Production Performances and Profitability of Stocking Homestead Ponds with Advanced Carp Fingerlings for Maximizing Family Nutrition and Income Generation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Feeding Management
2.3. Nutrient Cycle in the Polyculture Ponds
2.4. Water Quality Monitoring
2.5. Survival Rate, Weight Gain and Feed Conversion Ratio
2.6. Plankton and Macro-Benthic Invertebrate Enumeration
2.7. Economics of Carp Culture
2.8. Statistical Analysis
3. Results
3.1. Water Quality Parameters
3.2. Fish Growth Assessment
3.3. Plankton Enumeration
3.4. Benthos Enumeration
3.5. Economics of the Fish Culture
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hasenbein, M.; Fangue, N.A.; Geist, J.P.; Komoroske, L.M.; Connon, R.E. Physiological stress biomarkers reveal stocking density effects in late larval Delta Smelt (Hypomesus transpacificus). Aquaculture 2016, 450, 108–115. [Google Scholar] [CrossRef] [Green Version]
- Karnatak, G.; Das, B.K.; Mishal, P.; Tayung, T.; Kumari, S.; Sarkar, U.K.; Das, A.K.; Ali, Y. Impact of stocking density on growth, feed utilization and survival of cage reared minor carp, Labeo bata (Hamilton, 1822) in Maithon reservoir, India. Aquaculture 2021, 532, 736078. [Google Scholar] [CrossRef]
- Yengkokpam, S.; Das, B.K.; Debnath, D.; Das, P.; Yadav, A.K.; Sharma, N.; Borah, S.; Singh, N.S.; Sarma, K.K.; Ray, B.C.; et al. Effect of stocking density on growth and yield of Labeo bata fingerlings reared in cages. Aquac. Rep. 2020, 18, 100506. [Google Scholar] [CrossRef]
- Chakraborty, B.K.; Mirza, M.J.A. Effect of stocking density on survival and growth of endangered bata, Labeo bata (Hamilton–Buchanan) in nursery ponds. Aquaculture 2007, 265, 156–162. [Google Scholar] [CrossRef]
- El-Sayed, A.F.M. Effects of stocking density and feeding levels on growth and feed efficiency of Nile tilapia (Oreochromis niloticus L.) fry. Aquac. Res. 2002, 33, 621–626. [Google Scholar] [CrossRef]
- Hengsawat, K.; Ward, F.J.; Jaruratjamorn, P. The effect of stocking density on yield, growth and mortality of African catfish (Clarias gariepinus Burchell 1822) cultured in cages. Aquaculture 1997, 152, 67–76. [Google Scholar] [CrossRef]
- Khattab, Y.; Abdel-Tawwab, M.; Ahmad, M.H. Effect of protein level and stocking density on growth performance, survival rate, feed utilization and body composition of Nile tilapia fry (Oreochromis niloticus L.). Egypt. J. Aquat. Biol. Fish. 2001, 5, 195–212. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.M.; Islam, M.S.; Halder, G.C.; Tanaka, M. Cage culture of sutchi catfish, Pangasius sutchi (Fowler 1937): Effects of stocking density on growth, survival, yield and farm profitability. Aquac. Res. 2006, 37, 33–39. [Google Scholar] [CrossRef]
- Belton, B.; Azad, A. The characteristics and status of pond aquaculture in Bangladesh. Aquaculture 2012, 358, 196–204. [Google Scholar] [CrossRef]
- Little, D.C.; Karim, M.; Turongruang, D.; Morales, E.J.; Murray, F.J.; Barman, B.K.; Haque, M.M.; Kundu, N.; Belton, B.; Faruque, G.; et al. Livelihood impacts of ponds in Asia-opportunities and constraints. In Fish Ponds in Farming Systems; van der Zijpp, A.J., Verreth, J.A.J., van Mensvoort, M.E.F., Bosma, R.H., Beveridge, M.C.M., Eds.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2007; pp. 177–202. [Google Scholar]
- Castine, S.A.; Bogard, J.R.; Barman, B.K.; Karim, M.; Hossain, M.M.; Kunda, M.; Haque, A.B.M.M.; Phillips, M.J.; Thilsted, S.H. Homestead pond polyculture can improve access to nutritious small fish. Food Secur. 2017, 9, 785–801. [Google Scholar] [CrossRef]
- Rahman, M.M.; Das, M.S.; Samad, A.; Tanu, I.A.; Shiadul, M. Growth, production and economics of carp polyculture in fertilizer and feed-based ponds. Int. J. Nat. Soc. Sci. 2017, 4, 01–09. [Google Scholar]
- Khan, M.R.I.; Parvez, M.T.; Talukder, M.G.S.; Hossain, M.A.; Karim, M.S. Production and economics of carp polyculture in ponds stocked with wild and hatchery produced seeds. J. Fish. 2018, 6, 541–548. [Google Scholar] [CrossRef]
- Zacharias, I.; Zamparas, M. Mediterranean temporary ponds. A disappearing ecosystem. Biodivers. Conserv. 2010, 19, 3827–3834. [Google Scholar] [CrossRef]
- Sarker, M.M.; Hossain, M.B.; Islam, M.M.; Kamal, A.H.M.; Idris, M.H. Unravelling the diversity and assemblage of phytoplankton in homestead ponds of central coastal belt, Bangladesh. Aquac. Res. 2020, 52, 167–184. [Google Scholar] [CrossRef]
- FRSS (Fisheries Resources Survey System). Yearbook of Fisheries Statistics of Bangladesh, 2018–19; Department of Fisheries, Bangladesh, Ministry of Fisheries and Livestock: Dhaka, Bangladesh, 2019; Volume 36, 135p. [Google Scholar]
- Hossain, I.; Hossain, M.B. Community structure of macrobenthos in homestead ponds of Noakhali coast, Bangladesh. Acta Ecol. Sin. 2021, 41, 611–619. [Google Scholar] [CrossRef]
- Bhatnagar, A.; Devi, P. Water quality guidelines for the management of pond fish culture. Int. J. Environ. Sci. 2013, 3, 1980. [Google Scholar] [CrossRef]
- Mane, A.M.; Dube, K.; Varghese, T.; Chavan, B.R.; Kamble, M.T. Effects of stocking density on growth performance, survival and production of Catla catla and Labeo rohita during nursery rearing in cages. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2019, 89, 275–281. [Google Scholar] [CrossRef]
- Alam, M.J.; Kohinoor, A.H.M.; Islam, M.S.; Mazid, M.A. Polyculture of carps using over-wintered fingerlings under different stocking densities. Bangladesh J. Fish. Res. 2002, 6, 117–124. [Google Scholar]
- Alim, M.A.; Wahab, M.A.; Milstein, A. Effects of increasing the stocking density of large carp by 20% on ‘cash’ carp-small fish polyculture of Bangladesh. Aquac. Res. 2005, 36, 317–325. [Google Scholar] [CrossRef]
- Basak, S.S.; Rahman, M.M.; Bashar, M.A.; Khan, M.M.H.; Mahmud, M.Y. Production and growth performance under carps polyculture with different stocking densities in hilly creeks of Kaptai Lake, Rangamati. MOJ Ecol. Environ. Sci. 2017, 2, 00029. [Google Scholar]
- Rahman, M.M.; Jo, Q.; Gong, Y.G.; Miller, S.A.; Hossain, M.Y. A comparative study of common carp (Cyprinus carpio L.) and calbasu (Labeo calbasu Hamilton) on bottom soil resuspension, water quality, nutrient accumulations, food intake and growth of fish in simulated rohu (Labeo rohita Hamilton) ponds. Aquaculture 2008, 285, 78–83. [Google Scholar] [CrossRef]
- Rahman, M.M.; Kadowaki, S.; Balcombe, S.R.; Wahab, M.A. Common carp (Cyprinus carpio L.) alters its feeding niche in response to changing food resources: Direct observations in simulated ponds. Ecol. Res. 2010, 25, 303–309. [Google Scholar] [CrossRef] [Green Version]
- APHA. Standard Methods for the Examination of Water and Wastewater; American Public Health Association (APHA): Washington, DC, USA, 2005; p. 21. [Google Scholar]
- Ali, S.; Chakrabarty, T. Bangladesher Mitha Panir Amerudandi Prani (A Book of Freshwater Invertebrates of Bangladesh); Bangla Academy: Dhaka, Bangladesh, 1992; p. 207. [Google Scholar]
- Anderson, D.T. Invertebrate Zoology; Oxford University Press: Oxford, UK, 2002. [Google Scholar]
- Battish, S.K. Freshwater Zooplankton of India; Oxford & IBH Publishing Company: New Delhi, India, 1992. [Google Scholar]
- Belcher, H.; Swale, E. A Beginner’s Guide to Freshwater Algae; Her Majesty’s Stationary Office: London, UK, 1976. [Google Scholar]
- Bellinger, E.G.; Sigee, D.C. Freshwater Algae: Identification, Enumeration and Use as Bioindicators; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Bhouyain, A.M.; Asmat, G.S. Freshwater Zooplankton from Bangladesh; Nilufer Begum: Labiba, Laila, 1992. [Google Scholar]
- Fauchald, K. The Polychaetes Worms. Definition and Key to the Order, Family and Genera. In Natural History Museum of Los Angeles City Science Series; Natural History Museum of Los Angeles: Los Angeles, CA, USA, 1977; Volume 28, pp. 1–88. [Google Scholar]
- Gosner, K.L. Guide to Identification of Marine and Estuarine Invertebrates; John Wiley & Sons, Inc.: New York, NY, USA, 1971. [Google Scholar]
- Rao, N.V.S.; Rao, K.V.S.; Maitra, S. Marine molluscs. State Fauna Ser. 1991, 1, 1–175. [Google Scholar]
- Witty, L.M. Practical Guide to Identifying Freshwater Crustacean Zooplankton; Cooperative Freshwater Ecology Unit: Sudbury, ONT, Canada, 2004. [Google Scholar]
- Shamsuddin, M.; Hossain, M.B.; Rahman, M.; Kawla, M.S.; Tazim, M.F.; Albeshr, M.F.; Arai, T. Effects of stocking larger-sized fish on water quality, growth performance, and the economic yield of nile tilapia (Oreochromis niloticus L.) in floating cages. Aquaculture 2022, 12, 942. [Google Scholar] [CrossRef]
- Hammer, O. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 2001, 4, 9. [Google Scholar]
- Nybakken, J.W. Marine Biology: An Ecological Approach. In Translation of Marine Biology: An Ecological Approach; Gramedia: Jakarta, Indonesia, 1992; p. 443. [Google Scholar]
- Fachrul, M.F.; Haeruman, H.; Sitepu, L.C. Phytoplankton community as bio-indicator of Jakarta Bay water quality. In National Seminar on Mathematics and Natural Sciences; University of Indonesia: Jakarta, Indonesia, 2005. [Google Scholar]
- Das, P.; Borah, S.; Yadav, A.K.; Bhattacharjya, B.K.; Das, B.K. Open water fisheries of Assam and strategies for its development. Fish. Chimes 2018, 38, 17–28. [Google Scholar]
- Yengkokpam, S.; Bhattacharjya, B.K.; Debnath, D.; Das, P.; Yadav, A.K.; Sarma, K.K.; Sharma, N.; Borah, S.; Kakati, A.; Singh, N.S. Effect of stocking practices and riverine connectivity on fish productivity of beels of Assam. CIFRI NEWS 2017, 22, 8. Available online: www.cifri.res.in/newsletter1.html (accessed on 13 July 2020).
- Alabaster, J.S.; Lloyd, R. Water Quality Criteria for Freshwater Fish, 2nd ed.; Butterworth’s: London, UK, 1982. [Google Scholar]
- Boyd, C.E.; Tucker, C.S. Water Quality and Pond Soil Analyses for Aquaculture; Alabama Agricultural Experiment Station: City, AL, USA, 1998. [Google Scholar]
- Dulic, Z.; Subakov-Simic, G.; Ciric, M.; Relic, R.; Lakic, N.; Stankovic, M.; Markovic, Z. Water quality in semi-intensive carp production system using three different feeds. Bulg. J. Agric. Sci. 2010, 16, 266–274. [Google Scholar]
- Rai, A.K.; Bista, J.D. Effect of different feed ingredients on the growth of caged common carp. Nepal Agric. Res. J. 2001, 4, 60–62. [Google Scholar] [CrossRef]
- Ellis, T.; North, B.; Scaott, A.P.; Bromage, N.R.; Porter, M.; Gadd, D. The relationship between stocking density and welfare in farmed rainbow trout. J. Fish. Biol. 2002, 61, 493–531. [Google Scholar] [CrossRef]
- Chattopadhyay, D.N.; Mohapatra, B.C.; Adhikari, S.; Pani, K.C.; Jena, J.K.; Eknath, A.E. Effects of stocking density of Labeo rohita on survival, growth and production in cages. Aquac. Int. 2013, 21, 19–29. [Google Scholar] [CrossRef]
- Jiwyam, W. The effect of stocking density on yield, growth and survival of Asian river catfish (Pangasius bocourti Sauvage, 1880) cultured in cages. Aquac. Int. 2011, 19, 987–997. [Google Scholar] [CrossRef]
- Biswas, P.; Kohli, M.P.S.; Chadha, N.K.; Bhattacharjya, B.K.; Debnath, D.; Yengkokpam, S.; Sarma, K.K.; Gogoi, P.; Kakati, A.; Sharma, A.P. Optimizing stocking density of Labeo rohita fry in cage aquaculture system as a tool for floodplain wetland fisheries management. Proc. Natl. Acad. Sci. India Sect. B. 2015, 85, 181–190. [Google Scholar] [CrossRef]
- Marengoni, N.G. Production of the Nile tilapia Oreochromis niloticus (Chitralada strain) reared in cages with different stocking densities. Arch. Zootec. 2006, 55, 127–138. [Google Scholar]
- Sharma, J.; Chakrabarti, R. Role of stocking density on growth and survival of Catla, Catla catla, and Rohu, Labeo rohita, larvae and water quality in a recirculating system. J. Appl. Aquac. 2003, 14, 171–178. [Google Scholar] [CrossRef]
- Kohli, M.P.S.; Ayyappan, S.; Langer, R.K.; Dube, K.; Prakash, C.; Reddy, A.K.; Deshmukhe, G. Cage culture of carps, Labeo rohita and Cyprinus carpio at Powai lake, Mumbai, Maharashtra. Appl. Fish. Aquac. 2002, II, 1–4. [Google Scholar]
- Barton, B.A.; Iwama, G.K. Physiological changes in fish from stress in aquaculture with emphasis on the response and effects of corticosteroids. Annu. Rev. Fish Dis. 1991, 1, 3–26. [Google Scholar] [CrossRef]
- Vijayan, M.M.; Leatherland, J.F. Effect of stocking density on the growth and stress-response in brook charr, Salvelinus fontinalis. Aquaculture 1988, 75, 159–170. [Google Scholar] [CrossRef]
- Wedemeyer, G.A. Effects of rearing conditions on the health and physiological quality of fish in intensive culture. In Fish Stress and Health in Aquaculture; Iwama, G.K., Pickering, A.D., Sumpter, J.P., Schreck, C.B., Eds.; Cambridge University Press: Cambridge, UK, 1997; pp. 35–71. [Google Scholar]
- Leatherland, J.F.; Cho, C.Y. Effect of rearing density on thyroid and interrenal gland activity and plasma and hepatic metabolite levels in rainbow trout, Salmo gairdneri Richardson. J. Fish. Biol. 1985, 27, 583–592. [Google Scholar] [CrossRef]
- Wedemeyer, G.A.; Barton, B.A.; McLeay, D.J. Stress and acclimation. In Methods for Fish Biology; Schreck, C.B., Moyle, P.B., Eds.; American Fish. Soc.: Bethesda, MD, USA, 1990; pp. 451–489. [Google Scholar]
- Janssens, P.A.; Waterman, J. Hormonal regulation of gluconeogenesis and glycogenolisis in carp (Cyprinius carpio) liver pieces cultures in vitro. Comp. Biochem. Physiol. 1988, 91, 451–455. [Google Scholar] [CrossRef]
- Morales, A.E.; Garcia-Rejon, L.; Higuera, M.D.L. Influence of handling and/or anesthesia on stress response in rainbow trout: Effects on liver primary metabolism. Comp. Biochem. Physiol. 1990, 95, 87–93. [Google Scholar] [CrossRef]
- Vijayan, M.M.; Ballantyne, J.S.; Leatherland, J.F. High stocking density alters the energy metabolism of brook charr, Salvelinus fontinalis. Aquaculture 1990, 88, 371–381. [Google Scholar] [CrossRef]
- Pankhurst, N.W.; Van Der Kraak, G. Effects of stress on reproduction and growth of fish. In Fish Stress and Health in Aquaculture; Iwama, G.K., Pickering, A.D., Sumpter, J.P., Schreck, C.B., Eds.; Cambridge University Press: Cambridge, UK, 1997; pp. 73–93. [Google Scholar]
- Pickering, A.D. Rainbow trout husbandry: Management of the stress response. Aquaculture 1992, 100, 125–139. [Google Scholar] [CrossRef]
- Schreck, C.B. Stress and rearing of salmonids. Aquaculture 1982, 28, 241–249. [Google Scholar] [CrossRef]
- Iqbal, M.M.; Billah, M.M.; Haider, M.N.; Islam, M.S.; Payel, H.R.; Bhuiyan, M.K.A.; Dawood, M.A.O. Seasonal distribution of phytoplankton community in a subtropical estuary of the south-eastern coast of Bangladesh. Zool. Ecol. 2017, 27, 304–310. [Google Scholar] [CrossRef]
- Parvez, M.A.; Uddin, M.M.; Islam, M.K.; Kibria, M.M. Physicochemical and Biological Monitoring of Water Quality of Halda River, Bangladesh. Int. J. Environ. Sci. Educ. 2019, 14, 169–181. [Google Scholar]
- Haque, M.A.; Nabi, M.R.U.; Billah, M.M.; Al Asif, A.; Rezowan, M.; Mondal, M.A.I.; Siddiqui, A.A.M.; Mahmud, S.S.; Khan, M.R. Effect of water parameters on temporal distribution and abundance of zooplankton at Kaptai lake reservoir, Rangamati, Bangladesh. Asian J. Med. Biol. Res. 2018, 4, 389–399. [Google Scholar] [CrossRef] [Green Version]
- Shil, J.; Ghosh, A.K.; Rahaman, S.B. Abundance and diversity of zooplankton in semi-intensive prawn (Macrobrachium rosenbergii) farm. SpringerPlus 2013, 2, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moyle, P.B.; Cech, J.J. Fishes: An Introduction to Ichthyology, 4th ed.; Prentice Hall: Hoboken, NJ, USA, 2000; p. 612. [Google Scholar]
- Mandal, S.; Ghosh, K. Accumulation of tannin in different tissues of Indian major carps and exotic carps. Aquac. Res. 2010, 41, 945–948. [Google Scholar] [CrossRef]
- Imran, S.; Nagar, S.; Jha, D.N. A review: Food and feeding habit of Labeo calbasu (Hamilton, 1822) from different habitat. J. Kalash Sci. 2014, 2, 71–73. [Google Scholar]
Test Parameter | Main Source | % of Ingredients |
---|---|---|
Crude protein (minimum%) | Fish meal, rice bran, wheat bran | 24.25 |
Crude fat (minimum%) | Fish meal, mustard oil cake | 4.00 |
Crude fiber (minimum%) | Rice bran, wheat bran | 11.00 |
Crude ash (minimum%) | Fish meal | 14.80 |
Moisture (maximum%) | Water | 11.00 |
Parameter | Unit | Treatments | F | p -Value | ||
---|---|---|---|---|---|---|
T1 | T2 | T3 | ||||
pH | - | 8.05 ± 0.09 a (7.87–8.17) | 8.09 ± 0.13 a (7.75–8.28) | 8.02 ± 0.15 a (7.5–8.21) | 2.486 | 0.089 |
Salinity | psu | 0.14 ± 0.03 a (0.09–0.2) | 0.15 ± 0.04 a (0.07–0.21) | 0.14 ± 0.02 a (0.10–0.18) | 2.54 | 0.08 |
DO | mg L−1 | 5.08 ± 0.26 a (4.65–5.61) | 5.1 ± 0.23 a (4.7–5.56) | 5.2 ± 0.25 a (4.68–5.59) | 2.031 | 0.1386 |
Transparency | cm | 36.2 ± 1.51 a (32–38.5) | 35.74 ± 1.36 a (32–37.8) | 36.54 ± 1.76 a (32–38.5) | 2.194 | 0.117 |
Water temperature | °C | 26.35 ± 0.63 a (25.3–27.3) | 26.67 ± 0.49 a (25.58–27.23) | 26.53 ± 0.67 a (25.38–27.5) | 2.334 | 0.1023 |
Nitrate | mg L−1 | 5.75 ± 3.39 a (1.23–8.90) | 5.93 ± 3.54 a (1.25–8.8) | 5.51 ± 3.56 a (0.71–7.95) | 0.03 | 0.97 |
Phosphate | mg L−1 | 0.3 ± 0.03 a (0.27–0.36) | 0.35 ± 0.07 a (0.29–0.45) | 0.33 ± 0.03 a (0.29–0.35) | 2.16 | 0.14 |
Sulphate | mg L−1 | 0.14 ± 0.02 a (0.12–0.16) | 0.27 ± 0.41 a (0.12–1.35) | 0.19 ± 0.1 a (0.13–0.42) | 0.72 | 0.5 |
Phytoplankton | ×104 cells L−1 | 24.06 ± 9.61 a (11.67–39) | 46.33 ± 9.69 b (29.67–57) | 26.56 ± 8.72 a, b (12–34.67) | 10.22 | 0.002 |
Zooplankton | ind. L−1 | 138.89 ± 20.52 a (110–173.33) | 75.56 ± 23.54 b (50–110) | 94.99 ± 77.72 a, b (23.33–196.67) | 2.70 | 0.1 |
Benthos | ind. m−2 | 9316 ± 1570.24 a (7200–11,500) | 8450 ± 1651.36 a (6900–11,300) | 11,500 ± 3454.27 a (7100–15,700) | 2.60 | 0.11 |
Species | Treatment | No. of Individual/Hectare | Average Initial Weight (g) | Average Final Weight (g) | SGR (% day−1) | Fish Production Kg/Hectare/ 5 Month | Survival Rate (%) |
---|---|---|---|---|---|---|---|
G. catla | T1 | 1300 | 242.00 ± 2.65 a | 611.33 ± 9.45 a | 0.62 ± 0.01 a | 658.16 ± 37.16 a | 82.78 ± 3.52 a |
T2 | 1000 | 243.67 ± 1.53 a | 920.00 ± 7.00 b | 0.89 ± 0.01 b | 791.31 ± 28.56 b | 86.02 ± 3.49 a | |
T3 | 700 | 243.33 ± 1.53 a | 1313.0 ± 3.61 c | 1.12 ± 0.01 c | 846.17 ± 18.32 c | 92.07 ± 1.15 b | |
F | - | 0.6 | 7355 | 2224 | 37.14 | 7.729 | |
P | - | 0.579 | <0.001 | <0.001 | <0.001 | 0.022 | |
L. rohita | T1 | 1300 | 222.67 ± 2.08 a | 589.33 ± 6.03 a | 0.65 ± 0.01 a | 623.1 ± 32.51 a | 81.31 ± 3.61 a |
T2 | 1000 | 224.67 ± 3.51 a | 896.33 ± 8.08 b | 0.92 ± 0.01 b | 763.22 ± 51.45 b | 85.19 ± 6.42 a, b | |
T3 | 700 | 223.33 ± 1.53 a | 1252.0 ± 6.24 c | 1.15 ± 0.01 c | 805.98 ± 11.16 b | 91.94 ± 1.21 b | |
F | - | 0.4912 | 9174 | 1549 | 21.51 | 4.677 | |
P | - | 0.635 | <0.001 | <0.001 | 0.002 | 0.06 | |
C. cirrhosus | T1 | 650 | 156.67 ± 2.89 a | 322.00 ± 7.94 a | 0.48 ± 0.02 a | 167.93 ± 2.8 a | 80.25 ± 0.94 a |
T2 | 500 | 155.33 ± 0.58 a | 411.89 ± 3.75 b | 0.65 ± 0.004 b | 170.5 ± 4.34 a | 82.8 ± 2.33 a | |
T3 | 350 | 155.67 ± 1.15 a | 675.33 ± 4.51 c | 0.98 ± 0.002 c | 216.63 ± 1.63 b | 91.13 ± 0.78 b | |
F | - | 0.433 | 3087 | 1889 | 230.7 | 42.16 | |
p | - | 0.667 | <0.001 | <0.001 | <0.001 | <0.001 | |
L.calbasu | T1 | 650 | 159.00 ± 1.73 a | 365.67 ± 5.03 a | 0.56 ± 0.01 a | 200.91 ± 2.72 a | 84.53 ± 0.87 a |
T2 | 500 | 158.67 ± 1.53 a | 443.42 ± 7.42 b | 0.69 ± 0.02 b | 196.55 ± 18.78 a | 88.58 ± 7.23 a, b | |
T3 | 350 | 158.50 ± 1.32 a | 808.67 ± 3.51 c | 1.09 ± 0.01 c | 263.4 ± 2.63 b | 93.07 ± 1.25 b | |
F | - | 0.08235 | 5433 | 1990 | 34.29 | 3.003 | |
p | - | 0.922 | <0.001 | <0.001 | <0.001 | 0.125 |
Parameters | Treatment | F | p Value | ||
---|---|---|---|---|---|
T1 | T2 | T3 | |||
Variable cost | |||||
Lime | 71.43 a | 71.43 a | 71.43 a | − | − |
Fertilizer | 47.62 a | 47.62 a | 47.62 a | − | − |
Fish seed | 1505.41 ± 2.79 a | 1411.11 ± 4.9 b | 977.15 ± 2.43 c | 18,500 | <0.001 |
Feed | 1954.37 ± 12.4 a | 1597.22 ± 9.09 b | 1192.07 ± 3.83 c | 5221 | <0.001 |
Total variable cost | 3578.83 ± 15.19 a | 3127.38 ± 13.99 b | 2288.27 ± 6.26 c | 8290 | <0.001 |
Fixed cost | |||||
Land lease | 178.57 | 178.57 | 178.57 | − | − |
Total cost | 3757.4 ± 15.19 a | 3305.95 ± 13.99 b | 2466.84 ± 6.26 c | 8290 | <0.001 |
Return | |||||
Selling price (USD/kg) | 3.03 ± 0.01 a | 3.24 ± 0.01 b | 3.34 ± 0.02 c | 617.5 | <0.001 |
Total income | 3928.82 ± 110.54 a | 4575.2 ± 156.41 b | 5076.61 ± 8.28 c | 81.08 | <0.001 |
Net income | 171.42 ± 95.35 a | 1269.25 ± 142.42 b | 2609.77 ± 2.02 c | 456.8 | <0.001 |
Return on investment (%) | 4.56 ± 2.52 a | 38.38 ± 4.15 b | 105.79 ± 0.19 c | 1014 | <0.001 |
Benefit—Cost ratio | 1.05 ± 0.03 a | 1.38 ± 0.04 b | 2.06 ± 0.002 c | 1014 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hossain, M.B.; Nur, A.-A.U.; Sarker, M.M.; Banik, P.; Islam, M.M.; Albeshr, M.F.; Arai, T. Production Performances and Profitability of Stocking Homestead Ponds with Advanced Carp Fingerlings for Maximizing Family Nutrition and Income Generation. Fishes 2022, 7, 289. https://doi.org/10.3390/fishes7050289
Hossain MB, Nur A-AU, Sarker MM, Banik P, Islam MM, Albeshr MF, Arai T. Production Performances and Profitability of Stocking Homestead Ponds with Advanced Carp Fingerlings for Maximizing Family Nutrition and Income Generation. Fishes. 2022; 7(5):289. https://doi.org/10.3390/fishes7050289
Chicago/Turabian StyleHossain, Mohammad Belal, As-Ad Ujjaman Nur, Md. Milon Sarker, Partho Banik, Md. Monirul Islam, Mohammed Fahad Albeshr, and Takaomi Arai. 2022. "Production Performances and Profitability of Stocking Homestead Ponds with Advanced Carp Fingerlings for Maximizing Family Nutrition and Income Generation" Fishes 7, no. 5: 289. https://doi.org/10.3390/fishes7050289
APA StyleHossain, M. B., Nur, A. -A. U., Sarker, M. M., Banik, P., Islam, M. M., Albeshr, M. F., & Arai, T. (2022). Production Performances and Profitability of Stocking Homestead Ponds with Advanced Carp Fingerlings for Maximizing Family Nutrition and Income Generation. Fishes, 7(5), 289. https://doi.org/10.3390/fishes7050289