Maclura tinctoria Extracts: In Vitro Antibacterial Activity against Aeromonas hydrophila and Sedative Effect in Rhamdia quelen
Abstract
:1. Introduction
2. Results
2.1. Maclura Tinctoria Extractive Yield and Chemical Composition
2.2. In Vitro Antibacterial Activity
2.3. Sedative and Anesthetic Effects
2.4. Prolonged Exposure Experiment
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Drugs and Reagents
4.3. Plant Material Extraction
4.4. Fish Pathogens
4.5. Animals
4.6. Antibacterial Activity In Vitro Evaluation
4.7. In Vivo Experiments
4.7.1. Sedative and Anesthetic Effects
4.7.2. Prolonged Exposure Experiments
4.8. Chromatographic Analysis
4.9. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Food and Agriculture Organization of the United Nations. The State of the World Fisheries and Aquaculture; FAO: Rome, Italy, 2014. [Google Scholar]
- Baldisserotto, B. Piscicultura continental no Rio Grande do Sul: Situação atual, problemas e perspectivas para o futuro. Cienc. Rural 2009, 39, 291–299. [Google Scholar] [CrossRef] [Green Version]
- Rather, M.A.; Willayat, M.M.; Wani, S.A.; Hussain, S.A.; Shah, S.A. Enterotoxin gene profile and molecular epidemiology of Aeromonas species from fish and diverse water sources. J. Appl. Microbiol. 2019, 127, 921–931. [Google Scholar] [CrossRef]
- Chenia, H.Y. Prevalence and characterization of plasmid-mediated quinolone resistance genes in Aeromonas spp. isolated from South African freshwater fish. Int. J. Food Microbiol. 2016, 231, 26–32. [Google Scholar] [CrossRef]
- de Freitas Souza, C.; Baldissera, M.D.; Baldisserotto, B.; Heinzmann, B.M.; Martos-Sitcha, J.A.; Mancera, J.M. Essential Oils as Stress-Reducing Agents for Fish Aquaculture: A Review. Front. Physiol. 2019, 10, 785. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sutili, F.J.; Gatlin, D.M.; Heinzmann, B.M.; Baldisserotto, B. Plant essential oils as fish diet additives: Benefits on fish health and stability in feed. Rev. Aquacult. 2017, 10, 716–726. [Google Scholar] [CrossRef]
- Kozinska, A.; Pekala, A. Characteristics of disease spectrum in relation to species, serogroups, and adhesion ability of motile aeromonads in fish. Sci. World J. 2012, 949358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abreu, R.E.F.; Magalhães, T.C.; Souza, R.C.; Oliveira, S.T.L.; Ibelli, A.M.G.; Demarqui, F.N.; Gouveia, G.V. Environmental factors on virulence of Aeromonas hydrophila. Aquac. Int. 2017, 26, 495–507. [Google Scholar] [CrossRef]
- Jahid, I.; Mizan, M.; Ha, A.; Ha, S. Effect of salinity and incubation time of planktonic cells on biofilm formation, motility, exoprotease production, and quorum sensing of Aeromonas hydrophila. Food Microbiol. 2015, 49, 142–151. [Google Scholar] [CrossRef]
- Bebak, J.; Wagner, B.; Burnes, B.; Hanson, T. Farm size, seining practices, and salt use: Risk factors for Aeromonas hydrophila outbreaks in farm-raised catfish, Alabama, USA. Prev. Vet. Med. 2015, 118, 161–168. [Google Scholar] [CrossRef]
- Serrano, P.H. Responsible use of antibiotics in aquaculture. In FAO Fisheries Technical Paper 469 (Rome; United Nations); Food and Agriculture Organization of the United Nations: Rome, Italy, 2005. [Google Scholar]
- Adegoke, A.A.; Faleye, A.C.; Singh, G.; Stenstrom, T.A. Antibiotic Resistant Superbugs: Assessment of the Interrelationship of Occurrence in Clinical Settings and Environmental Niches. Molecules 2016, 22, 29. [Google Scholar] [CrossRef]
- Citarasu, T. Herbal biomedicines: A new opportunity for aquaculture industry. Aquac. Int. 2009, 18, 403–414. [Google Scholar] [CrossRef]
- Silva, L.L.; Balconi, L.S.; Gressler, L.T.; Garlet, Q.I.; Sutili, F.J.; Vargas, A.P.C.; Heinzmann, B.M. S-(+)- and R-(-)-linalool: A comparison of the in vitro anti-Aeromonas hydrophila activity and anesthetic properties in fish. Acad. Bras. Cienc. 2017, 89, 203–212. [Google Scholar] [CrossRef] [Green Version]
- Sutili, F.J.; Kreutz, L.C.; Noro, M.; Gressler, L.T.; Heinzmann, B.M.; de Vargas, A.C.; Baldisserotto, B. The use of eugenol against Aeromonas hydrophila and its effect on hematological and immunological parameters in silver catfish (Rhamdia quelen). Vet. Immunol. Immunopathol. 2014, 157, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Sutili, F.J.; Silva, L.L.; Gressler, L.T.; Gressler, L.T.; Battisti, E.K.; Heinzmann, B.M.; Baldisserotto, B. Plant essential oils against Aeromonas hydrophila: In vitro activity and their use in experimentally infected fish. J. Appl. Microbiol. 2015, 119, 47–54. [Google Scholar] [CrossRef]
- Rodríguez Vaquero, M.J.; Tomassini Serravalle, L.R.; Manca de Nadra, M.C.; Strasser de Saad, A.M. Antioxidant capacity and antibacterial activity of phenolic compounds from argentinean herbs infusions. Food Contr. 2010, 21, 779–785. [Google Scholar] [CrossRef] [Green Version]
- Tanase, C.; Cosarca, S.; Muntean, D.L. A critical review of phenolic compounds extracted from the bark of woody vascular plants and their potential biological activity. Molecules 2019, 24, 1182. [Google Scholar] [CrossRef] [Green Version]
- Loscalzo, L.M.; Wasowski, C.; Marder, M. Neuroactive flavonoid glycosides from Tilia petiolaris DC. extracts. Phytother. Res. 2009, 23, 1453–1457. [Google Scholar] [CrossRef]
- Mueller, T.; Vernier, P.; Wullimann, M.F. A phylotypic stage in vertebrate brain development: GABA cell patterns in zebrafish compared to mouse. J. Comp. Neurol. 2006, 494, 620–634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reynolds, D.S.; Rosah, T.W.; Cirone, J.; O’Meara, G.F.; Haythornthwaite, A.; Newman, R.J.; Myers, J.; Sur, C.; Howell, O.; Rutter, A.R.; et al. Sedation and anesthesia mediated by distinct GABAA receptor isoforms. J. Neurosci. 2003, 23, 8608–8617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carvalho, P.E.R. Espécies Arbóreas Brasileiras; Embrapa Florestas: Curitiba, Brazil, 2003. [Google Scholar]
- Cioffi, G.; Morales, E.L.; Braca, A.; Tommasi, N. Antioxidant chalcone glycosides and flavanones from Maclura (Chlophora) tinctoria. J. Nat. Prod. 2003, 66, 1061–1064. [Google Scholar] [CrossRef] [PubMed]
- Elsohly, H.N.; Joshi, A.S.; Nimrod, A.C.; Walker, L.A.; Clark, A.M. Antifungal chalcones from Maclura tinctorial. Planta Med. 2001, 67, 87–89. [Google Scholar] [CrossRef]
- Groweiss, A.; Cardellina, J.H.; Boyd, M.R. HIV-Inhibitory prenylated xanthones and flavones from Maclura tinctoria. J. Nat. Prod. 2000, 63, 1537–1539. [Google Scholar] [CrossRef]
- Pott, A.; Pott, V.J. Plantas do Pantanal; Embrapa: Brasília, Brazil, 1994. [Google Scholar]
- Duarte, M.R.; Gomes, J.B.; Santos, R.H.; Yano, M. Leaf microscopic characters of Maclura tinctoria (L.) D. DON EX STEUD., Moraceae. Visão Acadêmica 2012, 13, 4–15. [Google Scholar] [CrossRef]
- Calderon, A.I.; Angerhof, C.K.; Pezzuto, J.M.; Farnsworth, N.R.; Foster, R.; Condit, R.; Soejarto, D.D. Forest plot as a tool to demonstrate the pharmaceutical potential of plants in a tropical forest of Panamá. Econ. Bot. 2000, 54, 278–294. [Google Scholar] [CrossRef]
- Lamounier, K.C.; Cunha, L.C.; de Morais, S.A.; de Aquino, F.J.; Chang, R.; do Nascimento, E.A.; Cunha, W.R. Chemical analysis and study of phenolics, antioxidant activity, and antibacterial effect of the wood and bark of Maclura tinctoria (L.) D. Don ex Steud. Evid. Based Complement Alternat. Med. 2012, 2012, 451039. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hussain, F.; Rana, Z.; Shafique, H.; Malik, A.; Hussain, Z. Phytopharmacological potential of different species of Morus alba and their bioactive phytochemicals: A review. Asian Pac. J. Trop. Biomed. 2017, 7, 950–956. [Google Scholar] [CrossRef]
- Mawa, S.; Husain, K.; Jantan, I. Ficus carica L. (Moraceae): Phytochemistry, Traditional Uses and Biological Activities. Evid. Based Complement Alternat. Med. 2013, 2013, 974256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pethakamsetty, L.; Ganapaty, S.; Bharathi, K.M. Phytochemical and antimicrobial examination of the root extracts of Morus indica. Int. J. Pharm. Sci. Rev. Res. 2013, 21, 75–80. [Google Scholar]
- Trinetta, V.; Morgan, M.T.; Coupland, J.N.; Yucel, U. Essential oils against pathogen and spoilage microorganisms of fruit juices: Use of versatile antimicrobial delivery systems. J. Food Sci. 2017, 82, 471–476. [Google Scholar] [CrossRef]
- Aligiannis, N.; Kalpoutzakis, E.; Mitaku, S.; Chinou, I.B. Composition and antimicrobial activity of the essential oils of two Origanum species. J. Agric. Food Chem. 2001, 49, 4168–4170. [Google Scholar] [CrossRef]
- Radlinski, L.; Conlon, B.P. Antibiotic efficacy in the complex infection environment. Curr. Opin. Microbiol. 2018, 42, 19–24. [Google Scholar] [CrossRef] [PubMed]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing of Bacteria Isolated from Aquatic Animals; Second Informational Supplement. Document VET03/VET04-S2; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2014. [Google Scholar]
- Radojkovic, M.; Zekovic, Z.; Vidovic, S.; Kocar, D.; Maskovic, P. Free radical scavenging activity, total phenolic and flavonoid contents of mulberry (Morus spp. L., Moraceae) extracts. Hem. Ind. 2012, 66, 547–552. [Google Scholar] [CrossRef]
- Belwal, T.; Ezzat, S.M.; Rastrelli, L.; Bhatt, I.D.; Daglia, M.; Baldi, A.; Atanasov, A.G. A critical analysis of extraction techniques used for botanicals: Trends, priorities, industrial uses and optimization strategies. Trends Analyt. Chem. 2018, 100, 82–102. [Google Scholar] [CrossRef]
- Gomes, D.P.; Chaves, B.W.; Becker, A.G.; Baldisserotto, B. Water parameters affect anaesthesia induced by eugenol in silver catfish, Rhamdia quelen. Aquacult. Res. 2011, 42, 878–886. [Google Scholar] [CrossRef]
- Becker, A.G.; Cunha, M.A.; Garcia, L.O.; Zeppenfeld, C.C.; Parodi, T.V.; Maldaner, G.; Baldisserotto, B. Efficacy of engenol and methanolic extract of Condalia buxifolia during the transport of the silver catfish Rhandia quelen. Neotrop. Ichthyol. 2013, 11, 675–681. [Google Scholar] [CrossRef] [Green Version]
- Gazola, A.C.; Costa, G.M.; Castellanos, L.; Ramos, F.A.; Reginatto, F.H.; Lima, T.C.M.d.; Schenkel, E.P. Involvement of GABAergic pathway in the sedative activity of apigenin, the main flavonoid from Passiflora quadrangularis pericarp. Rev. Bras. Farmacog. 2015, 25, 158–163. [Google Scholar] [CrossRef] [Green Version]
- Jager, A.K.; Saaby, L. Flavonoids and the CNS. Molecules 2011, 16, 1471–1485. [Google Scholar] [CrossRef] [Green Version]
- Garlet, Q.I.; Pires, L.C.; Silva, D.T.; Spall, S.; Gressler, L.T.; Burger, M.E.; Heinzmann, B.M. Effect of (+)-dehydrofukinone on GABAA receptors and stress response in fish model. Braz. J. Med. Biol. Res. 2016, 49, e4872. [Google Scholar] [CrossRef] [Green Version]
- Ross, L.G.; Ross, B. Anaesthetic and Sedative Techniques for Aquatic Animals; Blackwell Science: Oxford, UK, 2008; Volume 3. [Google Scholar]
- Das, R.; Raman, R.P.; Saha, H.; Singh, R. Effect of Ocimum sanctum Linn. (Tulsi) extract on the immunity and survival of Labeo rohita (Hamilton) infected with Aeromonas hydrophila. Aquacult. Res. 2015, 46, 1111–1121. [Google Scholar] [CrossRef]
- da Cunha, J.A.; Sutili, F.J.; Oliveira, A.M.; Gressler, L.T.; Scheeren, C.A.; Silva, L.L.; Vaucher, R.A.; Baldisserotto, B.; Heinzmann, B.M. The essential oil of Hyptis mutabilis in Ichthyophthirius multifiliis infection and its effect on hematological, biochemical, and immunological parameters in silver catfish, Rhamdia quelen. J. Parasitol. 2017, 103, 778–785. [Google Scholar] [CrossRef] [PubMed]
- da Cunha, J.A.; Heinzmann, B.M.; Baldisserotto, B. The effects of essential oils and their major compounds on fish bacterial pathogens—A review. J. Appl. Microbiol. 2018, 125, 328–344. [Google Scholar] [CrossRef] [Green Version]
- Wink, M. Evolutionary advantage and molecular modes of action of multi-component mixtures used in phytomedicine. Curr. Drug Metab. 2008, 9, 996–1009. [Google Scholar] [CrossRef]
- Fongang, Y.S.F.; Bankeu, J.J.K.; Ali, M.S.; Awantu, A.F.; Zeeshan, A.; Assob, C.N.; Tsamo, E. Flavonoids and other bioactive constituents from Ficus thonningii Blume (Moraceae). Phytochem. Lett. 2015, 11, 139–145. [Google Scholar] [CrossRef]
- Bisignano, G.; Sanogo, R.; Marino, A.; Aquino, R.; D’Angelo, V.; Germano, M.P.; Pizza, C. Antimicrobial activity of Mitracarpus scaber extract and isolated constituents. Lett. Appl. Microbiol. 2000, 30, 105–108. [Google Scholar] [CrossRef]
- Choi, H.; Park, J.-S.; Kim, K.-M.; Kim, M.; Ko, K.-W.; Hyun, C.-G.; Kim, S.-Y. Enhancing the antimicrobial effect of genistein by biotransformation in microbial system. J. Ind. Eng. Chem. 2018, 63, 255–261. [Google Scholar] [CrossRef]
- Wang, T.; Liu, Y.; Li, X.; Xu, Q.; Feng, Y.; Yang, S. Isoflavones from green vegetable soya beans and their antimicrobial and antioxidant activities. J. Sci. Food Agric. 2018, 98, 2043–2047. [Google Scholar] [CrossRef]
- Daglia, M. Polyphenols as antimicrobial agents. Curr. Opin. Biotechnol. 2012, 23, 174–181. [Google Scholar] [CrossRef]
- Barbieri, R.; Coppo, E.; Marchese, A.; Daglia, M.; Sobarzo-Sanchez, E.; Nabavi, S.F.; Nabavi, S.M. Phytochemicals for human disease: An update on plant-derived compounds antibacterial activity. Microbiol. Res. 2017, 196, 44–68. [Google Scholar] [CrossRef]
- Hendrich, A.B. Flavonoid-membrane interactions: Possible consequences for biological effects of some polyphenolic compounds. Acta Pharmacol. Sin. 2006, 27, 27–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dixon, R.A.; Xie, D.Y.; Sharma, S.B. Proanthocyanidins—A final frontier in flavonoid research? New Phytol. 2005, 165, 9–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaur, A.; Bhatia, A. Genistein: A multipurpose isoflavone. Int. J. Green Pharm. 2009, 3, 176. [Google Scholar] [CrossRef]
- Benovit, S.C.; Silva, L.L.; Salbego, J.; Loro, V.L.; Mallmann, C.A.; Baldisserotto, B.; Heinzmann, B.M. Anesthetic activity and bio-guided fractionation of the essential oil of Aloysia gratissima (Gillies & Hook.) Tronc. in silver catfish Rhamdia quelen. Acad. Bras. Cienc. 2015, 87, 1675–1689. [Google Scholar]
- Cunha, M.A.d.; Zeppenfeld, C.C.; Garcia, L.d.O.; Loro, V.L.; Fonseca, M.B.d.; Emanuelli, T.; Baldisserotto, B. Anesthesia of silver catfish with eugenol: Time of induction, cortisol response and sensory analysis of fillet. Cienc. Rural 2010, 40, 2107–2114. [Google Scholar] [CrossRef]
- European Pharmacopoeia. European Directorate for the Quality of Medicines; Pharmacopoeia, E., Ed.; European Pharmacopoeia: Strassbourg, France, 2010. [Google Scholar]
- Bandeira, G., Jr.; Pês, T.S.; Saccola, E.M.H.; Sutili, F.J.; Rossi, W., Jr.; Murari, A.L.; Var, A.C. Potential uses of Ocimum gratissimum and Hesperozygis ringens essential oils in aquaculture. Ind. Crops Prod. 2017, 97, 484–491. [Google Scholar] [CrossRef]
- Quin, P.J.; Carter, M.E.; Markey, B.K.; Carter, G.R. Aeromonas, Plesiomonas and Vibrio species. Clin. Vet. Microbiol. 1994, 1, 243–253. [Google Scholar]
- Fredricks, D.N.; Relaman, D.A. Improved amplification of microbial DNA from blood cultures by removal of the PCR inhibitor sodium polyanetholesulfonate. J. Clin. Microbiol. 1996, 36, 2810–2816. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bandeira, G., Jr.; Sutili, F.J.; Gressler, L.T.; Ely, V.L.; Silveira, B.P.; Tasca, C.; Baldisserotto, B. Antibacterial potential of phytochemicals alone or in combination with antimicrobials against fish pathogenic bacteria. J. Appl. Microbiol. 2018, 125, 655–665. [Google Scholar] [CrossRef] [PubMed]
- Staden, R.; Beal, K.F.; Bonfield, J.K. The staden package. Met. Mol. Biol. 1998, 132, 115–130. [Google Scholar]
- Verdouw, H.; Van Echteld, C.J.A.; Dekkers, E.M.J. Ammonia determination based on indophenol formation with sodium salicylate. Water Res. 1978, 12, 399–402. [Google Scholar] [CrossRef]
- CLSI. Methods for Broth Dilution Susceptibility Testing of Bacteria Isolated from Aquatic Animals; Approved Guideline-Second Edition; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2014. [Google Scholar]
- Heldwein, C.G.; Silva, L.L.; Reckziegel, P.; Barros, F.M.C.; BUrger, M.E.; Baldisserotto, B.; Heinzmann, B.M. Participation of the GABAergic system in the anesthetic effect of Lippia alba (Mill.) N.E. Brown essential oil. Braz. J. Med. Biol. Res. 2012, 45, 436–443. [Google Scholar] [CrossRef] [Green Version]
- Silva, L.L.; Garlet, Q.I.; Benovit, S.C.; Dolci, G.; Mallmann, C.A.; Burger, M.E.; Heinzmann, B.M. Sedative and anesthetic activities of the essential oils of Hyptis mutabilis (Rich.) Briq. and their isolated components in silver catfish (Rhamdia quelen). Braz. J. Med. Biol. Res. 2013, 46, 771–779. [Google Scholar] [CrossRef]
Peak n° | Rt (min) | Mw | [M-H]− (m/z) | Fragment Signals | Tentative Assignment | Chemical Classification |
---|---|---|---|---|---|---|
6 | 7.1 | 304 | 303 | 125 | Taxifolin | Dihydroflavonol |
19 | 9.5 | 594 | 593 | 303, 593, 285 | Kaempferol-3-O-rutinoside | Flavonol |
33 | 13.9 | 576 | 287 | 125, 177, 211, 247, 287, 303, 417 | Procyanidin dimer (type A) (Flavan-3-ol dimer) | Proanthocyanidin |
38 | 15.0 | 448 | 447 | 447, 327,285 | Luteolin-6-C-glucoside (isoorientin) | Flavone |
64 | 22.4 | 270 | 269 | 134, 135 | Genistein | Isoflavone |
Peak n° | Rt (min) | Mw | [M-H]− (m/z) | Fragment Signals | Tentative Assignment | Chemical Classification |
---|---|---|---|---|---|---|
3 | 5.0 | 354 | 353 | 179, 191 | 1-Mono caffeoylquinic acid | Phenolic acid |
7 | 7.0 | 154 | 153 | 109, 149, 311 | Protocatechuic acid | Phenolic acid |
9 | 8.2 | 476 | 475 | 337, 371, 421, 475 | Chrysoeriol-uronic acid | Flavonoid |
16 | 12.1 | 432 | 431 | 353, 371, 431, 484 | Apigenin-6-C-glucoside (Isovitexin) | Flavone |
19 | 15.0 | 448 | 447 | 447, 327,285 | Luteolin-6-C-glucoside (isoorientin) | Flavone |
Peak n° | Rt (min) | Mw | [M-H]− (m/z) | Fragment Signals | Tentative Assignment | Chemical Classification |
---|---|---|---|---|---|---|
2 | 2.8 | 354 | 353 | 179, 191 | 1-Mono caffeoylquinic acid | Phenolic acid |
5 | 4.5 | 154 | 153 | 109, 149, 311 | Protocatechuic acid | Phenolic acid |
14 | 8.2 | 476 | 475 | 337, 371, 421 | Chrysoeriol-uronic acid | Flavonoid |
18 | 9.6 | 464 | 463 | 125, 303, 449 | Quercetin-3-O-galactoside | Flavonol |
22 | 11.0 | 303 | 125 | Taxifolin | Dihydroflavonol | |
66 | 22.6 | 269 | 227, 151, 117 | Apigenin | Flavone |
Peak n° | Rt (min) | Mw | [M-H]− (m/z) | Fragment Signals | Tentative Assignment | Chemical Classification |
---|---|---|---|---|---|---|
12 | 7.5 | 435 | 273 | 167 | Phloridzin | Chalcone |
28 | 13.6 | 287 | 269, 259, 225 | 3, 7, 3′, 4″-Tetrahydroxyflavanone | Flavonol | |
29 | 13.8 | 576 | 287 | 125, 177, 211, 247, 287, 303, 417 | Procyanidin dimer (type A) | Proanthocyanidin |
38 | 16.8 | 286 | 285 | 217, 199, 175, 151, 133, 107 | Luteolin | Flavone |
53 | 20.3 | 271 | 107, 119, 150, 187 | O-Coumaric acid | Hydroxycinnamic acid |
SAMPLES | A. hydrophila ATCC 7966 | E. coli ATCC 25922 | A. hydrophila MF 372509 | A. hydrophila MF 372510 | A. hydrophila MH 397689 | Aeromonas veronii MH 397688 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
MIC µg/mL | MBC µg/mL | MIC µg/mL | MBC µg/mL | MIC µg/mL | MBC µg/mL | MIC µg/mL | MBC µg/mL | MIC µg/mL | MBC µg/mL | MIC µg/mL | MBC µg/mL | |
Florfenicol | 0.507 | 0.507 | 4 | 8 | 0.507 | 0.507 | 0.507 | 0.507 | 1.015 | 1.015 | 0.253 | 0.253 |
LE | >6400 | >6400 | >6400 | >6400 | >6400 | >6400 | >6400 | >6400 | >6400 | >6400 | >6400 | >6400 |
BE | 6400 | >6400 | >6400 | >6400 | 6400 | 6400 | 6400 | 6400 | >6400 | >6400 | 6400 | >6400 |
SE | 6400 | 6400 | >6400 | >6400 | 6400 | 6400 | 6400 | 6400 | >6400 | >6400 | 6400 | 6400 |
HE | 800 | 800 | 1600 | 6400 | 400 | 800 | 800 | 1600 | 800 | 1600 | 400 | 800 |
Stages | Description | Behavioral Response |
---|---|---|
S2 | Light sedation | Partial equilibrium loss, without reaction to external stimulus |
S3a | Partial equilibrium loss | Fish lose swim position (seen from side) with swimming capacity |
S3b | Total Equilibrium loss (deep sedation) | Animals lose swimming ability, but there is response to pressure in the caudal peduncle |
S4 | Anesthesia | Loss of reflex activity without reaction to strong contact stimulus |
S5 | Spinal cord collapse (death) | Finish of respiratory movement (death) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pires, L.d.C.; Rodrigues, P.; Garlet, Q.I.; Barbosa, L.B.; da Silveira, B.P.; Bandeira Junior, G.; Silva, L.d.L.; Gindri, A.; Coldebella, R.; Pedrazzi, C.; et al. Maclura tinctoria Extracts: In Vitro Antibacterial Activity against Aeromonas hydrophila and Sedative Effect in Rhamdia quelen. Fishes 2021, 6, 25. https://doi.org/10.3390/fishes6030025
Pires LdC, Rodrigues P, Garlet QI, Barbosa LB, da Silveira BP, Bandeira Junior G, Silva LdL, Gindri A, Coldebella R, Pedrazzi C, et al. Maclura tinctoria Extracts: In Vitro Antibacterial Activity against Aeromonas hydrophila and Sedative Effect in Rhamdia quelen. Fishes. 2021; 6(3):25. https://doi.org/10.3390/fishes6030025
Chicago/Turabian StylePires, Luana da Costa, Patricia Rodrigues, Quelen Iane Garlet, Luisa Barichello Barbosa, Bibiana Petri da Silveira, Guerino Bandeira Junior, Lenise de Lima Silva, Amanda Gindri, Rodrigo Coldebella, Cristiane Pedrazzi, and et al. 2021. "Maclura tinctoria Extracts: In Vitro Antibacterial Activity against Aeromonas hydrophila and Sedative Effect in Rhamdia quelen" Fishes 6, no. 3: 25. https://doi.org/10.3390/fishes6030025
APA StylePires, L. d. C., Rodrigues, P., Garlet, Q. I., Barbosa, L. B., da Silveira, B. P., Bandeira Junior, G., Silva, L. d. L., Gindri, A., Coldebella, R., Pedrazzi, C., de Vargas, A. P. C., Baldisserotto, B., & Heinzmann, B. M. (2021). Maclura tinctoria Extracts: In Vitro Antibacterial Activity against Aeromonas hydrophila and Sedative Effect in Rhamdia quelen. Fishes, 6(3), 25. https://doi.org/10.3390/fishes6030025