Assembly, Characterization, and Phylogenetic Relationships of Mitogenomes of Two Species of Mexican Trout (Oncorhynchus chrysogaster and O. mykiss nelsoni)
Abstract
:1. Introduction
2. Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hrbek, T.; Farias, I.P. The complete mitochondrial genome of the pirarucu (Arapaima gigas, Arapaimidae, Osteoglossiformes). Genet. Mol. Biol. 2008, 31, 293–302. [Google Scholar] [CrossRef]
- Lavoué, S.; Miya, M.; Inoue, J.; Saitoh, K.; Ishiguro, N.B.; Nishida, M. Molecular systematics of the gonorynchiform fishes (Teleostei) based on whole mitogenome sequences: Implications for higher-level relationships within the Otocephala. Mol. Phylogenet. Evol. 2005, 37, 165–177. [Google Scholar] [CrossRef]
- Horreo, J.L. Revisiting the mitogenomic phylogeny of Salmoninae: New insights thanks to recent sequencing advances. PeerJ 2017, 5, e3828. [Google Scholar] [CrossRef]
- D’Agaro, E.; Gibertoni, P.; Marroni, F.; Messina, M.; Tibaldi, E.; Esposito, S. Genetic and Phenotypic Characteristics of the Salmo trutta Complex in Italy. Appl. Sci. 2022, 12, 3219. [Google Scholar] [CrossRef]
- Yasuike, M.; Jantzen, S.; Cooper, G.A.; Leder, E.; Davidson, W.S.; Koop, B.F. Grayling (Thymallinae) phylogeny within salmonids: Complete mitochondrial DNA sequences of Thymallus arcticus and Thymallus thymallus. J. Fish Biol. 2010, 76, 395–400. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.-Q.; Tong, G.-X.; Bai, Q.-L.; Wang, B.-Q.; Yin, J.-S. The complete mitochondrial genome sequence of white-spotted char (Salvelinus leucomaenis). Mitochondrial DNA 2013, 26, 700–701. [Google Scholar] [CrossRef]
- Zhao, J.-W. The complete mitochondrial genome of the Thymallus grubii (Amur grayling). Mitochondrial DNA 2013, 26, 799–800. [Google Scholar] [CrossRef] [PubMed]
- Ho, C.-W.; Chen, J.J.; Lee, T.-H.; Lin, H.-J. Complete mitochondrial genome of Oncorhynchus masou formosanus (Jordan & Oshima, 1919) (Pisces, Salmonidae). Mitochondrial DNA Part B 2016, 1, 295–296. [Google Scholar] [CrossRef]
- Jia, Z.-H.; Xue, S.-Q.; Chen, W.-J.; Zhang, J.-Y. Complete mitochondrial genome of Coregonus cluncaformis. Mitochondrial DNA Part A 2015, 27, 4461–4462. [Google Scholar] [CrossRef]
- Yi-Fan, L.; Huai-Ning, L.; Qi, Z.; Dan, W. Complete mitochondrial genome of Coregonus autumnalis. Mitochondrial DNA Part A 2015, 27, 2498–2499. [Google Scholar] [CrossRef]
- Balakirev, E.S.; Parensky, V.A.; Kovalev, M.Y.; Ayala, F.J. Complete mitochondrial genome of the white char Salvelinus albus (Salmoniformes, Salmonidae). Mitochondrial DNA Part A 2015, 27, 3753–3754. [Google Scholar] [CrossRef] [PubMed]
- Ma, B.; Jiang, H.; Sun, P.; Chen, J.; Li, L.; Zhang, X.; Yuan, L. Phylogeny and dating of divergences within the genus Thymallus (Salmonidae: Thymallinae) using complete mitochondrial genomes. Mitochondrial DNA Part A 2015, 27, 3602–3611. [Google Scholar] [CrossRef] [PubMed]
- Gong, L.; Liu, L.-Q.; Guo, B.-Y.; Ye, Y.-Y.; Lü, Z.-M. The complete mitochondrial genome of Oncorhynchus masou formosanus (Salmoniformes: Salmonidae) and phylogenetic studies of Salmoninae. Conserv. Genet. Resour. 2017, 9, 281–284. [Google Scholar] [CrossRef]
- de Flamingh, A.; Mallott, E.K.; Roca, A.L.; Boraas, A.S.; Malhi, R.S. Species identification and mitochondrial genomes of ancient fish bones from the Riverine Kachemak tradition of the Kenai Peninsula, Alaska. Mitochondrial DNA Part B 2018, 3, 409–411. [Google Scholar] [CrossRef] [PubMed]
- Levin, B.; Simonov, E.; Rastorguev, S.; Boulygina, E.; Sharko, F.; Tsygankova, S.; Gabrielyan, B.; Roubenyan, H.; Mayden, R.; Nedoluzhko, A. High-throughput sequencing of the mitochondrial genomes from archived fish scales: An example of the endangered putative species flock of Sevan trout Salmo ischchan. Hydrobiologia 2018, 822, 217–228. [Google Scholar] [CrossRef]
- Arai, Y.; Yokoyama, C.; Nagase, K.; Suwa, M.; Ogawa, Y.; Iuchi, K.; Hisatomi, H. Complete mitochondrial DNA sequences of two endemic subspecies, Salvelinus leucomaenis imbrius and Salvelinus leucomaenis pluvius (Salmonid, White spotted charr) in Japan. Mitochondrial DNA Part B 2019, 4, 1524–1525. [Google Scholar] [CrossRef]
- Oleinik, A.G.; Skurikhina, L.A.; Kukhlevsky, A.D.; Semenchenko, A.A. Complete mitochondrial genome and phylogenetic position of the Taranetz charr Salvelinus taranetzi Kaganovsky, 1955 (Salmoniformes: Salmonidae). Mitochondrial DNA Part B 2019, 4, 2491–2492. [Google Scholar] [CrossRef]
- Oleinik, A.G.; Skurikhina, L.A.; Kukhlevsky, A.D.; Semenchenko, A.A. Complete mitochondrial genome and phylogenetic position of the Levanidov’s charr Salvelinus levanidovi Chereshnev, Skopetz et Gudkov, 1989 (Salmoniformes, Salmonidae). Mitochondrial DNA Part B 2020, 5, 2514–2515. [Google Scholar] [CrossRef]
- Wang, Y.; Xiong, F.; Song, Z. Molecular Phylogeny and Adaptive Mitochondrial DNA Evolution of Salmonids (Pisces: Salmonidae). Front. Genet. 2022, 13, 903240. [Google Scholar] [CrossRef]
- Nelson, J.; Grande, T.C.; Wilson, M.V. Fishes of the World; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Cai, J.; Zhou, X.; Yan, X.; Lucente, D.; Lagana, C. Top 10 Species Groups in Global Aquaculture 2017. Food and Agriculture Organization of the United Nations, FAO Fisheries and Aquaculture Department. 2019. Available online: http://www.fao.org/3/ca5224en/CA5224EN.pdf (accessed on 12 October 2022).
- FAO. The State of World Fisheries and Aquaculture 2020. In Sustainability in Action; FAO: Rome, Italy, 2020; Volume 32, p. 244. [Google Scholar] [CrossRef]
- Phillips, R.B.; Oakley, T.H. Phylogenetic relationships among the Salmonidae based on nuclear DNA and mitochondrial DNA sequences. In Molecular Systematics of Fishes; Kocher, T., Stepien, C., Eds.; Academic Press: San Diego, CA, USA, 1997; pp. 145–162. [Google Scholar]
- Wilhelm, V.; Villegas, J.; Miquel, A.; Engel, E.; Bernales, S.; Valenzuela, P.D.; Burzio, L.O. The complete sequence of the mitochondrial genome of the Chinook salmon, Oncorhynchus tshawytscha. Biol. Res. 2003, 36, 223–231. [Google Scholar] [CrossRef]
- Suckley, G. Notices of certain New Species of North American Salmonidæ, chiefly in the Collection of the NW Boundary Commission, in charge of Archibald Campbell, Esq., Commissioner of the United States, collected by Doctor CBR Kennerly, Naturalist to the Commission. Ann. Lyceum Nat. Hist. N. Y. 1862, 7, 306–313. [Google Scholar] [CrossRef]
- Hendrickson, D.A.; Perez, H.E.; Findley, L.T.; Forbes, W.; Tomelleri, J.R.; Mayden, R.L.; Nielsen, J.L.; Jensen, B.; Campos, G.R.; Romero, A.V.; et al. Mexican native trouts: A review of their history and current systematic and conservation status. Rev. Fish Biol. Fish. 2002, 12, 273–316. [Google Scholar] [CrossRef]
- Espinosa-Pérez, H.; García-De León, F.J.; Ruiz-Campos, G.; Varela-Romero, A.; Barriga-Sosa, I.D.L.A.; Arredondo-Figueroa, J.; Hendrickson, D.A.; Camarena-Rosales, F.; De los Santos-Camarillo, A.B. Las Truchas Mexicanas. Especies 2007, 16, 9–14. [Google Scholar]
- Mayden, R.L.; Dillman, C.B.; Espinosa-Pérez, H.; Tomelleri, J.R.; Kuhajda, B.R.; Hendrickson, D.A.; Ruiz-Campos, G.; De los Santos-Camarillo, A.B.; García-De León, F.J.; Varela-Romero, A.; et al. Evolution and Diversity of Trout Species in México. In Conserving Wild Trout, Proceedings of the Wild Trout X Symposium, Bozeman, Montana, 28–29 September 2010; Carline, R.F., Lo Sapio, C., Eds.; USDA Forest Service, Ecosystem Management Coordination, WOD, Publishing Arts, Carol LoSapio: West Yellowstone, MT, USA, 2010; pp. 134–144. [Google Scholar]
- Needham, P.R.; Gard, R. A New Trout from Central Mexico: Salmo chrysogaster, the Mexican Golden Trout. Copeia 1964, 1964, 169–173. [Google Scholar] [CrossRef]
- Evermann, B.W. Descriptions of a new species of trout (Salmo nelsoni) and a new cyprinodont (Fundulus meeki) with notes on other fishes from Lower California. Proc. Biol. Soc. Wash. 1908, 21, 19–30. [Google Scholar]
- Ruiz-Campos, G. Bionomía y Ecología Poblacional de la Trucha Arcoíris, Onchorhynchus mykiss Nelsoni (Everman), de la Sierra San Pedro Mártir, Baja California, México. Ph.D. Thesis, Universidad de Nuevo León, Monterrey, Mexico, 1993. [Google Scholar]
- Ruiz-Campos, G.; Pister, E.P. Distribution, habitat, and current status of the San Pedro Martir Rainbow trout, Oncorhynchus mykiss nelsoni. Bull. South Calif. Acad. Sci. 1995, 94, 131–148. [Google Scholar]
- FAO. Oncorhynchus mykiss. In Cultured Aquatic Species Fact Sheets; Crespi, V., New, M., Eds.; Multilingual, Text by Cowx, I.G., CD-ROM; FAO: Rome, Italy, 2009. [Google Scholar]
- Abadía-Cardoso, A.; Pearse, D.E.; Jacobson, S.; Marshall, J.; Dalrymple, D.; Kawasaki, F.; Ruiz-Campos, G.; Garza, J.C. Population genetic structure and ancestry of steelhead/rainbow trout (Oncorhynchus mykiss) at the extreme southern edge of their range in North America. Conserv. Genet. 2016, 17, 675–689. [Google Scholar] [CrossRef]
- Behnke, R.J. Trout and Salmon of North America; Chanticleer Press, Inc.: New York, NY, USA, 2002. [Google Scholar]
- Hendrickson, D.A.; Neely, D.A.; Mayden, R.L.; Anderson, K.; Brooks, J.E.; Camerana-Rosales, F.; Cutter, R.F.; Cutter, L.; De los Santos-Camarillo, A.B.; Ernsting, G.W.; et al. Conservation of Mexican native trout and the discovery, status, protection and recovery of the Conchos trout, the first native Oncorhynchus of the Atlantic drainage in Mexico. In UT Faculty/Researcher Works; Dirección de Publicaciones, Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas: Monterrey, Mexico, 2007. [Google Scholar]
- Mayden, R.L. Biodiversity of Mexican trout (Teleostei: Salmonidae: Oncorhynchus): Recent findings conservation concerns, and management recommendations. In Homenaje al Doctor Andrés Reséndez-Medina; Lozano-Vilano, M.L., Contreras-Balderas, A.J., Eds.; Universidad Autónoma de Nuevo León: Monterrey, Mexico, 2004; pp. 269–282. [Google Scholar]
- Camarena-Rosales, F.; Ruiz-Campos, G.; De La Rosa-Vélez, J.; Mayden, R.L.; Hendrickson, D.A.; Varela-Romero, A.; de León, F.J.G. Mitochondrial haplotype variation in wild trout populations (Teleostei: Salmonidae) from northwestern Mexico. Rev. Fish Biol. Fish. 2007, 18, 33–45. [Google Scholar] [CrossRef]
- Varela-Romero, A.; Hendrickson, D.A. Los peces dulceacuícolas de Sonora. In Diversidad Biológica de Sonora; Molina-Fraener, F., Van Devender, T., Eds.; UNAM: Mexico City, Mexico, 2009. [Google Scholar]
- Escalante, M.A.; García-De-León, F.J.; Dillman, C.B.; Camarillo, A.D.L.S.; George, A.; Barriga-Sosa, I.D.L.A.; Ruiz-Luna, A.; Mayden, R.L.; Manel, S. Genetic introgression of cultured rainbow trout in the Mexican native trout complex. Conserv. Genet. 2014, 15, 1063–1071. [Google Scholar] [CrossRef]
- Escalante, M.A.; León, F.J.G.; Ruiz-Luna, A.; Landguth, E.; Manel, S. The interplay of riverscape features and exotic introgression on the genetic structure of the Mexican golden trout (Oncorhynchus chrysogaster), a simulation approach. J. Biogeogr. 2018, 45, 1500–1514. [Google Scholar] [CrossRef]
- Escalante, M.A.; Perrier, C.; León, F.J.G.-D.; Ruiz-Luna, A.; Ortega-Abboud, E.; Manel, S. Genotyping-by-sequencing reveals the effects of riverscape, climate and interspecific introgression on the genetic diversity and local adaptation of the endangered Mexican golden trout (Oncorhynchus chrysogaster). Conserv. Genet. 2020, 21, 907–926. [Google Scholar] [CrossRef]
- Abadía-Cardoso, A.; Garza, J.C.; Mayden, R.L.; de León, F.J.G. Genetic Structure of Pacific Trout at the Extreme Southern End of Their Native Range. PLoS ONE 2015, 10, e0141775. [Google Scholar] [CrossRef] [PubMed]
- Abadía-Cardoso, A.; García-De León, F.J.; Garza, J.C. Historia evolutiva y biodiversidad genética de las truchas de la Sierra Madre Occidental. In La Trucha Dorada Mexicana; Ruiz-Luna, A., García-De León, F.J., Eds.; CIAD, CIB, CONACYT, La Paz, BCS; Eddel Graph, S.A. de C.V.: Ciudad de Mexico, Mexico, 2016; pp. 29–38. [Google Scholar]
- Ballesteros-Córdova, C.A.; Varela-Romero, A.V.; Grijalva-Chon, J.M.; Castillo-Gámez, R.A.; Camarena-Rosales, F.; Ruiz-Campos, G. Variabilidad genética poblacional de la trucha Yaqui (Oncorhynchus sp.) en la región de Mesa Tres Ríos, Sonora, México. Biotecnia 2019, 21, 134–142. [Google Scholar] [CrossRef]
- León, F.J.G.-D.; Dillman, C.B.; Camarillo, A.B.D.L.S.; George, A.L.; Camarena-Rosales, F.; Barriga-Sosa, I.D.L.A.; Mayden, R.L. First steps towards the identification of evolutionarily significant units in Mexican native trout: An assessment of microsatellite variation. Environ. Biol. Fishes 2020, 103, 733–756. [Google Scholar] [CrossRef]
- Lecaudey, L.A.; Schliewen, U.K.; Osinov, A.G.; Taylor, E.B.; Bernatchez, L.; Weiss, S.J. Inferring phylogenetic structure, hybridization and divergence times within Salmoninae (Teleostei: Salmonidae) using RAD-sequencing. Mol. Phylogenetics Evol. 2018, 124, 82–99. [Google Scholar] [CrossRef] [PubMed]
- Shedko, S.V.; Miroshnichenko, I.L.; Nemkova, G.A. Phylogeny of salmonids (salmoniformes: Salmonidae) and its molecular dating: Analysis of mtDNA data. Russ. J. Genet. 2013, 49, 623–637. [Google Scholar] [CrossRef]
- Shedko, S.V.; Miroshnichenko, I.L.; Nemkova, G.A. Phylogeny of salmonids (Salmoniformes: Salmonidae) and its molecular dating: Analysis of nuclear RAG1 gene. Russ. J. Genet. 2012, 48, 575–579. [Google Scholar] [CrossRef]
- Crête-Lafrenière, A.; Weir, L.K.; Bernatchez, L. Framing the Salmonidae Family Phylogenetic Portrait: A More Complete Picture from Increased Taxon Sampling. PLoS ONE 2012, 7, e46662. [Google Scholar] [CrossRef]
- Behnke, R.J. Native Trout of Western North America. In American Fisheries Society Monograph 6; American Fisheries Society: Bethesda, MD, USA, 1992. [Google Scholar]
- Crespi, B.J.; Fulton, M.J. Molecular systematics of Salmonidae: Combined nuclear data yields a robust phylogeny. Mol. Phylogenet. Evol. 2004, 31, 658–679. [Google Scholar] [CrossRef]
- Loudenslager, E.J.; Rinne, J.N.; Gall, G.A.E.; David, R.E. Biochemical Genetic Studies of Native Arizona and New Mexico Trout. Southwest. Nat. 1986, 31, 221–234. [Google Scholar] [CrossRef]
- Nielsen, J.L.; Fountain, M.C.; Wright, J.M. Biogeographic analysis of Pacific trout (Oncorhynchus mykiss) in California and Mexico based on mtDNA and nuclear microsatellites. In Molecular Systematics of Fishes; Kocher, T., Stepien, C.A., Eds.; Academic Press: San Diego, CA, USA, 1997; pp. 53–73. [Google Scholar]
- Nielsen, J.L.; Fountain, M.C.; Favela, J.C.; Cobble, K.; Jensen, B.L. Oncorhynchus at the southern extent of their range: A study of mtDNA control–region sequence with special reference to an undescribed subspecies of O. mykiss from Mexico. Environ. Biol. Fishes 1998, 51, 7–23. [Google Scholar] [CrossRef]
- Glenn, T.C.; Nilsen, R.A.; Kieran, T.; Sanders, J.G.; Bayona-Vásquez, N.J.; Finger, J.; Pierson, T.W.; Bentley, K.E.; Hoffberg, S.L.; Louha, S.; et al. Adapterama I: Universal stubs and primers for 384 unique dual-indexed or 147,456 combinatorially-indexed Illumina libraries (iTru & iNext). PeerJ 2019, 7, e7755. [Google Scholar] [CrossRef]
- Rohland, N.; Reich, D. Cost-effective, high-throughput DNA sequencing libraries for multiplexed target capture. Genome Res. 2012, 22, 939–946. [Google Scholar] [CrossRef] [PubMed]
- National Library of Medicine. National Center for Biotechnology Information. Available online: http://www.ncbi.nlm.nih.gov (accessed on 13 February 2022).
- Camacho, C.; Coulouris, G.; Avagyan, V.; Ma, N.; Papadopoulos, J.; Bealer, K.; Madden, T.L. BLAST+: Architecture and applications. BMC Bioinform. 2009, 10, 421. [Google Scholar] [CrossRef] [PubMed]
- Baeza, J.A. An introduction to the Special Section on Crustacean Mitochondrial Genomics: Improving the assembly, annotation, and characterization of mitochondrial genomes using user-friendly and open-access bioinformatics tools, with decapod crustaceans as an example. J. Crustac. Biol. 2022, 42, ruac012. [Google Scholar] [CrossRef]
- Bernt, M.; Donath, A.; Jühling, F.; Externbrink, F.; Florentz, C.; Fritzsch, G.; Pütz, J.; Middendorf, M.; Stadler, P.F. MITOS: Improved de novo metazoan mitochondrial genome annotation. Mol. Phylogenetics Evol. 2013, 69, 313–319. [Google Scholar] [CrossRef]
- Donath, A.; Jühling, F.; Al-Arab, M.; Bernhart, S.H.; Reinhardt, F.; Stadler, P.F.; Middendorf, M.; Bernt, M. Improved annotation of protein-coding genes boundaries in metazoan mitochondrial genomes. Nucleic Acids Res. 2019, 47, 10543–10552. [Google Scholar] [CrossRef]
- Artimo, P.; Jonnalagedda, M.; Arnold, K.; Baratin, D.; Csardi, G.; de Castro, E.; Duvaud, S.; Flegel, V.; Fortier, A.; Gasteiger, E.; et al. ExPASy: SIB bioinformatics resource portal. Nucleic Acids Res. 2012, 40, W597–W603. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Conant, G.C.; Wolfe, K.H. GenomeVx: Simple web-based creation of editable circular chromosome maps. Bioinformatics 2008, 24, 861–862. [Google Scholar] [CrossRef]
- Stothard, P.; Hiseni, P.; Wilson, R.C.; Storrø, O.; Johnsen, R.; Øien, T.; Rudi, K. The Sequence Manipulation Suite: JavaScript Programs for Analyzing and Formatting Protein and DNA Sequences. Biotechniques 2000, 28, 1102–1104. [Google Scholar] [CrossRef] [PubMed]
- Cucini, C.; Leo, C.; Iannotti, N.; Boschi, S.; Brunetti, C.; Pons, J.; Fanciulli, P.P.; Frati, F.; Carapelli, A.; Nardi, F. EZmito: A simple and fast tool for multiple mitogenome analyses. Mitochondrial DNA Part B 2021, 6, 1101–1109. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Zhang, Y.; Zhang, Z.; Zhu, J.; Yu, J. KaKs_Calculator 2.0: A Toolkit Incorporating Gamma-Series Methods and Sliding Window Strategies. Genom. Proteom. Bioinform. 2010, 8, 77–80. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.-P.; Wan, H.-L.; Zhang, S.; Yu, J. γ-MYN: A new algorithm for estimating Ka and Ks with consideration of variable substitution rates. Biol. Direct 2009, 4, 20. [Google Scholar] [CrossRef]
- Jühling, F.; Pütz, J.; Bernt, M.; Donath, A.; Middendorf, M.; Florentz, C.; Stadler, P.F. Improved systematic tRNA gene annotation allows new insights into the evolution of mitochondrial tRNA structures and into the mechanisms of mitochondrial genome rearrangements. Nucleic Acids Res. 2011, 40, 2833–2845. [Google Scholar] [CrossRef]
- Kerpedjiev, P.; Hammer, S.; Hofacker, I.L. Forna (force-directed RNA): Simple and effective online RNA secondary structure diagrams. Bioinformatics 2015, 31, 3377–3379. [Google Scholar] [CrossRef]
- Sievers, F.; Wilm, A.; Dineen, D.; Gibson, T.J.; Karplus, K.; Li, W.; Lopez, R.; McWilliam, H.; Remmert, M.; Söding, J.; et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 2011, 7, 539. [Google Scholar] [CrossRef]
- Guindon, S.; Gascuel, O. A Simple, Fast, and Accurate Algorithm to Estimate Large Phylogenies by Maximum Likelihood. Syst. Biol. 2003, 52, 696–704. [Google Scholar] [CrossRef]
- Darriba, D.; Taboada, G.L.; Doallo, R.; Posada, D. jModelTest 2: More models, new heuristics and parallel computing. Nat. Methods 2012, 9, 772. [Google Scholar] [CrossRef] [PubMed]
- Ronquist, F.; Huelsenbeck, J.P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 2003, 19, 1572–1574. [Google Scholar] [CrossRef]
- Rambaut, A. FigTree v1.4.4. [Place unknown]: [Publisher unknown]. 2018. Available online: https://github.com/rambaut/figtree/releases/tag/v1.4.4 (accessed on 22 March 2023).
- Wang, F.; He, E.; Li, Y.; Cai, X.; Ma, W. Complete mitochondrial genome of the hybridized fish (Oncorhynchus mykiss ♀ × Atlantic salmon ♂). Mitochondrial DNA Part A 2015, 27, 4153–4154. [Google Scholar] [CrossRef] [PubMed]
- Schroeter, J.C.; Maloy, A.P.; Rees, C.B.; Bartron, M.L. Fish mitochondrial genome sequencing: Expanding genetic resources to support species detection and biodiversity monitoring using environmental DNA. Conserv. Genet. Resour. 2019, 12, 433–446. [Google Scholar] [CrossRef]
- Si, S.; Wang, Y.; Xu, G.; Yang, S.; Mou, Z.; Song, Z. Complete mitochondrial genomes of two lenoks, Brachymystax lenok and Brachymystax lenok tsinlingensis. Mitochondrial DNA 2012, 23, 338–340. [Google Scholar] [CrossRef]
- Barriga-Sosa, I.D.L.A.; De León, F.J.G.; Del Río-Portilla, M.A. The complete mitochondrial DNA of the endemic shortfin silverside, Chirostoma humboldtianum (Valenciennes, 1835). Mitochondrial DNA 2014, 27, 1545–1546. [Google Scholar] [CrossRef]
- Galván-Tirado, C.; del Río-Portilla, M.A.; Delgado-Vega, R.; León, F.J.G.-D. Genetic variability between complete mitochondrion genomes of the sablefish, Anoplopoma fimbria (Pallas, 1814). Mitochondrial DNA Part A 2015, 27, 2429–2430. [Google Scholar] [CrossRef]
- Magallón-Gayón, E.; del Río-Portilla, M.; Barriga-Sosa, I.D.L.A. The complete mitochondrial genomes of two octopods of the eastern Pacific Ocean: Octopus mimus and ‘Octopus’ fitchi (Cephalopoda: Octopodidae) and their phylogenetic position within Octopoda. Mol. Biol. Rep. 2019, 47, 943–952. [Google Scholar] [CrossRef] [PubMed]
- Machkour-M’Rabet, S.; Hanes, M.M.; Martínez-Noguez, J.J.; Cruz-Medina, J.; León, F.J.G.-D. The queen conch mitogenome: Intra- and interspecific mitogenomic variability in Strombidae and phylogenetic considerations within the Hypsogastropoda. Sci. Rep. 2021, 11, 11972. [Google Scholar] [CrossRef]
- Colín, A.; Galván-Tirado, C.; Carreón-Palau, L.; Bracken-Grissom, H.D.; Baeza, J.A. Mitochondrial genomes of the land hermit crab Coenobita clypeatus (Anomura: Paguroidea) and the mole crab Emerita talpoida (Anomura: Hippoidea) with insights into phylogenetic relationships in the Anomura (Crustacea: Decapoda). Gene 2023, 849, 146896. [Google Scholar] [CrossRef]
- Zardoya, R.; Garrido-Pertierra, A. The complete nucleotide sequence of the mitochondrial DNA genome of the rainbow trout, Oncorhynchus mykiss. J. Mol. Evol. 1995, 41, 942–951. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, X.; Yang, S.; Song, Z. The complete mitochondrial genome of the taimen, Hucho taimen, and its unusual features in the control region. Mitochondrial DNA 2011, 22, 111–119. [Google Scholar] [CrossRef]
- Yu, J.-N.; Kwak, M. The complete mitochondrial genome of Brachymystax lenok tsinlingensis (Salmoninae, Salmonidae) and its intraspecific variation. Gene 2015, 573, 246–253. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.-G.; Li, Y.-Y.; Meng, W.; Liu, L.-X. The complete mitochondrial DNA sequence of Xinjiang arctic grayling Thymallus arcticus grubei. Mitochondrial DNA Part B 2016, 1, 724–725. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Meng, F.; Wang, R.; Shi, G. Complete mitochondrial genome of the Salvelinus malma sp. (Salmoniformes, Salmonidae) with phylogenetic consideration. Mitochondrial DNA Part B 2017, 2, 889–890. [Google Scholar] [CrossRef]
- Miya, M.; Takeshima, H.; Endo, H.; Ishiguro, N.B.; Inoue, J.G.; Mukai, T.; Satoh, T.P.; Yamaguchi, M.; Kawaguchi, A.; Mabuchi, K.; et al. Major patterns of higher teleostean phylogenies: A new perspective based on 100 complete mitochondrial DNA sequences. Mol. Phylogenetics Evol. 2003, 26, 121–138. [Google Scholar] [CrossRef]
- Shirai, K.; Inomata, N.; Mizoiri, S.; Aibara, M.; Terai, Y.; Okada, N.; Tachida, H. High prevalence of non-synonymous substitutions in mtDNA of cichlid fishes from Lake Victoria. Gene 2014, 552, 239–245. [Google Scholar] [CrossRef] [PubMed]
- Yu, P.; Zhou, L.; Yang, W.-T.; Miao, L.-J.; Li, Z.; Zhang, X.-J.; Wang, Y.; Gui, J.-F. Comparative mitogenome analyses uncover mitogenome features and phylogenetic implications of the subfamily Cobitinae. BMC Genom. 2021, 22, 50. [Google Scholar] [CrossRef]
- Castellana, S.; Vicario, S.; Saccone, C. Evolutionary Patterns of the Mitochondrial Genome in Metazoa: Exploring the Role of Mutation and Selection in Mitochondrial Protein–Coding Genes. Genome Biol. Evol. 2011, 3, 1067–1079. [Google Scholar] [CrossRef]
- Johansen, S.; Guddal, P.H.; Johansen, T. Organization of the mitochondrial genome of Atlantic cod, Gadus morhua. Nucleic Acids Res. 1990, 18, 411–419. [Google Scholar] [CrossRef]
- Rinne, J.N.; Minckley, W.L. Patterns of Variation and Distribution in Apache Trout (Salmo apache) Relative to Co-Occurrence with Introduced Salmonids. Copeia 1985, 1985, 285–292. [Google Scholar] [CrossRef]
- Jordan, D.S. Description of a new subspecies of Trout from McCloud River, California. Proc. Acad. Nat. Sci. Phila. 1894, XLVI, 60. [Google Scholar]
Name | Oncorhynchus chrysogaster | Oncorhynchus mykiss nelsoni | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Start Position | Stop Position | Length (bp) | Intergene Nucleotides a | Start Codon | Stop Codon | Strand b | Start Position | Stop Position | Length (bp) | Intergene Nucleotides a | Start Codon | Stop Codon | |
tRNA-Phe | 1 | 68 | 68 | 0 | + | 1 | 68 | 68 | 0 | ||||
12S rRNA | 69 | 1015 | 947 | 0 | + | 69 | 1015 | 947 | 0 | ||||
tRNA-Val | 1016 | 1087 | 72 | 21 | + | 1016 | 1087 | 72 | 21 | ||||
16S rRNA | 1109 | 2767 | 1659 | 0 | + | 1109 | 2766 | 1658 | 0 | ||||
tRNA-Leu2 | 2768 | 2842 | 75 | 0 | + | 2767 | 2841 | 75 | 0 | ||||
ND1 | 2843 | 3814 | 972 | 3 | ATG | TAG | + | 2842 | 3813 | 972 | 3 | ATG | TAG |
tRNA-Ile | 3818 | 3889 | 72 | −3 | + | 3817 | 3888 | 72 | −3 | ||||
tRNA-Gln | 3887 | 3957 | 71 | −1 | − | 3886 | 3956 | 71 | −1 | ||||
tRNA-Met | 3957 | 4025 | 69 | 0 | + | 3956 | 4024 | 69 | 0 | ||||
ND2 | 4026 | 5075 | 1050 | 1 | ATG | TAA | + | 4025 | 5074 | 1050 | 1 | ATG | TAA |
tRNA-Trp | 5077 | 5148 | 72 | 0 | + | 5076 | 5147 | 72 | 0 | ||||
tRNA-Ala | 5149 | 5217 | 69 | 1 | − | 5148 | 5216 | 69 | 1 | ||||
tRNA-Asn | 5219 | 5291 | 73 | 3 | − | 5218 | 5290 | 73 | 3 | ||||
OL | 5295 | 5325 | 31 | 0 | − | 5294 | 5329 | 36 | 0 | ||||
tRNA-Cys | 5326 | 5392 | 67 | 0 | − | 5330 | 5396 | 67 | 0 | ||||
tRNA-Tyr | 5393 | 5463 | 71 | 1 | − | 5397 | 5467 | 71 | 1 | ||||
COX1 | 5465 | 7015 | 1551 | 0 | GTG | TAA | + | 5469 | 7019 | 1551 | 0 | GTG | TAA |
tRNA-Ser2 | 7016 | 7086 | 71 | 4 | − | 7020 | 7090 | 71 | 4 | ||||
tRNA-Asp | 7091 | 7164 | 74 | 14 | + | 7095 | 7168 | 74 | 14 | ||||
COX2 | 7179 | 7869 | 691 | 0 | ATG | T | + | 7183 | 7873 | 691 | 0 | ATG | T |
tRNA-Lys | 7870 | 7943 | 74 | 1 | + | 7874 | 7947 | 74 | 1 | ||||
ATP8 | 7945 | 8112 | 168 | −10 | ATG | TAA | + | 7949 | 8116 | 168 | −10 | ATG | TAA |
ATP6 | 8103 | 8786 | 684 | −1 | ATG | TAA | + | 8107 | 8790 | 684 | −1 | ATG | TAA |
COX3 | 8786 | 9571 | 786 | −1 | ATG | TAA | + | 8790 | 9575 | 786 | −1 | ATG | TAA |
tRNA-Gly | 9571 | 9640 | 70 | 0 | + | 9575 | 9644 | 70 | 0 | ||||
ND3 | 9641 | 9991 | 351 | −2 | ATG | TAG | + | 9645 | 9995 | 351 | −2 | ATG | TAG |
tRNA-Arg | 9990 | 10,059 | 70 | 0 | + | 9994 | 10,063 | 70 | 0 | ||||
ND4L | 10,060 | 10,356 | 297 | −7 | ATG | TAA | + | 10,064 | 10,360 | 297 | −7 | ATG | TAA |
ND4 | 10,350 | 11,730 | 1381 | 0 | ATG | T | + | 10,354 | 11,734 | 1381 | 0 | ATG | T |
tRNA-His | 11,731 | 11,799 | 69 | 0 | + | 11,735 | 11,803 | 69 | 0 | ||||
tRNA-Ser1 | 11,800 | 11,868 | 69 | 1 | + | 11,804 | 11,872 | 69 | 1 | ||||
tRNA-Leu1 | 11,870 | 11,942 | 73 | 0 | + | 11,874 | 11,946 | 73 | 0 | ||||
ND5 | 11,943 | 13,781 | 1839 | −4 | ATG | TAA | + | 11,947 | 13,785 | 1839 | −4 | ATG | TAA |
ND6 | 13,778 | 14,299 | 522 | 0 | ATG | TAG | − | 13,782 | 14,303 | 522 | 0 | ATG | TAG |
tRNA-Glu | 14,300 | 14,368 | 69 | 3 | − | 14,304 | 14,372 | 69 | 3 | ||||
CytB | 14,372 | 15,512 | 1141 | 0 | ATG | T | + | 14,376 | 15,516 | 1141 | 0 | ATG | T |
tRNA-Thr | 15,513 | 15,584 | 72 | −1 | + | 15,517 | 15,588 | 72 | −1 | ||||
tRNA-Pro | 15,584 | 15,653 | 70 | 0 | − | 15,588 | 15,657 | 70 | 0 | ||||
OH | 15,963 | 16,468 | 506 | + | 15,968 | 16,474 | 507 | ||||||
CR putative | 15,654 | 16,655 | 1002 | 15,658 | 16,661 | 1004 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Colín, A.; Del Río-Portilla, M.A.; Lafarga-De la Cruz, F.; Ingle-De la Mora, G.; García-De León, F.J. Assembly, Characterization, and Phylogenetic Relationships of Mitogenomes of Two Species of Mexican Trout (Oncorhynchus chrysogaster and O. mykiss nelsoni). Fishes 2023, 8, 178. https://doi.org/10.3390/fishes8040178
Colín A, Del Río-Portilla MA, Lafarga-De la Cruz F, Ingle-De la Mora G, García-De León FJ. Assembly, Characterization, and Phylogenetic Relationships of Mitogenomes of Two Species of Mexican Trout (Oncorhynchus chrysogaster and O. mykiss nelsoni). Fishes. 2023; 8(4):178. https://doi.org/10.3390/fishes8040178
Chicago/Turabian StyleColín, Angélica, Miguel A. Del Río-Portilla, Fabiola Lafarga-De la Cruz, Genoveva Ingle-De la Mora, and Francisco J. García-De León. 2023. "Assembly, Characterization, and Phylogenetic Relationships of Mitogenomes of Two Species of Mexican Trout (Oncorhynchus chrysogaster and O. mykiss nelsoni)" Fishes 8, no. 4: 178. https://doi.org/10.3390/fishes8040178
APA StyleColín, A., Del Río-Portilla, M. A., Lafarga-De la Cruz, F., Ingle-De la Mora, G., & García-De León, F. J. (2023). Assembly, Characterization, and Phylogenetic Relationships of Mitogenomes of Two Species of Mexican Trout (Oncorhynchus chrysogaster and O. mykiss nelsoni). Fishes, 8(4), 178. https://doi.org/10.3390/fishes8040178