; Ware, D. Unveiling the Complexity of the Maize Transcriptome by Single-Molecule Long-Read Sequencing. Nat. Commun. 2016, 7, 11708. [Google Scholar] [CrossRef]
- Tilgner, H.; Grubert, F.; Sharon, D.; Snyder, M.P. Defining a Personal, Allele-Specific, and Single-Molecule Long-Read Transcriptome. Proc. Natl. Acad. Sci. USA 2014, 111, 9869–9874. [Google Scholar] [CrossRef] [PubMed]
- De Coster, W.; Weissensteiner, M.H.; Sedlazeck, F.J. Towards Population-Scale Long-Read Sequencing. Nat. Rev. Genet. 2021, 22, 572–587. [Google Scholar] [CrossRef]
- Houseley, J.; Tollervey, D. The Many Pathways of RNA Degradation. Cell 2009, 136, 763–776. [Google Scholar] [CrossRef]
- RNALater TM Tissue Collection: RNA Stabilization Solution. In Ambion Protocols and Manuals; Life Technologies Corporation: Carlsbad, CA, USA, 2011.
- Fabre, A.L.; Colotte, M.; Luis, A.; Tuffet, S.; Bonnet, J. An Efficient Method for Long-Term Room Temperature Storage of RNA. Eur. J. Hum. Genet. 2014, 22, 379–385. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H. The Review of Transcriptome Sequencing: Principles, History and Advances. IOP Conf. Ser. Earth Environ. Sci. 2019, 332, 042003. [Google Scholar] [CrossRef]
- Schadt, E.E.; Turner, S.; Kasarskis, A. A Window into Third-Generation Sequencing. Hum. Mol. Genet. 2010, 19, R227–R240. [Google Scholar] [CrossRef] [PubMed]
- Frank, M.; Prenzler, A.; Eils, R.; von der Schulenburg, J.M.G. Genome Sequencing: A Systematic Review of Health Economic Evidence. Health Econ. Rev. 2013, 3, 29. [Google Scholar] [CrossRef] [PubMed]
- von Bubnoff, A. Next-Generation Sequencing: The Race Is On. Cell 2008, 132, 721–723. [Google Scholar] [CrossRef]
- McCombie, W.R.; McPherson, J.D.; Mardis, E.R. Next-Generation Sequencing Technologies. Cold Spring Harb. Perspect. Med. 2019, 9, a036798. [Google Scholar] [CrossRef] [PubMed]
- Qian, X.; Ba, Y.; Zhuang, Q.; Zhong, G. RNA-Seq Technology and Its Application in Fish Transcriptomics. OMICS 2014, 18, 98–110. [Google Scholar] [CrossRef]
- Nagalakshmi, U.; Waern, K.; Snyder, M. RNA-Seq: A Method for Comprehensive Transcriptome Analysis. Curr. Protoc. Mol. Biol. 2010, 89, 4.11.1–4.11.13. [Google Scholar] [CrossRef]
- Liu, L.; Li, Y.; Li, S.; Hu, N.; He, Y.; Pong, R.; Lin, D.; Lu, L.; Law, M. Comparison of Next-Generation Sequencing Systems. J. Biomed. Biotechnol. 2012, 2012, 251364. [Google Scholar] [CrossRef]
- Husseini, A.A.; Derakhshandeh, M.; Tatlisu, N.B. Comprehensive Review of Transcriptomics (RNAs) Workflows from Blood Specimens. Sep. Purif. Rev. 2022, 51, 57–77. [Google Scholar] [CrossRef]
- Akbar, M.A.; Ahmad, A.; Usup, G.; Bunawan, H. RNA-Seq as an Emerging Tool for Marine Dinoflagellate Transcriptome Analysis: Process and Challenges. Processes 2018, 6, 5. [Google Scholar] [CrossRef]
- Malone, J.H.; Oliver, B. Microarrays, Deep Sequencing and the True Measure of the Transcriptome. BMC Biol. 2011, 9, 34. [Google Scholar] [CrossRef]
- Rodríguez-Jorquera, I.A.; Colli-Dula, R.C.; Kroll, K.; Jayasinghe, B.S.; Parachu Marco, M.V.; Silva-Sanchez, C.; Toor, G.S.; Denslow, N.D. Blood Transcriptomics Analysis of Fish Exposed to Perfluoro Alkyls Substances: Assessment of a Non-Lethal Sampling Technique for Advancing Aquatic Toxicology Research. Environ. Sci. Technol. 2019, 53, 1441–1452. [Google Scholar] [CrossRef] [PubMed]
- Sáez-Arteaga, A.; Wu, Y.; Silva-Marrero, J.I.; Rashidpour, A.; Almajano, M.P.; Fernández, F.; Baanante, I.V.; Metón, I. Gene Markers of Dietary Macronutrient Composition and Growth in the Skeletal Muscle of Gilthead Sea Bream (Sparus aurata). Aquaculture 2022, 555, 738221. [Google Scholar] [CrossRef]
- Martin, S.A.M.; Dehler, C.E.; Król, E. Transcriptomic Responses in the Fish Intestine. Dev. Comp. Immunol. 2016, 64, 103–117. [Google Scholar] [CrossRef]
- Jaksik, R.; Iwanaszko, M.; Rzeszowska-Wolny, J.; Kimmel, M. Microarray Experiments and Factors Which Affect Their Reliability. Biol. Direct 2015, 10, 46. [Google Scholar] [CrossRef]
- Molina-Olvera, G.; Rivas-Ortiz, C.I.; Schcolnik-Cabrera, A.; Castillo-Rodal, A.I.; López-Vidal, Y. RNA Microarray-Based Comparison of Innate Immune Phenotypes between Human THP-1 Macrophages Stimulated with Two BCG Strains. Int. J. Mol. Sci. 2022, 23, 4525. [Google Scholar] [CrossRef]
- Zhao, S.; Xu, J.; Zhang, W.; Yan, W.; Li, G. Paternal Exposure to Microcystin-LR Triggers Developmental Neurotoxicity in Zebrafish Offspring via an Epigenetic Mechanism Involving MAPK Pathway. Sci. Total Environ. 2021, 792, 148437. [Google Scholar] [CrossRef]
- Bracamonte, A.G. Microarrays towards Nanoarrays and the Future Next Generation of Sequencing Methodologies (NGS). Sens. Biosensing Res. 2022, 37, 100503. [Google Scholar] [CrossRef]
- Bleidorn, C. Third Generation Sequencing: Technology and Its Potential Impact on Evolutionary Biodiversity Research. Syst. Biodivers. 2016, 14, 1–8. [Google Scholar] [CrossRef]
- Smith, M.A.; Ersavas, T.; Ferguson, J.M.; Liu, H.; Lucas, M.C.; Begik, O.; Bojarski, L.; Barton, K.; Novoa, E.M. Barcoding and Demultiplexing Oxford Nanopore Native RNA Sequencing Reads with Deep Residual Learning. bioRxiv 2019, 864322. [Google Scholar] [CrossRef]
- Cook, D.E.; Valle-Inclan, J.E.; Pajoro, A.; Rovenich, H.; Thomma, B.P.H.J.; Faino, L. Long-Read Annotation: Automated Eukaryotic Genome Annotation Based on Long-Read CDNA Sequencing. Plant Physiol. 2019, 179, 38–54. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.; Winefield, C.; Bombarely, A.; Prentis, P.; Waterhouse, P. Tools and Strategies for Long-Read Sequencing and De Novo Assembly of Plant Genomes. Trends Plant Sci. 2019, 24, 700–724. [Google Scholar] [CrossRef] [PubMed]
- Wen, L.; Tang, F. Recent Advances in Single-Cell Sequencing Technologies. Precis. Clin. Med. 2022, 5, 700–724. [Google Scholar] [CrossRef] [PubMed]
- Rang, F.J.; Kloosterman, W.P.; de Ridder, J. From Squiggle to Basepair: Computational Approaches for Improving Nanopore Sequencing Read Accuracy. Genome Biol. 2018, 19, 90. [Google Scholar] [CrossRef]
- Hu, T.; Chitnis, N.; Monos, D.; Dinh, A. Next-Generation Sequencing Technologies: An Overview. Hum. Immunol. 2021, 82, 801–811. [Google Scholar] [CrossRef]
- Wenger, A.M.; Peluso, P.; Rowell, W.J.; Chang, P.C.; Hall, R.J.; Concepcion, G.T.; Ebler, J.; Fungtammasan, A.; Kolesnikov, A.; Olson, N.D.; et al. Accurate Circular Consensus Long-Read Sequencing Improves Variant Detection and Assembly of a Human Genome. Nat. Biotechnol. 2019, 37, 1155–1162. [Google Scholar] [CrossRef]
- Rhoads, A.; Au, K.F. PacBio Sequencing and Its Applications. Genom. Proteom. Bioinform. 2015, 13, 278–289. [Google Scholar] [CrossRef]
- Hara, Y.; Yamaguchi, K.; Onimaru, K.; Kadota, M.; Koyanagi, M.; Keeley, S.D.; Tatsumi, K.; Tanaka, K.; Motone, F.; Kageyama, Y.; et al. Shark Genomes Provide Insights into Elasmobranch Evolution and the Origin of Vertebrates. Nat. Ecol. Evol. 2018, 2, 1761–1771. [Google Scholar] [CrossRef]
- Swenson, J.D.; Klomp, J.; Fisher, R.A.; Crow, K.D. How the Devil Ray Got Its Horns: The Evolution and Development of Cephalic Lobes in Myliobatid Stingrays (Batoidea: Myliobatidae). Front. Ecol. Evol. 2018, 6, 181. [Google Scholar] [CrossRef]
- Mayeur, H.; Lanoizelet, M.; Quillien, A.; Menuet, A.; Michel, L.; Martin, K.J.; Dejean, S.; Blader, P.; Mazan, S.; Lagadec, R. When Bigger Is Better: 3D RNA Profiling of the Developing Head in the Catshark Scyliorhinus canicula. Front. Cell Dev. Biol. 2021, 9, 2944. [Google Scholar] [CrossRef] [PubMed]
- Sayers, E.W.; Bolton, E.E.; Brister, J.R.; Canese, K.; Chan, J.; Comeau, D.C.; Connor, R.; Funk, K.; Kelly, C.; Kim, S.; et al. Database Resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2022, 50, D20–D26. [Google Scholar] [CrossRef] [PubMed]
- Jeffries, K.M.; Teffer, A.; Michaleski, S.; Bernier, N.J.; Heath, D.D.; Miller, K.M. The Use of Non-Lethal Sampling for Transcriptomics to Assess the Physiological Status of Wild Fishes. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2021, 256, 110629. [Google Scholar] [CrossRef] [PubMed]
- Venkatesh, B.; Kirkness, E.F.; Loh, Y.H.; Halpern, A.L.; Lee, A.P.; Johnson, J.; Dandona, N.; Viswanathan, L.D.; Tay, A.; Venter, J.C.; et al. Survey Sequencing and Comparative Analysis of the Elephant Shark (Callorhinchus milii) Genome. PLoS Biol. 2007, 5, 932–944. [Google Scholar] [CrossRef] [PubMed]
- Grunow, B.; Reismann, T.; Moritz, T. Pre-Hatching Ontogenetic Changes of Morphological Characters of Small-Spotted Catshark (Scyliorhinus canicula). Fishes 2022, 7, 100. [Google Scholar] [CrossRef]
- Harahush, B.K.; Fischer, A.B.P.; Collin, S.P. Captive Breeding and Embryonic Development of Chiloscyllium punctatum Muller & Henle, 1838 (Elasmobranchii: Hemiscyllidae). J. Fish Biol. 2007, 71, 1007–1022. [Google Scholar] [CrossRef]
- Robinson, D.P.; Baverstock, W.; Al-Jaru, A.; Hyland, K.; Khazanehdari, K.A. Annually Recurring Parthenogenesis in a Zebra Shark Stegostoma Fasciatum. J. Fish Biol. 2011, 79, 1376–1382. [Google Scholar] [CrossRef]
- Honda, Y.; Takagi, W.; Wong, M.K.S.; Ogawa, N.; Tokunaga, K.; Kofuji, K.; Hyodo, S. Morphological and Functional Development of the Spiral Intestine in Cloudy Catshark (Scyliorhinus torazame). J. Exp. Biol. 2020, 223, jeb225557. [Google Scholar] [CrossRef]
- Boisvert, C.A.; Martins, C.L.; Edmunds, A.G.; Cocks, J.; Currie, P. Capture, Transport, and Husbandry of Elephant Sharks (Callorhinchus milii) Adults, Eggs, and Hatchlings for Research and Display. Zoo Biol. 2014, 34, 94–98. [Google Scholar] [CrossRef]
- Saha, S.; Sparks, A.B.; Rago, C.; Akmaev, V.; Wang, C.J.; Vogelstein, B.; Kinzler, K.W.; Velculescu, V.E. Using the Transcriptome to Annotate the Genome. Nat. Biotechnol. 2002, 20, 508–512. [Google Scholar] [CrossRef]
- Lou, F.; Wang, L.; Wang, Z.; Wang, L.; Zhao, L.; Zhou, Q.; Lu, Z.; Tang, Y. Full-Length Transcriptome of the Whale Shark (Rhincodon typus) Facilitates the Genome Information. Front. Mar. Sci. 2022, 8, 2089. [Google Scholar] [CrossRef]
- Shields, E.J.; Sorida, M.; Sheng, L.; Sieriebriennikov, B.; Ding, L.; Bonasio, R. Genome Annotation with Long RNA Reads Reveals New Patterns of Gene Expression and Improves Single-Cell Analyses in an Ant Brain. BMC Biol. 2021, 19, 254. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Collins, R.L.; Lee, W.P.; Weber, A.M.; Jun, Y.; Zhu, Q.; Weisburd, B.; Huang, Y.; Audano, P.A.; Wang, H.; et al. Expectations and Blind Spots for Structural Variation Detection from Long-Read Assemblies and Short-Read Genome Sequencing Technologies. Am. J. Hum. Genet. 2021, 108, 919–928. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Suleski, M.; Craig, J.M.; Kasprowicz, A.E.; Sanderford, M.; Li, M.; Stecher, G.; Hedges, S.B. TimeTree 5: An Expanded Resource for Species Divergence Times. Mol. Biol. Evol. 2022, 39, msac174. [Google Scholar] [CrossRef] [PubMed]
- Takechi, M.; Takeuchi, M.; Ota, K.G.; Nishimura, O.; Mochii, M.; Itomi, K.; Adachi, N.; Takahashi, M.; Fujimoto, S.; Tarui, H.; et al. Overview of the Transcriptome Profiles Identified in Hagfish, Shark, and Bichir: Current Issues Arising from Some Nonmodel Vertebrate Taxa. J. Exp. Zool. B Mol. Dev. Evol. 2011, 316B, 526–546. [Google Scholar] [CrossRef]
- Richards, V.P.; Suzuki, H.; Stanhope, M.J.; Shivji, M.S. Characterization of the Heart Transcriptome of the White Shark (Carcharodon carcharias). BMC Genom. 2013, 14, 697. [Google Scholar] [CrossRef]
- Youson, J.H.; Al-Mahrouki, A.A. Ontogenetic and Phylogenetic Development of the Endocrine Pancreas (Islet Organ) in Fishes. Gen. Comp. Endocrinol. 1999, 116, 303–335. [Google Scholar] [CrossRef]
- Mulley, J.F.; Hargreaves, A.D.; Hegarty, M.J.; Heller, R.S.; Swain, M.T. Transcriptomic Analysis of the Lesser Spotted Catshark (Scyliorhinus canicula) Pancreas, Liver and Brain Reveals Molecular Level Conservation of Vertebrate Pancreas Function. BMC Genom. 2014, 15, 1074. [Google Scholar] [CrossRef]
- Arntfield, M.E.; van der Kooy, D. β-Cell Evolution: How the Pancreas Borrowed from the Brain: The Shared Toolbox of Genes Expressed by Neural and Pancreatic Endocrine Cells May Reflect Their Evolutionary Relationship. BioEssays 2011, 33, 582–587. [Google Scholar] [CrossRef]
- Yamamoto, K.; Bloch, S.; Vernier, P. New Perspective on the Regionalization of the Anterior Forebrain in Osteichthyes. Dev. Growth Differ. 2017, 59, 175–187. [Google Scholar] [CrossRef]
- Lamb, T.D.; Patel, H.; Chuah, A.; Natoli, R.C.; Davies, W.I.L.; Hart, N.S.; Collin, S.P.; Hunt, D.M. Evolution of Vertebrate Phototransduction: Cascade Activation. Mol. Biol. Evol. 2016, 33, 2064–2087. [Google Scholar] [CrossRef]
- Domingues, R.R.; Mastrochirico-Filho, V.A.; Mendes, N.J.; Hashimoto, D.T.; Coelho, R.; da Cruz, V.P.; Antunes, A.; Foresti, F.; Mendonça, F.F. Comparative Eye and Liver Differentially Expressed Genes Reveal Monochromatic Vision and Cancer Resistance in the Shortfin Mako Shark (Isurus oxyrinchus). Genomics 2020, 112, 4817–4826. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Núñez, I.; Robledo, D.; Mayeur, H.; Mazan, S.; Sánchez, L.; Adrio, F.; Barreiro-Iglesias, A.; Candal, E. Loss of Active Neurogenesis in the Adult Shark Retina. Front. Cell Dev. Biol. 2021, 9, 115. [Google Scholar] [CrossRef] [PubMed]
- Marra, N.J.; Richards, V.P.; Early, A.; Bogdanowicz, S.M.; Pavinski Bitar, P.D.; Stanhope, M.J.; Shivji, M.S. Comparative Transcriptomics of Elasmobranchs and Teleosts Highlight Important Processes in Adaptive Immunity and Regional Endothermy. BMC Genom. 2017, 18, 87. [Google Scholar] [CrossRef] [PubMed]
- Swift, D.G.; Dunning, L.T.; Igea, J.; Brooks, E.J.; Jones, C.S.; Noble, L.R.; Ciezarek, A.; Humble, E.; Savolainen, V. Evidence of Positive Selection Associated with Placental Loss in Tiger Sharks. BMC Evol. Biol. 2016, 16, 126. [Google Scholar] [CrossRef]
- Opazo, J.C.; Lee, A.P.; Hoffmann, F.G.; Toloza-Villalobos, J.; Burmester, T.; Venkatesh, B.; Storz, J.F. Ancient Duplications and Expression Divergence in the Globin Gene Superfamily of Vertebrates: Insights from the Elephant Shark Genome and Transcriptome. Mol. Biol. Evol. 2015, 32, 1684–1694. [Google Scholar] [CrossRef]
- Ciezarek, A.G.; Dunning, L.T.; Jones, C.S.; Noble, L.R.; Humble, E.; Stefanni, S.S.; Savolainen, V. Substitutions in the Glycogenin-1 Gene Are Associated with the Evolution of Endothermy in Sharks and Tunas. Genome Biol. Evol. 2016, 8, 3011–3021. [Google Scholar] [CrossRef]
- Goshima, M.; Sekiguchi, R.; Matsushita, M.; Nonaka, M. The Complement System of Elasmobranches Revealed by Liver Transcriptome Analysis of a Hammerhead Shark, Sphyrna zygaena. Dev. Comp. Immunol. 2016, 61, 13–24. [Google Scholar] [CrossRef]
- Martinez, C.M.; Rohlf, F.J.; Frisk, M.G. Re-Evaluation of Batoid Pectoral Morphology Reveals Novel Patterns of Diversity among Major Lineages. J. Morphol. 2016, 277, 482–493. [Google Scholar] [CrossRef]
- Nakamura, T.; Klomp, J.; Pieretti, J.; Schneider, I.; Gehrke, A.R.; Shubin, A.N.H. Molecular Mechanisms Underlying the Exceptional Adaptations of Batoid Fins. Proc. Natl. Acad. Sci. USA 2015, 112, 15940–15945. [Google Scholar] [CrossRef]
- Hall, K.C.; Hundt, P.J.; Swenson, J.D.; Summers, A.P.; Crow, K.D. The Evolution of Underwater Flight: The Redistribution of Pectoral Fin Rays, in Manta Rays and Their Relatives (Myliobatidae). J. Morphol. 2018, 279, 1155–1170. [Google Scholar] [CrossRef]
- Junker, J.P.; Noël, E.S.; Guryev, V.; Peterson, K.A.; Shah, G.; Huisken, J.; McMahon, A.P.; Berezikov, E.; Bakkers, J.; Van Oudenaarden, A. Genome-Wide RNA Tomography in the Zebrafish Embryo. Cell 2014, 159, 662–675. [Google Scholar] [CrossRef] [PubMed]
- Combs, P.A.; Eisen, M.B. Genome-Wide Measurement of Spatial Expression in Patterning Mutants of Drosophila Melanogaster. F1000Research 2017, 6, 41. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.; Baek, M.; D’Elia, K.P.; Boisvert, C.; Currie, P.D.; Tay, B.H.; Venkatesh, B.; Brown, S.M.; Heguy, A.; Schoppik, D.; et al. The Ancient Origins of Neural Substrates for Land Walking. Cell 2018, 172, 667–682.e15. [Google Scholar] [CrossRef]
- Onimaru, K.; Tatsumi, K.; Tanegashima, C.; Kadota, M.; Nishimura, O.; Kuraku, S. Developmental Hourglass and Heterochronic Shifts in Fin and Limb Development. eLife 2021, 10, e62865. [Google Scholar] [CrossRef] [PubMed]
- Honda, Y.; Ogawa, N.; Wong, M.K.S.; Tokunaga, K.; Kuraku, S.; Hyodo, S.; Takagi, W. Molecular Mechanism of Nutrient Uptake in Developing Embryos of Oviparous Cloudy Catshark (Scyliorhinus torazame). PLoS ONE 2022, 17, e0265428. [Google Scholar] [CrossRef] [PubMed]
- Wood, C.M.; Walsh, P.J.; Kajimura, M.; McClelland, G.B.; Chew, S.F. The Influence of Feeding and Fasting on Plasma Metabolites in the Dogfish Shark (Squalus acanthias). Comp. Biochem. Physiol.-Mol. Integr. Physiol. 2010, 155, 435–444. [Google Scholar] [CrossRef] [PubMed]
- Deck, C.A.; McKay, S.J.; Fiedler, T.J.; Lemoine, C.M.R.; Kajimura, M.; Nawata, C.M.; Wood, C.M.; Walsh, P.J. Transcriptome Responses in the Rectal Gland of Fed and Fasted Spiny Dogfish Shark (Squalus acanthias) Determined by Suppression Subtractive Hybridization. Comp. Biochem. Physiol. Part D Genom. Proteom. 2013, 8, 334–343. [Google Scholar] [CrossRef]
- Chana-Munoz, A.; Jendroszek, A.; Sønnichsen, M.; Kristiansen, R.; Jensen, J.K.; Andreasen, P.A.; Bendixen, C.; Panitz, F. Multi-Tissue RNA-Seq and Transcriptome Characterisation of the Spiny Dogfish Shark (Squalus acanthias) Provides a Molecular Tool for Biological Research and Reveals New Genes Involved in Osmoregulation. PLoS ONE 2017, 12, e0182756. [Google Scholar] [CrossRef]
- Matthews, G.D.; Gould, R.M.; Vardimon, L. A Single Glutamine Synthetase Gene Produces Tissue-Specific Subcellular Localization by Alternative Splicing. FEBS Lett. 2005, 579, 5527–5534. [Google Scholar] [CrossRef]
- Wu, G.; Morris, S.M. Arginine Metabolism: Nitric Oxide and Beyond. Biochem. J. 1998, 336, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Knepper, M.A.; Wade, J.B.; Terris, J.; Ecelbarger, C.A.; Marples, D.; Mandon, B.; Chou, C.L.; Kishore, B.K.; Nielsen, S. Renal Aquaporins. Kidney Int. 1996, 49, 1712–1717. [Google Scholar] [CrossRef] [PubMed]
- Pillans, R.D.; Good, J.P.; Gary Anderson, W.; Hazon, N.; Franklin, C.E. Freshwater to Seawater Acclimation of Juvenile Bull Sharks (Carcharhinus leucas): Plasma Osmolytes and Na+/K+-ATPase Activity in Gill, Rectal Gland, Kidney and Intestine. J. Comp. Physiol. B 2005, 175, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Imaseki, I.; Wakabayashi, M.; Hara, Y.; Watanabe, T.; Takabe, S.; Kakumura, K.; Honda, Y.; Ueda, K.; Murakumo, K.; Matsumoto, R.; et al. Comprehensive Analysis of Genes Contributing to Euryhalinity in the Bull Shark, Carcharhinus leucas; Na+-Cl− Co-Transporter Is One of the Key Renal Factors up-Regulated in Acclimation to Low-Salinity Environment in Bull Sharks, but Not in Houndsharks, Tr. J. Exp. Biol. 2019, 222, jeb.201780. [Google Scholar] [CrossRef] [PubMed]
- Fenton, R.A.; Knepper, M.A. Mouse Models and the Urinary Concentrating Mechanism in the New Millennium. Physiol. Rev. 2007, 87, 1083–1112. [Google Scholar] [CrossRef] [PubMed]
- Aburatani, N.; Takagi, W.; Wong, M.K.S.; Kadota, M.; Kuraku, S.; Tokunaga, K.; Kofuji, K.; Saito, K.; Godo, W.; Sakamoto, T.; et al. Facilitated NaCl Uptake in the Highly Developed Bundle of the Nephron in Japanese Red Stingray Hemitrygon Akajei Revealed by Comparative Anatomy and Molecular Mapping. Zool. Sci. 2020, 37, 458–466. [Google Scholar] [CrossRef]
- Lighten, J.; Incarnato, D.; Ward, B.J.; van Oosterhout, C.; Bradbury, I.; Hanson, M.; Bentzen, P. Adaptive Phenotypic Response to Climate Enabled by Epigenetics in a K-Strategy Species, the Fish Leucoraja Ocellata (Rajidae). R. Soc. Open Sci. 2016, 3, 160299. [Google Scholar] [CrossRef]
- Petitjean, Q.; Jean, S.; Gandar, A.; Côte, J.; Laffaille, P.; Jacquin, L. Stress Responses in Fish: From Molecular to Evolutionary Processes. Sci. Total Environ. 2019, 684, 371–380. [Google Scholar] [CrossRef]
- Nazarian, J.; Hathout, Y.; Vertes, A.; Hoffman, E.P. The Proteome Survey of an Electricity-Generating Organ (Torpedo californica Electric Organ). Proteomics 2007, 7, 617–627. [Google Scholar] [CrossRef]
- Stavrianakou, M.; Perez, R.; Wu, C.; Sachs, M.S.; Aramayo, R.; Harlow, M. Draft de Novo Transcriptome Assembly and Proteome Characterization of the Electric Lobe of Tetronarce Californica: A Molecular Tool for the Study of Cholinergic Neurotransmission in the Electric Organ. BMC Genom. 2017, 18, 611. [Google Scholar] [CrossRef]
- Newton, K.C.; Gill, A.B.; Kajiura, S.M. Electroreception in Marine Fishes: Chondrichthyans. J. Fish Biol. 2019, 95, 135–154. [Google Scholar] [CrossRef] [PubMed]
- Bellono, N.W.; Leitch, D.B.; Julius, D. Molecular Basis of Ancestral Vertebrate Electroreception. Nature 2017, 543, 391–396. [Google Scholar] [CrossRef] [PubMed]
- Claes, J.M.; Partridge, J.C.; Hart, N.S.; Garza-Gisholt, E.; Ho, H.C.; Mallefet, J.; Collin, S.P. Photon Hunting in the Twilight Zone: Visual Features of Mesopelagic Bioluminescent Sharks. PLoS ONE 2014, 9, e104213. [Google Scholar] [CrossRef] [PubMed]
- Delroisse, J.; Duchatelet, L.; Flammang, P.; Mallefet, J. De Novo Transcriptome Analyses Provide Insights into Opsin-Based Photoreception in the Lanternshark Etmopterus Spinax. PLoS ONE 2018, 13, e0209767. [Google Scholar] [CrossRef] [PubMed]
- Claes, J.M.; Mallefet, J.; Mallefet, J. Bioluminescence of Sharks: First Synthesis. In Bioluminescence in Focus—A Collection of Illuminating Essays; Research Signpost: Kerala, India, 2009; pp. 51–65. [Google Scholar]
- Viviani, V.R. The Origin, Diversity, and Structure Function Relationships of Insect Luciferases. Cell. Mol. Life Sci. 2002, 59, 1833–1850. [Google Scholar] [CrossRef]
- Delroisse, J.; Duchatelet, L.; Flammang, P.; Mallefet, J. Photophore Distribution and Enzymatic Diversity Within the Photogenic Integument of the Cookie-Cutter Shark Isistius brasiliensis (Chondrichthyes: Dalatiidae). Front. Mar. Sci. 2021, 8, 366. [Google Scholar] [CrossRef]
- Riggs, C.L.; Summers, A.; Warren, D.E.; Nilsson, G.E.; Lefevre, S.; Dowd, W.W.; Milton, S.; Podrabsky, J.E. Small Non-Coding RNA Expression and Vertebrate Anoxia Tolerance. Front. Genet. 2018, 9, 230. [Google Scholar] [CrossRef]
- Walker, A.A.; Robinson, S.D.; Hamilton, B.F.; Undheim, E.A.B.; King, G.F. Deadly Proteomes: A Practical Guide to Proteotranscriptomics of Animal Venoms. Proteomics 2020, 20, 1900324. [Google Scholar] [CrossRef]
- Lewis, R.J.; Garcia, M.L. Therapeutic Potential of Venom Peptides. Nat. Rev. Drug Discov. 2003, 2, 790–802. [Google Scholar] [CrossRef]
- Júnior, N.G.D.O.; Fernandes, G.D.R.; Cardoso, M.H.; Costa, F.F.; Cândido, E.D.S.; Neto, D.G.; Mortari, M.R.; Schwartz, E.F.; Franco, O.L.; De Alencar, S.A. Venom Gland Transcriptome Analyses of Two Freshwater Stingrays (Myliobatiformes: Potamotrygonidae) from Brazil. Sci. Rep. 2016, 6, 21935. [Google Scholar] [CrossRef]
- Silva, F.; Huang, Y.; Yang, V.; Mu, X.; Shi, Q.; Antunes, A. Transcriptomic Characterization of the South American Freshwater Stingray Potamotrygon Motoro Venom Apparatus. Toxins 2018, 10, 544. [Google Scholar] [CrossRef] [PubMed]
- Castro, H.C.; Zingali, R.B.; Albuquerque, M.G.; Pujol-Luz, M.; Rodrigues, C.R. Snake Venom Thrombin-like Enzymes: From Reptilase to Now. Cell. Mol. Life Sci. 2004, 61, 843–856. [Google Scholar] [CrossRef] [PubMed]
- Kemparaju, K.; Girish, K.S. Snake Venom Hyaluronidase: A Therapeutic Target. Cell. Biochem. Funct. 2006, 24, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez, J.M.; Lomonte, B. Phospholipases A2: Unveiling the Secrets of a Functionally Versatile Group of Snake Venom Toxins. Toxicon 2013, 62, 27–39. [Google Scholar] [CrossRef] [PubMed]
- Fox, J.W.; Serrano, S.M.T. Timeline of Key Events in Snake Venom Metalloproteinase Research. J. Proteom. 2009, 72, 200–209. [Google Scholar] [CrossRef] [PubMed]
- Yamazaki, Y.; Morita, T. Structure and Function of Snake Venom Cysteine-Rich Secretory Proteins. Toxicon 2004, 44, 227–231. [Google Scholar] [CrossRef] [PubMed]
- Sunagar, K.; Johnson, W.E.; O’Brien, S.J.; Vasconcelos, V.; Antunes, A. Evolution of CRISPs Associated with Toxicoferan-Reptilian Venom and Mammalian Reproduction. Mol. Biol. Evol. 2012, 29, 1807–1822. [Google Scholar] [CrossRef] [PubMed]
- Yuh, F.P.; Wong, P.T.H.; Kumar, P.P.; Hodgson, W.C.; Kini, R.M. Ohanin, a Novel Protein from King Cobra Venom, Induces Hypolocomotion and Hyperalgesia in Mice. J. Biol. Chem. 2005, 280, 13137–13147. [Google Scholar] [CrossRef]
- Dunbar, J.P.; Fort, A.; Redureau, D.; Sulpice, R.; Dugon, M.M.; Quinton, L. Venomics Approach Reveals a High Proportion of Lactrodectus-like Toxins in the Venom of the Noble Falsewidow Spider Steatoda Nobilis. Toxins 2020, 12, 402. [Google Scholar] [CrossRef]
- Baumann, K.; Casewell, N.R.; Ali, S.A.; Jackson, T.N.W.; Vetter, I.; Dobson, J.S.; Cutmore, S.C.; Nouwens, A.; Lavergne, V.; Fry, B.G. A Ray of Venom: Combined Proteomic and Transcriptomic Investigation of Fish Venom Composition Using Barb Tissue from the Blue-Spotted Stingray (Neotrygon kuhlii). J. Proteom. 2014, 109, 188–198. [Google Scholar] [CrossRef]
- Flaherty, M.M.; Palmer, O.R.; Diaz, J.A. Galectin-3 in Venous Thrombosis: A Possible New Target for Improved Patient Care. Res. Pract. Thromb. Haemost. 2018, 2, 399–400. [Google Scholar] [CrossRef]
- Kirchhoff, K.N.; Billion, A.; Voolstra, C.R.; Kremb, S.; Wilke, T.; Vilcinskas, A. Stingray Venom Proteins: Mechanisms of Action Revealed Using a Novel Network Pharmacology Approach. Mar. Drugs 2022, 20, 27. [Google Scholar] [CrossRef]
- Criscitiello, M.F. What the Shark Immune System Can and Cannot Provide for the Expanding Design Landscape of Immunotherapy. Expert Opin. Drug Discov. 2014, 9, 725–739. [Google Scholar] [CrossRef] [PubMed]
- Gopalan, T.K.; Gururaj, P.; Gupta, R.; Gopal, D.R.; Rajesh, P.; Chidambaram, B.; Kalyanasundaram, A.; Angamuthu, R. Transcriptome Profiling Reveals Higher Vertebrate Orthologous of Intra-Cytoplasmic Pattern Recognition Receptors in Grey Bamboo Shark. PLoS ONE 2014, 9, e100018. [Google Scholar] [CrossRef]
- Xu, X.H.; Lv, P.F.; Wang, T.X.; Wang, B.X.; Shi, Y.; Wang, B.X.; Meng, Z.R.; Chen, Q.X.; Zhuang, J.X.; Wang, Y.Y. Bone-Strengthening Effects and Safety of Compound Peptides from Skin of Chiloscyllium plagiosum and Mustelus griseus. Food Sci. Nutr. 2020, 8, 1522–1533. [Google Scholar] [CrossRef] [PubMed]
- Lopes, A.R.; Sampaio, E.; Santos, C.; Couto, A.; Pegado, M.R.; Diniz, M.; Munday, P.L.; Rummer, J.L.; Rosa, R. Absence of Cellular Damage in Tropical Newly Hatched Sharks (Chiloscyllium plagiosum) under Ocean Acidification Conditions. Cell Stress Chaperones 2018, 23, 837–846. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Chen, M.; Wang, X.; Kang, S.; Xue, W.; Li, Z. Identification of Anti-TNFα VNAR Single Domain Antibodies from Whitespotted Bambooshark (Chiloscyllium plagiosum). Mar. Drugs 2022, 20, 307. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.; Wang, M.; Xiang, H.; Jiang, Y.; Gong, J.; Su, D.; Al Azad, M.A.R.; Dong, H.; Feng, L.; Wu, J.; et al. Bamboo Shark as a Small Animal Model for Single Domain Antibody Production. Front. Bioeng. Biotechnol. 2021, 9, 1177. [Google Scholar] [CrossRef] [PubMed]
- Bakke, F.K.; Gundappa, M.K.; Matz, H.; Stead, D.A.; Macqueen, D.J.; Dooley, H. Exploration of the Nurse Shark (Ginglymostoma cirratum) Plasma Immunoproteome Using High-Resolution LC-MS/MS. Front. Immunol. 2022, 13, 873390. [Google Scholar] [CrossRef] [PubMed]
- Raithaus, L.R. Shark Liver Extract for Stimulating the Immune System. U.S. Patent 5840342A, 24 November 1998. [Google Scholar]
- Huang, F.J.; Wu, W.T. Purification And Characterization Of A New Peptide (S-8300) From Shark Liver. J. Food Biochem. 2010, 34, 962–970. [Google Scholar] [CrossRef]
- Lu, T.X.; Rothenberg, M.E. MicroRNA. J. Allergy Clin. Immunol. 2018, 141, 1202–1207. [Google Scholar] [CrossRef] [PubMed]
- Cheng, D.; Chen, Y.; Lu, C.; Qian, Y.; Lv, Z. Preliminary Profiling of MicroRNA in the Normal and Regenerating Liver of Chiloscyllium plagiosum. Comp. Biochem. Physiol. Part D Genom. Proteom. 2017, 24, 60–67. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, Y.; Chen, J.; Zhang, W.; Sheng, Q.; Chen, J.; Yu, W.; Nie, Z.; Zhang, Y.; Wu, W.; et al. A Shark Liver Gene-Derived Active Peptide Expressed in the Silkworm, Bombyx Mori: Preliminary Studies for Oral Administration of the Recombinant Protein. Mar. Drugs 2013, 11, 1492–1505. [Google Scholar] [CrossRef]
- Oliver, S.P.; Turner, J.R.; Gann, K.; Silvosa, M.; D’Urban Jackson, T. Thresher Sharks Use Tail-Slaps as a Hunting Strategy. PLoS ONE 2013, 8, 67380. [Google Scholar] [CrossRef] [PubMed]
- Viducic, K.; Natanson, L.J.; Winton, M.V.; Humphries, A. Reproductive Characteristics for the Blue Shark (Prionace glauca) in the North Atlantic Ocean. Fish. Bull. 2022, 120, 26–38. [Google Scholar] [CrossRef]
- Moreira, I.; Figueiredo, I.; Farias, I.; Lagarto, N.; Maia, C.; Robalo, J.; Moura, T. Growth and Maturity of the Lesser-Spotted Dogfish Scyliorhinus canicula (Linnaeus, 1758) in the Southern Portuguese Continental Coast. J. Fish Biol. 2022, 100, 315–319. [Google Scholar] [CrossRef] [PubMed]
- McComb, D.M.; Tricas, T.C.; Kajiura, S.M. Enhanced Visual Fields in Hammerhead Sharks. J. Exp. Biol. 2009, 212, 4010–4018. [Google Scholar] [CrossRef]
- Vehniäinen, E.R.; Ruusunen, M.; Vuorinen, P.J.; Keinänen, M.; Oikari, A.O.J.; Kukkonen, J.V.K. How to Preserve and Handle Fish Liver Samples to Conserve RNA Integrity. Environ. Sci. Pollut. Res. 2019, 26, 17204–17213. [Google Scholar] [CrossRef]
- Cavanagh, R.D.; Camhi, M.; Burgess, G.H.; Cailliet, G.M.; Fordham, S.V.; Simpfendorfer, C.A.; Musick, J.A. Sharks, Rays and Chimaeras: The Status of the Chondrichthyan Fishes; Folwer, S.L., Ed.; IUCN: Gland, Switzerland, 2005; ISBN 2831707005. [Google Scholar]
- Smart, J.J.; Harry, A.V.; Tobin, A.J.; Simpfendorfer, C.A. Overcoming the Constraints of Low Sample Sizes to Produce Age and Growth Data for Rare or Threatened Sharks. Aquat. Conserv. 2013, 23, 124–134. [Google Scholar] [CrossRef]
- Skomal, G.B. Shark Nursery Areas in the Coastal Waters of Massachusetts. Am. Fish. Soc. Symp. 2007, 50, 17–33. [Google Scholar]
- Feldheim, K.A.; Gruber, S.H.; Ashley, M.V. The Breeding Biology of Lemon Sharks at a Tropical Nursery Lagoon. Proc. R. Soc. B Biol. Sci. 2002, 269, 1655–1661. [Google Scholar] [CrossRef] [PubMed]
- Wosnick, N.; Niella, Y.; Hammerschlag, N.; Chaves, A.P.; Hauser-Davis, R.A.; da Rocha, R.C.C.; Jorge, M.B.; de Oliveira, R.W.S.; Nunes, J.L.S. Negative Metal Bioaccumulation Impacts on Systemic Shark Health and Homeostatic Balance. Mar. Pollut. Bull. 2021, 168, 112398. [Google Scholar] [CrossRef] [PubMed]
- Smale, M.J.; Jones, R.T.; Correia, J.P.; Henningsen, A.D.; Crow, G.L.; Garner, R. Chapter 39 Research on Elasmobranchs in Public Aquariums. In The Elasmobranch Husbandry Manual; Ohio Biological Survey Columbus: Columbus, OH, USA, 2004; pp. 533–541. ISBN 0867271523. [Google Scholar]
- Tiktak, G.P.; Butcher, D.; Lawrence, P.J.; Norrey, J.; Bradley, L.; Shaw, K.; Preziosi, R.; Megson, D. Are Concentrations of Pollutants in Sharks, Rays and Skates (Elasmobranchii) a Cause for Concern? A Systematic Review. Mar. Pollut. Bull. 2020, 160, 111701. [Google Scholar] [CrossRef]
- Bezerra, M.F.; Lacerda, L.D.; Lai, C.T. Trace Metals and Persistent Organic Pollutants Contamination in Batoids (Chondrichthyes: Batoidea): A Systematic Review. Environ. Pollut. 2019, 248, 684–695. [Google Scholar] [CrossRef]
- Marques, A.F.S.; Alves, L.M.F.; Moutinho, A.; Lemos, M.F.L.; Novais, S.C. Scyliorhinus Canicula (Linnaeus, 1758) Metal Accumulation: A Public Health Concern for Atlantic Fish Consumers? Mar. Pollut. Bull. 2021, 169, 112477. [Google Scholar] [CrossRef] [PubMed]
- Alves, L.M.F.; Nunes, M.; Marchand, P.; Le Bizec, B.; Mendes, S.; Correia, J.P.S.; Lemos, M.F.L.; Novais, S.C. Blue Sharks (Prionace glauca) as Bioindicators of Pollution and Health in the Atlantic Ocean: Contamination Levels and Biochemical Stress Responses. Sci. Total Environ. 2016, 563–564, 282–292. [Google Scholar] [CrossRef]
- Evans, T.G.; Hofmann, G.E. Defining the Limits of Physiological Plasticity: How Gene Expression Can Assess and Predict the Consequences of Ocean Change. Philos. Trans. R. Soc. B Biol. Sci. 2012, 367, 1733–1745. [Google Scholar] [CrossRef] [PubMed]
- Reuter, J.A.; Spacek, D.V.; Snyder, M.P. High-Throughput Sequencing Technologies. Mol. Cell 2015, 58, 586–597. [Google Scholar] [CrossRef]
- Feder, M.E.; Walser, J.C. The Biological Limitations of Transcriptomics in Elucidating Stress and Stress Responses. J. Evol. Biol. 2005, 18, 901–910. [Google Scholar] [CrossRef]
- Teffer, A.K.; Hinch, S.; Miller, K.; Jeffries, K.; Patterson, D.; Cooke, S.; Farrell, A.; Kaukinen, K.H.; Li, S.; Juanes, F. Cumulative Effects of Thermal and Fisheries Stressors Reveal Sex-Specific Effects on Infection Development and Early Mortality of Adult Coho Salmon (Oncorhynchus kisutch). Physiol. Biochem. Zool. 2019, 92, 505–529. [Google Scholar] [CrossRef]
- Henderson, C.J.; Stevens, T.F.; Lee, S.Y. Assessing the Suitability of a Non-Lethal Biopsy Punch for Sampling Fish Muscle Tissue. Fish Physiol. Biochem. 2016, 42, 1521–1526. [Google Scholar] [CrossRef] [PubMed]
- Gleason, L.U. Applications and Future Directions for Population Transcriptomics in Marine Invertebrates. Curr. Mol. Biol. Rep. 2019, 5, 116–127. [Google Scholar] [CrossRef]
- Nachtigall, P.G.; Grazziotin, F.G.; Junqueira-De-Azevedo, I.L.M. MITGARD: An Automated Pipeline for Mitochondrial Genome Assembly in Eukaryotic Species Using RNA-Seq Data. Brief. Bioinform. 2021, 22, bbaa429. [Google Scholar] [CrossRef] [PubMed]
- Feutry, P.; Kyne, P.; Pillans, R.; Chen, X.; Marthick, J.; Morgan, D.; Grewe, P. Whole Mitogenome Sequencing Refines Population Structure of the Critically Endangered Sawfish Pristis pristis. Mar. Ecol. Prog. Ser. 2015, 533, 237–244. [Google Scholar] [CrossRef]
- Fang, J.; Xu, C.; Li, Q. Transcriptome Analysis of Inbreeding Depression in the Pacific Oyster Crassostrea Gigas. Aquaculture 2022, 557, 738314. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seixas, M.J.; Domingues, R.R.; Antunes, A. Decoding the Transcriptome of Sharks, Rays, and Chimaeras: Insights into Their Physiology, Morphology, Evolution, and Biomedical Applications. Fishes 2023, 8, 271. https://doi.org/10.3390/fishes8050271
Seixas MJ, Domingues RR, Antunes A. Decoding the Transcriptome of Sharks, Rays, and Chimaeras: Insights into Their Physiology, Morphology, Evolution, and Biomedical Applications. Fishes. 2023; 8(5):271. https://doi.org/10.3390/fishes8050271
Chicago/Turabian StyleSeixas, Manuel J., Rodrigo R. Domingues, and Agostinho Antunes. 2023. "Decoding the Transcriptome of Sharks, Rays, and Chimaeras: Insights into Their Physiology, Morphology, Evolution, and Biomedical Applications" Fishes 8, no. 5: 271. https://doi.org/10.3390/fishes8050271
APA StyleSeixas, M. J., Domingues, R. R., & Antunes, A. (2023). Decoding the Transcriptome of Sharks, Rays, and Chimaeras: Insights into Their Physiology, Morphology, Evolution, and Biomedical Applications. Fishes, 8(5), 271. https://doi.org/10.3390/fishes8050271