Optimization of Artemia Feed Regimes for Larval Giant Kōkopu (Galaxias argenteus)
Abstract
:1. Introduction
2. Methods
2.1. Experimental Animals
2.2. Tank Design and Recirculation System
2.3. Experimental Design
2.4. Sampling of Larvae
2.5. Sampling of Artemia
2.6. Statistical Analyses
3. Results
3.1. Weight
3.2. Length and Depth
3.3. Mortality
3.4. Artemia Lipid and Protein Composition
3.5. Artemia Fatty Acid Profile
3.6. Total Production
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Webster, C.D.; Lim, C.E. Nutrient Requirements and Feeding of Finfish for Aquaculture; CABI: Cambridge, UK, 2001; ISBN 978-0-85199-702-5. [Google Scholar]
- Hamre, K.; Yúfera, M.; Rønnestad, I.; Boglione, C.; Conceição, L.E.C.; Izquierdo, M.S. Fish larval nutrition and feed formulation: Knowledge gaps and bottlenecks for advances in larval rearing. Rev. Aquac. 2013, 5, S26–S58. [Google Scholar] [CrossRef]
- Izquierdo, M.S.; Koven, W. Larval Fish Nutrition; Holt, G.J., Ed.; Wiley-Blackwell: Oxford, UK, 2011; pp. 1–143. ISBN 978-0-470-95986-2. [Google Scholar]
- Trushenski, J.T.; Kasper, C.S.; Kohler, C.C. Challenges and opportunities in finfish nutrition. N. Am. J. Aquac. 2006, 68, 122–140. [Google Scholar] [CrossRef]
- Southgate, P.C.; Partridge, G.J. Development of artificial diets for marine finfish Larvae. In Tropical Mariculture; Elsevier: Amsterdam, The Netherlands, 1998; pp. 151–169. ISBN 978-0-12-210845-7. [Google Scholar]
- Dhert, P. Rotifers. In Manual on the Production and Use of Live Food for Aquaculture; Sorgeloos, P., Lavens, P., Eds.; Food and Agriculture Organization of the United Nations: Rome, Italy, 1996; pp. 49–78. [Google Scholar]
- Van Stappen, G. Artemia. In Manual on the Production and Use of Live Food for Aquaculture; Lavens, P., Sorgeloos, P., Eds.; FAO Fisheries Technical Paper; Food and Agriculture Organisation: Rome, Italy, 1996; pp. 79–250. [Google Scholar]
- Qin, J.G. Larval fish nutrition and rearing technology: State of the art and future. In Aquaculture Research Trends; Schwartz, S.H., Ed.; Nova Science Publishers: New York, NY, USA, 2008; pp. 113–148. [Google Scholar]
- Hoestenberghe, S.V.; Wille, M.; Swaef, E.D.; Goddeeris, B.M.; Nevejan, N. Effect of weaning age and the use of different sized Artemia nauplii as first feed for jade perch Scortum barcoo. Aquac. Int. 2015, 23, 1539–1552. [Google Scholar] [CrossRef]
- Taunton, E. $140 a Kilogram: Whitebait Back to “Gold-Plated” Prices. Available online: https://www.stuff.co.nz/business/122878457/140-a-kilogram-whitebait-back-to-goldplated-prices (accessed on 25 July 2022).
- Vega, R.; Dantagnan, P.; Mardones, A.; Valdebenito, I.; Zamorano, J.; Encina, F. Bases biológicas para el cultivo del puye Galaxias maculatus (Jenyns, 1842): Una revisión. Lat. Am. J. Aquat. Res. 2013, 41, 369–386. [Google Scholar] [CrossRef]
- Benzie, V. Some ecological aspects of the spawning behaviour and early development of the common whitebait, Galaxias Maculatus Attenuatus (Jenyns). Proc. N. Z. Ecol. Soc. 1968, 15, 31–39. [Google Scholar]
- Mardones, A.; Vega, R.; Encina, F. Cultivation of whitebait (Galaxias maculatus) in Chile. Aquac. Res. 2008, 39, 731–737. [Google Scholar] [CrossRef]
- Mitchell, C.P. Laboratory culture of Galaxias maculatus and potential applications. N. Z. J. Mar. Freshw. Res. 1989, 23, 325–336. [Google Scholar] [CrossRef]
- O’Brien, Q.; Cooper, D. Conservation breeding of shortfin eels (Anguilla australis) and giant kokopu (Galaxias argenteus) at Mahurangi Technical Institute using aquarium and aquaculture techniques. Int. Zoo Yearb. 2013, 47, 120–128. [Google Scholar] [CrossRef]
- McKay, W.J.G.; Jeffs, A.G. Morphometric and energetic development of artificiall reared giant kōkopu (Galaxias argenteus). Aquaculture 2021, 544, 737123. [Google Scholar] [CrossRef]
- Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef]
- Wang, W.; Wang, H.; Yu, C.; Jiang, Z. Acute toxicity of ammonia and nitrite to different ages of Pacific cod (Gadus macrocephalus) larvae. Chem. Speciat. Bioavailab. 2015, 27, 147–155. [Google Scholar] [CrossRef]
- Smith, P.K.; Krohn, R.I.; Hermanson, G.T.; Mallia, A.K.; Gartner, F.H.; Provenzano, M.D.; Fujimoto, E.K.; Goeke, N.M.; Olson, B.J.; Klenk, D.C. Measurement of protein using bicinchoninic acid. Anal. Biochem. 1985, 150, 76–85. [Google Scholar] [CrossRef] [PubMed]
- Lepage, G.; Roy, C.C. Direct transesterification of all classes of lipids in a one-step reaction. J. Lipid Res. 1986, 27, 114–120. [Google Scholar] [CrossRef]
- Spreitzenbarth, S.; Jeffs, A. effect of hatching time and starvation on morphometrics and biochemical composition of Octopus tetricus paralarvae. Aquac. Res. 2022, 53, 1739–1754. [Google Scholar] [CrossRef]
- Jeffs, A.G.; Phleger, C.F.; Nelson, M.M.; Mooney, B.D.; Nichols, P.D. Marked depletion of polar lipid and non-essential fatty acids following settlement by post-larvae of the spiny lobster Jasus verreauxi. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2002, 131, 305–311. [Google Scholar] [CrossRef]
- Kramer, J.K.G.; Hernandez, M.; Cruz-Hernandez, C.; Kraft, J.; Dugan, M.E.R. Combining results of two GC separations partly achieves determination of all cis and trans 16:1, 18:1, 18:2 and 18:3 except CLA isomers of milk fat as demonstrated using Ag-Ion SPE fractionation. Lipids 2008, 43, 259–273. [Google Scholar] [CrossRef]
- Zar, J.H. Biostatistical Analysis, 4th ed.; Prentice Hall: Upper Saddle River, NJ, USA, 1999; ISBN 978-0-13-081542-2. [Google Scholar]
- Bell, M.V.; Batty, R.S.; Dick, J.R.; Fretwell, K.; Navarro, J.C.; Sargent, J.R. Dietary deficiency of docosahexaenoic acid impairs vision at low light intensities in juvenile herring (Clupea harengus L.). Lipids 1995, 30, 443–449. [Google Scholar] [CrossRef] [PubMed]
- Bengtson, D.A.; Léger, P.; Sorgeloos, P. Use of Artemia as a food source for aquaculture. In Artemia Biology; CRC Press: Boca Raton, FL, USA, 1991; Volume 29. [Google Scholar]
- Boglino, A.; Darias, M.J.; Ortiz-Delgado, J.B.; Özcan, F.; Estévez, A.; Andree, K.B.; Hontoria, F.; Sarasquete, C.; Gisbert, E. Commercial products for Artemia enrichment affect growth performance, digestive system maturation, ossification and incidence of skeletal deformities in Senegalese sole (Solea senegalensis) larvae. Aquaculture 2012, 324–325, 290–302. [Google Scholar] [CrossRef]
- Izquierdo, M.S.; Koven, W. Lipids. In Larval Fish Nutrition; Holt, G.J., Ed.; Wiley-Blackwell: Oxford, UK, 2011; pp. 47–81. ISBN 978-0-470-95986-2. [Google Scholar]
- Izquierdo, M.S. Essential fatty acid requirements of cultured marine fish larvae. Aquac. Nutr. 1996, 2, 183–191. [Google Scholar] [CrossRef]
- Koven, W.; Nixon-Shtupler, O.; Lutzky, S.; Ben Atia, S.; Elkayam, A.; Tandler, A. The effect of N-3 HUFA and light intensity on hunting success in gilthead sea bream (Sparus aurata). Isr. J. Aquac.-Bamidgeh 2012, 64, IJA:64.2012.712. [Google Scholar]
- Koven, W.; Nixon, O.; Allon, G.; Gaon, A.; El Sadin, S.; Falcon, J.; Besseau, L.; Escande, M.; Vassallo Agius, R.; Gordin, H.; et al. The effect of dietary DHA and taurine on rotifer capture success, growth, survival and vision in the larvae of Atlantic bluefin tuna (Thunnus thynnus). Aquaculture 2018, 482, 137–145. [Google Scholar] [CrossRef]
- Sargent, J.R.; Tocher, D.R.; Bell, J.G. The Lipids. In Fish Nutrition, 3rd ed.; Halver, J.E., Hardy, R.W., Eds.; Academic Press: San Diego, CA, USA, 2003; pp. 181–257. ISBN 978-0-12-319652-1. [Google Scholar]
- Dantagnan, P.; Bórquez, A.; Hernández, A.; Izquierdo, M.S. Effect of EPA/DHA ratios on the growth and survival of Galaxias maculatus (Jenyns, 1842) larvae reared under different salinity regimes. Aquac. Res. 2010, 41, e239–e244. [Google Scholar] [CrossRef]
- Dantagnan, P.; Bórquez, A.; Pavez, C.; Hernández, A. Feeding ω-3 PUFA enriched rotifers to Galaxias maculatus (Jenyns, 1842) larvae reared at different salinity conditions: Effects on growth parameters, survival and fatty acids profile. Lat. Am. J. Aquat. Res. 2013, 41, 404–411. [Google Scholar] [CrossRef]
- Mourente, G.; Tocher, D.R.; Sargent, J.R. Specific Accumulation of docosahexaenoic acid (22:6n-3) in brain lipids during development of juvenile turbot Scophthalmus maximus L. Lipids 1991, 26, 871–877. [Google Scholar] [CrossRef]
- Mourente, G.; Tocher, D.R. Lipid class and fatty acid composition of brain lipids from Atlantic herring (Clupea harengus) at different stages of development. Mar. Biol. 1992, 112, 553–558. [Google Scholar] [CrossRef]
- Navarro, J.C.; McEvoy, L.A.; Bell, M.V.; Amat, F.; Hontoria, F.; Sargent, J.R. Effect of different dietary levels of docosahexaenoic acid (DHA, 22:6ω-3) on the DHA composition of lipid classes in sea bass larvae eyes. Aquac. Int. 1997, 5, 509–516. [Google Scholar] [CrossRef]
- Peykaran Mana, N.; Vahabzadeh, H.; Seidgar, M.; Hafezieh, M.; Pourali, H. Proximate composition and fatty acids profiles of artemia cysts, and nauplii from different geographical regions of Iran. Iran. J. Fish. Sci. 2014, 13, 761–775. [Google Scholar]
- Navarro, J.C.; Henderson, R.J.; McEvoy, L.A.; Bell, M.V.; Amat, F. Lipid conversions during enrichment of Artemia. Aquaculture 1999, 174, 155–166. [Google Scholar] [CrossRef]
- Viciano, E.; Monroig, Ó.; Salvador, A.; Amat, J.; Fiszman, S.; Navarro, J.C. Enriching Artemia nauplii with a high DHA-containing lipid emulsion: Search for an optimal protocol. Aquac. Res. 2015, 46, 1066–1077. [Google Scholar] [CrossRef]
- van der Meeren, T.; Næss, T. How does cod (Gadus morhua) cope with variability in feeding conditions during early larval stages? Mar. Biol. 1993, 116, 637–647. [Google Scholar] [CrossRef]
- Arts, M.T.; Evans, D.O. Precision micrometer measurement of mouth gape of larval fish. Can. J. Fish. Aquat. Sci. 1987, 44, 1786–1791. [Google Scholar] [CrossRef]
- Bremigan, M.T.; Stein, R.A. Gape-dependent larval foraging and zooplankton size: Implications for fish recruitment across systems. Can. J. Fish. Aquat. Sci. 1994, 51, 913–922. [Google Scholar] [CrossRef]
- Cunha, I.; Planas, M. Optimal Prey Size for early turbot larvae (Scophthalmus maximus L.) based on mouth and ingested Pprey size. Aquaculture 1999, 175, 103–110. [Google Scholar] [CrossRef]
- Krebs, J.M.; Turingan, R.G. Intraspecific variation in gape–prey size relationships and feeding success during early ontogeny in red drum, Sciaenops ocellatus. Environ. Biol. Fishes 2003, 66, 75–84. [Google Scholar] [CrossRef]
- Makrakis, M.C.; Nakatani, K.; Bialetzki, A.; Gomes, L.C.; Sanches, P.V.; Baumgartner, G. Relationship between gape size and feeding selectivity of fish larvae from a Nneotropical reservoir. J. Fish Biol. 2008, 72, 1690–1707. [Google Scholar] [CrossRef]
- Zaret, T.M. Predation and Freshwater Communities; Yale University Press: London, UK, 1980; p. 187. [Google Scholar]
- Black, K.D.; Pickering, A.D. Biology of Farmed Fish; Sheffield Academic Press: Sheffield, UK; CRC Press: Boca Raton, FL, USA, 1998; ISBN 978-0-8493-9731-8. [Google Scholar]
- Fernández-Diaz, C.; Pascual, E.; Yúfera, M. Feeding behaviour and prey size selection of gilthead seabream, Sparus aurata larvae fed on inert and live food. Mar. Biol. 1994, 118, 323–328. [Google Scholar] [CrossRef]
- Østergaard, P.; Munk, P.; Janekarn, V. Contrasting feeding patterns among apecies of fish larvae from the tropical Andaman sea. Mar. Biol. 2005, 146, 595–606. [Google Scholar] [CrossRef]
- Shirota, A. Studies on the mouth size of fish larvae. Bull. Jpn. Soc. Sci. Fish. 1970, 36, 353–368. [Google Scholar] [CrossRef]
- Houde, E.D.; Schekter, R.C. Feeding by marine fish larvae: Developmental and functional responses. Environ. Biol. Fishes 1980, 5, 315–334. [Google Scholar] [CrossRef]
- Puvanendran, V.; Brown, J.A. Foraging, growth and survival of Atlantic cod larvae reared in different prey concentrations. Aquaculture 1999, 175, 77–92. [Google Scholar] [CrossRef]
- Temple, S.; Cerqueira, V.R.; Brown, J.A. The effects of lowering prey density on the growth, survival and foraging behaviour of larval fat snook (Centropomus parallelus, Poey 1860). Aquaculture 2004, 233, 205–217. [Google Scholar] [CrossRef]
- Wyatt, T. Some effects of food density on the growth and behaviour of plaice larvae. Mar. Biol. 1972, 14, 210–216. [Google Scholar] [CrossRef]
- Kiørboe, T.; Munk, P. Feeding and growth of larval herring, Clupea harengus, in relation to Ddensity of copepod nauplii. Environ. Biol. Fishes 1986, 17, 133–139. [Google Scholar] [CrossRef]
- Munk, P.; Kiørboe, T. Feeding behaviour and swimming activity of larval herring (Clupea harengus L.) in relation to density of copepod nauplii. Mar. Ecol.-Prog. Ser. 1985, 24, 15–21. [Google Scholar] [CrossRef]
- Werner, R.G.; Blaxter, J.H.S. Growth and survival of larval herring (Clupea harengus) in relation to prey density. Can. J. Fish. Aquat. Sci. 1980, 37, 1063–1069. [Google Scholar] [CrossRef]
- Rønnestad, I.; Yúfera, M.; Ueberschär, B.; Ribeiro, L.; Sæle, Ø.; Boglione, C. Feeding behaviour and digestive physiology in larval fish: Current knowledge, and gaps and bottlenecks in research. Rev. Aquac. 2013, 5, S59–S98. [Google Scholar] [CrossRef]
- Houde, E.D. Effects of stocking density and food density on survival, growth and yield of laboratory-reared larvae of sea bream Archosargus rhomboidalis (L.) (Sparidae). J. Fish Biol. 1975, 7, 115–127. [Google Scholar] [CrossRef]
- Cara, J.B.; Moyano, F.J.; Cárdenas, S.; Fernández-Díaz, C.; Yúfera, M. Assessment of digestive enzyme activities during larval development of white bream. J. Fish Biol. 2003, 63, 48–58. [Google Scholar] [CrossRef]
- Chen, B.N.; Qin, J.G.; Kumar, M.S.; Hutchinson, W.G.; Clarke, S.M. Ontogenetic development of digestive enzymes in yellowtail kingfish Seriola lalandi larvae. Aquaculture 2006, 260, 264–271. [Google Scholar] [CrossRef]
- Dabrowski, K. The feeding of fish larvae: Present state of the art and perspectives. Reprod. Nutr. Dév. 1984, 24, 807–833. [Google Scholar] [CrossRef]
- Schwartz, S.H. Aquaculture Research Trends; Nova Science Publishers: New York, NY, USA, 2008; ISBN 978-1-60456-217-0. [Google Scholar]
- Léger, P.; Bengtson, D.; Sorgeloos, P.; Simpson, K.; Beck, A. The Nutritional Value of Artemia: A Review. In Artemia Research and Its Applications; Ecology, Culturing, Use in Aquaculture; Sorgeloos, P., Bengtson, D.A., Decleir, W., Jaspers, E., Eds.; Universa Press: Wetteren, Belgium, 1987; Volume 3, 556p. [Google Scholar]
- Luizi, F.S.; Gara, B.; Shields, R.J.; Bromage, N.R. Further description of the development of the digestive organs in Atlantic halibut (Hippoglossus hippoglossus) larvae, with notes on differential absorption of copepod and Artemia prey. Aquaculture 1999, 176, 101–116. [Google Scholar] [CrossRef]
- Schipp, G.R.; Bosmans, J.M.P.; Marshall, A.J. A method for hatchery culture of tropical calanoid copepods, Acartia spp. Aquaculture 1999, 174, 81–88. [Google Scholar] [CrossRef]
- Camus, T. The Improvement of Copepods Intensive Culture Protocols as Live Feeds for Aquaculture Hatcheries. Ph.D. Thesis, James Cook University, Douglas, QLD, Australia, 2012. [Google Scholar]
- Sorgeloos, P.; Dhert, P.; Candreva, P. Use of the brine shrimp, Artemia spp., in marine fish larviculture. Aquaculture 2001, 200, 147–159. [Google Scholar] [CrossRef]
- Abatzopoulos, T.; Clegg, J.; Sorgeloos, P.; Beardmore, J. Artemia: Basic and Applied Biology; Kluwer Academic Publishers: Dordrecht, The Netherlands; Boston, MA, USA, 2002; ISBN 978-1-4020-0746-0. [Google Scholar]
- Dabrowski, K.; Glogowski, J. Studies on the role of exogenous proteolytic enzymes in digestion processes in fish. Hydrobiologia 1977, 54, 129–134. [Google Scholar] [CrossRef]
- Kolkovski, S.; Tandler, A.; Kissil, G.W.; Gertler, A. The Effect of Dietary Exogenous Digestive Enzymes on Ingestion, Assimilation, Growth and Survival of Gilthead Seabream (Sparus aurata, Sparidae, Linnaeus) Larvae. Fish Physiol. Biochem. 1993, 12, 203–209. [Google Scholar] [CrossRef]
- FAO. Manual on the Production and Use of Live Food for Aquaculture; FAO Fisheries Technical Paper; Lavens, P., Sorgeloos, P., Eds.; FAO: Rome, Italy, 1996; ISBN 978-92-5-103934-2. [Google Scholar]
- Naz, M. The changes in the biochemical compositions and enzymatic activities of rotifer (Brachionus plicatilis, Müller) and Artemia during the enrichment and starvation periods. Fish Physiol. Biochem. 2008, 34, 391–404. [Google Scholar] [CrossRef]
- Ferreira de Sá, T.L. Substitution of Instar I by Enriched Instar II Artemia in the First Days of Solea senegalensis Rearing. Master’s Thesis, University of Porto, Porto, Portugal, 2016. [Google Scholar]
- Shao, L. Development of Larval Fish Rrearing Techniques and Nutrient Requirements for the Green Mandarin, Synchiropus splendidus: A Popular Marine Ornamental Fish. Ph.D. Thesis, James Cook University, Douglas, QLD, Australia, 2016. [Google Scholar]
- Kubitza, F.; Lovshin, L.L. Effects of initial weight and genetic strain on feed training largemouth bass Micropterus salmoides using ground fish flesh and freeze dried krill as starter diets. Aquaculture 1997, 148, 179–190. [Google Scholar] [CrossRef]
- Luz, R.K.; Portella, M.C.; Luz, R.K.; Portella, M.C. Effect of prey concentrations and feed training on production of Hoplias lacerdae juvenile. An. Acad. Bras. Ciênc. 2015, 87, 1125–1132. [Google Scholar] [CrossRef]
- Moura, M.a.M.; Kubitza, F.; Cyrino, J.E.P. Feed training of peacock bass (Cichla sp.). Rev. Bras. Biol. 2000, 60, 645–654. [Google Scholar] [CrossRef]
Treatment | 3–9 DAH | 10–16 DAH | 17–23 DAH | 24–30 DAH |
---|---|---|---|---|
Instar-II+ | 14,200 | 14,200 | 14,200 | 14,200 |
5050 | 16,300 | 14,200 | 14,200 | 14,200 |
NZPWL | 18,300 | 18,300 | 16,900–14,200 | 14,200 |
Fatty Acid | Instar-I | Instar-II+ | ||
---|---|---|---|---|
C14:0 | 0.286 ± 0.006 | a | 0.146 ± 0.004 | b |
C15:0 | 0.420 ± 0.009 | a | 0.210 ± 0.007 | b |
C16:0 | 4.529 ± 0.062 | a | 3.333 ± 0.072 | b |
C16:1n-7c | 0.417 ± 0.006 | a | 0.272 ± 0.007 | b |
C16:1n-7t | 0.099 ± 0.002 | a | 0.054 ± 0.002 | b |
C17:0 | 0.186 ± 0.003 | a | 0.163 ± 0.003 | b |
C17:1n-7c | 0.106 ± 0.002 | a | 0.063 ± 0.002 | b |
C18:0 | 1.853 ± 0.026 | b | 2.162 ± 0.043 | a |
C18:1n-7c | 0.671 ± 0.010 | b | 0.935 ± 0.017 | a |
C18:1n-9c | 2.461 ± 0.032 | a | 2.392 ± 0.048 | b |
C18:1n-9t | 0.030 ± 0.001 | a | 0.029 ± 0.001 | a |
C18:2n-6c | 0.892 ± 0.011 | a | 0.518 ± 0.020 | b |
C18:2n-6t | 0.080 ± 0.001 | a | 0.038 ± 0.001 | b |
C18:3n-3c | 5.207 ± 0.060 | a | 3.125 ± 0.160 | b |
C18:3n-6c | 0.102 ± 0.002 | a | 0.044 ± 0.002 | b |
C20:0 | 0.049 ± 0.001 | b | 0.049 ± 0.001 | a |
C20:1n-9c | 0.082 ± 0.002 | a | 0.074 ± 0.003 | b |
C20:2n-6c | 0.042 ± 0.001 | a | 0.039 ± 0.001 | b |
C20:3n-3c | 0.180 ± 0.004 | a | 0.106 ± 0.006 | b |
C20:3n-6c | 0.014 ± 0.000 | a | 0.011 ± 0.000 | b |
C20:4n-6c ARA | 0.080 ± 0.002 | a | 0.079 ± 0.004 | a |
C20:5n-3 EPA | 0.245 ± 0.005 | a | 0.205 ± 0.014 | b |
C22:0 | 0.051 ± 0.001 | b | 0.095 ± 0.003 | a |
C22:6n-3 DHA | ND | ND | ||
Total PUFA | 6.841 ± 0.079 | a | 4.164 ± 0.206 | b |
Total HUFA | 0.518 ± 0.011 | a | 0.401 ± 0.024 | b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
McKay, W.; Jeffs, A. Optimization of Artemia Feed Regimes for Larval Giant Kōkopu (Galaxias argenteus). Fishes 2023, 8, 183. https://doi.org/10.3390/fishes8040183
McKay W, Jeffs A. Optimization of Artemia Feed Regimes for Larval Giant Kōkopu (Galaxias argenteus). Fishes. 2023; 8(4):183. https://doi.org/10.3390/fishes8040183
Chicago/Turabian StyleMcKay, William, and Andrew Jeffs. 2023. "Optimization of Artemia Feed Regimes for Larval Giant Kōkopu (Galaxias argenteus)" Fishes 8, no. 4: 183. https://doi.org/10.3390/fishes8040183
APA StyleMcKay, W., & Jeffs, A. (2023). Optimization of Artemia Feed Regimes for Larval Giant Kōkopu (Galaxias argenteus). Fishes, 8(4), 183. https://doi.org/10.3390/fishes8040183