The Application of Digital Twin Technology in the Development of Intelligent Aquaculture: Status and Opportunities
Abstract
1. Introduction
2. Concepts and Components of Digital Twin Technology
2.1. What Is Digital Twin Technology?
2.2. Key Components of a Digital Twin System
2.2.1. Sensors
2.2.2. Data Analytics and Processing
2.2.3. Virtual Models
2.2.4. Control Systems
3. Applications of Digital Twin Technology in Intelligent Aquaculture and Facility Optimization
3.1. Real-Time Environmental Monitoring and Control
3.2. Fish Health Monitoring and Disease Prevention
3.3. Facility Optimization and Simulation
3.4. Precision Feeding Systems
4. Challenges and Limitations of Digital Twin Technology in Aquaculture
4.1. Technical Challenges
4.2. Data Management Issues
4.3. Economic and Financial Barriers
4.4. Integration and Interoperability
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hanif, M. Development of the Integrated multi-trophic aquaculture (IMTA) System in the World; Article Review. J. Aquac. Sci. 2022, 7, 95–104. [Google Scholar] [CrossRef]
- Gkikas, D.C.; Gkikas, M.C.; Theodorou, J.A. Fostering Sustainable Aquaculture: Mitigating Fish Mortality Risks Using Decision Trees Classifiers. Appl. Sci. 2024, 14, 2129. [Google Scholar] [CrossRef]
- Zhao, Y.; Qin, H.; Xu, L.; Yu, H.; Chen, Y. A review of deep learning-based stereo vision techniques for phenotype feature; behavioral analysis of fish in aquaculture. Artif. Intell. Rev. 2024, 58, 1–61. [Google Scholar] [CrossRef]
- Zhou, Y.; Yang, J.; Tolba, A.; Alqahtani, F.; Qi, X.; Shen, Y. A Data-Driven Intelligent Management Scheme for Digital Industrial Aquaculture based on Multi-object Deep Neural Network. Math. Biosci. Eng. 2023, 20, 10428–10443. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Gui, F. The Application and Research of New Digital Technology in Marine Aquaculture. J. Mar. Sci. Eng. 2023, 11, 401. [Google Scholar] [CrossRef]
- Rowan, N.J. The role of digital technologies in supporting and improving fishery and aquaculture across the supply chain—Quo Vadis? Aquac. Fish. 2023, 8, 365–374. [Google Scholar] [CrossRef]
- Choi, W.; Lee, S.; Baek, S.; Lee, S.; Seo, J.; Shin, D.; Jeong, H.; Sung, Y. Numerical analysis of thermal and hydrodynamic characteristics in aquaculture tanks with different tank structures. Ocean Eng. 2023, 287, 115880. [Google Scholar] [CrossRef]
- Behroozi, L.; Couturier, M.F. Prediction of water velocities in circular aquaculture tanks using an axisymmetric CFD model. Aquac. Eng. 2019, 85, 114–128. [Google Scholar] [CrossRef]
- Che, Z.; Zhou, Y.; Zhao, C.; Ren, X.; Liu, H.; Sun, W.; Liu, H.; Li, M. Experimental study on sewage collection and related performance of square arc angle aquaculture tank. Aquac. Int. 2023, 32, 3017–3040. [Google Scholar] [CrossRef]
- Føre, M.; Alver, M.O.; Alfredsen, J.A.; Rasheed, A.; Hukkelås, T.; Bjelland, H.V.; Su, B.; Ohrem, S.J.; Kelasidi, E.; Norton, T.; et al. Digital Twins in intensive aquaculture—Challenges, opportunities and future prospects. Comput. Electron. Agric. 2024, 218, 108676. [Google Scholar] [CrossRef]
- Huggins, D.L.; Piedrahita, R.H.; Rumsey, T. Use of computational fluid dynamics (CFD) for aquaculture raceway design to increase settling effectiveness. Aquac. Eng. 2005, 33, 167–180. [Google Scholar] [CrossRef]
- Le, N.-B.-v.; Woo, H.; Lee, D.; Huh, J.-H. AgTech: A Survey on Digital Twins Based Aquaculture Systems. IEEE Access 2024, 12, 125751–125767. [Google Scholar] [CrossRef]
- Li, W.; Du, Z.; Xu, X.; Bai, Z.; Han, J.; Cui, M.; Li, D. A review of aquaculture: From single modality analysis to multimodality fusion. Comput. Electron. Agric. 2024, 226, 109367. [Google Scholar] [CrossRef]
- Makisha, N.A.; Vladislavovna Beresneva, Y.; Vyacheslavovich Osmin, V.; Dabrowski, W. Digital models for assessing the impact of aeration processes on reservoir aquaculture. BIO Web Conf. 2024, 107, 03011. [Google Scholar] [CrossRef]
- Laktuka, K.; Kalnbalkite, A.; Sniega, L.; Logins, K.; Lauka, D. Towards the sustainable intensification of aquaculture: Exploring possible ways forward. Sustainability 2023, 15, 16952. [Google Scholar] [CrossRef]
- Kruk, S.R.; Bush, S.R.; Phillips, M. Federating ‘Aquaculture 4.0’ for data-driven social and environmental sustainability. Mar. Policy 2024, 169, 106355. [Google Scholar] [CrossRef]
- Aheleroff, S.; Xu, X.; Zhong, R.Y.; Lu, Y. Digital Twin as a Service (DTaaS) in Industry 4.0: An Architecture Reference Model. Adv. Eng. Inform. 2021, 47, 101225. [Google Scholar] [CrossRef]
- Duarte, F.J.; Silva, L.O.; Dias, B.; Pereira, T.F.; Machado, R.J. Towards a Digital Ocean Ontology Using the OApIS Approach. In Proceedings of the 2024 IEEE International Conference on Engineering, Technology, and Innovation (ICE/ITMC), Funchal, Portugal, 24–28 June 2024; pp. 1–9. [Google Scholar]
- Jeremiah, S.R.; El Azzaoui, A.; Xiong, N.N.; Park, J.H. A comprehensive survey of digital twins: Applications, technologies and security challenges. J. Syst. Archit. 2024, 151, 103120. [Google Scholar] [CrossRef]
- Lambertini, A.; Menghini, M.; Cimini, J.; Odetti, A.; Bruzzone, G.; Bibuli, M.; Mandanici, E.; Vittuari, L.; Castaldi, P.; Caccia, M.; et al. Underwater Drone Architecture for Marine Digital Twin: Lessons Learned from SUSHI DROP Project. Sensors 2022, 22, 744. [Google Scholar] [CrossRef] [PubMed]
- Lv, Z.; Lv, H.; Fridenfalk, M. Digital Twins in the Marine Industry. Electronics 2023, 12, 2025. [Google Scholar] [CrossRef]
- Purcell, W.; Neubauer, T. Digital Twins in Agriculture: A State-of-the-art review. Smart Agric. Technol. 2023, 3, 100094. [Google Scholar] [CrossRef]
- Lima, A.C.; Royer, E.; Bolzonella, M.; Pastres, R. Digital twins for land-based aquaculture: A case study for rainbow trout (Oncorhynchus mykiss). Open Res. Eur. 2022, 2, 16. [Google Scholar] [CrossRef] [PubMed]
- Lan, H.-Y.; Ubina, N.A.; Cheng, S.-C.; Lin, S.-S.; Huang, C.-T. Digital Twin Architecture Evaluation for Intelligent Fish Farm Management Using Modified Analytic Hierarchy Process. Appl. Sci. 2022, 13, 141. [Google Scholar] [CrossRef]
- Skákala, J.; Awty-Carroll, K.; Menon, P.P.; Wang, K.; Lessin, G. Future digital twins: Emulating a highly complex marine biogeochemical model with machine learning to predict hypoxia. Front. Mar. Sci. 2023, 10, 1058837. [Google Scholar] [CrossRef]
- Semeraro, C.; Lezoche, M.; Panetto, H.; Dassisti, M. Digital twin paradigm: A systematic literature review. Comput. Ind. 2021, 130, 103469. [Google Scholar] [CrossRef]
- He, B.; Bai, K.-J. Digital twin-based sustainable intelligent manufacturing: A review. Adv. Manuf. 2020, 9, 1–21. [Google Scholar] [CrossRef]
- Liu, M.; Fang, S.; Dong, H.; Xu, C. Review of digital twin about concepts, technologies, and industrial applications. J. Manuf. Syst. 2021, 58, 346–361. [Google Scholar] [CrossRef]
- Reyes Yanes, A.; Abbasi, R.; Martinez, P.; Ahmad, R. Digital Twinning of Hydroponic Grow Beds in Intelligent Aquaponic Systems. Sensors 2022, 22, 7393. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, M.A.; Lakhan, A.; Abdulkareem, K.H.; Abd Ghani, M.K.; Marhoon, H.A.; Kadry, S.; Nedoma, J.; Martinek, R.; Zapirain, B.G. Industrial Internet of Water Things architecture for data standarization based on blockchain and digital twin technology☆. J. Adv. Res. 2024, 66, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Tzachor, A.; Hendel, O.; Richards, C.E. Digital twins: A stepping stone to achieve ocean sustainability? npj Ocean Sustain. 2023, 2, 16. [Google Scholar] [CrossRef]
- Zhang, J.; He, S.; Zou, G. Design of digital twin system for aquaculture. In Proceedings of the 2023 5th International Conference on Internet of Things, Automation and Artificial Intelligence, Nanchang China, 24–26 November 2023; pp. 824–829. [Google Scholar]
- Vasilijevic, A.; Brönner, U.; Dunn, M.; García-Valle, G.; Fabrini, J.; Stevenson-Jones, R.; Bye, B.L.; Mayer, I.; Berre, A.; Ludvigsen, M.; et al. A Digital Twin of the Trondheim Fjord for Environmental Monitoring—A Pilot Case. J. Mar. Sci. Eng. 2024, 12, 1530. [Google Scholar] [CrossRef]
- Yu, Z.; Du, P.; Yi, L.; Luo, W.; Li, D.; Zhao, B.; Li, L.; Zhang, Z.; Zhang, J.; Zhang, J.; et al. Coastal Zone Information Model: A comprehensive architecture for coastal digital twin by integrating data, models, and knowledge. Fundam. Res. 2024, in press. [CrossRef]
- Su, B.; Bjørnson, F.O.; Tsarau, A.; Endresen, P.C.; Ohrem, S.J.; Føre, M.; Fagertun, J.T.; Klebert, P.; Kelasidi, E.; Bjelland, H.V. Towards a holistic digital twin solution for real-time monitoring of aquaculture net cage systems. Mar. Struct. 2023, 91, 103469. [Google Scholar] [CrossRef]
- Qi, Q.; Tao, F.; Hu, T.; Anwer, N.; Liu, A.; Wei, Y.; Wang, L.; Nee, A.Y.C. Enabling technologies and tools for digital twin. J. Manuf. Syst. 2021, 58, 3–21. [Google Scholar] [CrossRef]
- Zhabitskii, M.; Andrienko, Y. A Digital Twin of Intensive Aquabiotechnological Production Based on a Closed Ecosystem Modeling & Simulation. In Proceedings of the 33rd European Modeling & Simulation Symposium (EMSS 2021), Online, 15–17 September 2021; pp. 247–252. [Google Scholar]
- Zhabitskii, M.G.; Andryenko, Y.A.; Malyshev, V.N.; Chuykova, S.V.; Zhosanov, A.A. Digital transformation model based on the digital twin concept for intensive aquaculture production using closed water circulation technology. IOP Conf. Ser. Earth Environ. Sci. 2021, 723, 032064. [Google Scholar] [CrossRef]
- Thelen, A.; Zhang, X.; Fink, O.; Lu, Y.; Ghosh, S.; Youn, B.D.; Todd, M.D.; Mahadevan, S.; Hu, C.; Hu, Z. A comprehensive review of digital twin—Part 1: Modeling and twinning enabling technologies. Struct. Multidiscip. Optim. 2022, 65, 1–55. [Google Scholar] [CrossRef]
- Pylianidis, C.; Osinga, S.; Athanasiadis, I.N. Introducing digital twins to agriculture. Comput. Electron. Agric. 2021, 184, 105942. [Google Scholar] [CrossRef]
- Hamzah, A.; Aqlan, F.; Baidya, S. Drone-based digital twins for water quality monitoring: A systematic review. Digit. Twins Appl. 2024, 1, 131–160. [Google Scholar] [CrossRef]
- Gonzalez Jimenez, M.A.; Rakotonirina, A.D.; Sainte-Rose, B.; Cox, D.J. On the Digital Twin of The Ocean Cleanup Systems—Part I: Calibration of the Drag Coefficients of a Netted Screen in OrcaFlex Using CFD and Full-Scale Experiments. J. Mar. Sci. Eng. 2023, 11, 1943. [Google Scholar] [CrossRef]
- Park, H.; Park, D.-H.; Jo, S.-K. A Method for Optimizing Water Quality of the Aquafarm Using Application Independent Digital Twins. In Proceedings of the 2023 14th International Conference on Information and Communication Technology Convergence (ICTC), Jeju Island, Republic of Korea, 11–13 October 2023; pp. 1173–1177. [Google Scholar]
- Ubina, N.A.; Lan, H.-Y.; Cheng, S.-C.; Chang, C.-C.; Lin, S.-S.; Zhang, K.-X.; Lu, H.-Y.; Cheng, C.-Y.; Hsieh, Y.-Z. Digital twin-based intelligent fish farming with Artificial Intelligence Internet of Things (AIoT). Smart Agric. Technol. 2023, 5, 100285. [Google Scholar] [CrossRef]
- Xu, L.; Yu, H.; Qin, H.; Chai, Y.; Yan, N.; Li, D.; Chen, Y. Digital Twin for Aquaponics Factory: Analysis, Opportunities, and Research Challenges. IEEE Trans. Ind. Inform. 2024, 20, 5060–5073. [Google Scholar] [CrossRef]
- Alves, R.G.; Maia, R.F.; Lima, F. Development of a Digital Twin for smart farming: Irrigation management system for water saving. J. Clean. Prod. 2023, 388, 135920. [Google Scholar] [CrossRef]
- Chen, G.; Yang, J.; Huang, B.; Ma, C.; Tian, F.; Ge, L.; Xia, L.; Li, J. Toward digital twin of the ocean: From digitalization to cloning. Intell. Mar. Technol. Syst. 2023, 1, 3. [Google Scholar] [CrossRef]
- Sasaki, Y.; Nishikawa, R.; Komeyama, K. Non-invasive swimming speed estimation method based on tail-beat frequency determined from fish length measurement using stereo-cameras. Fish. Sci. 2024, 90, 1001–1010. [Google Scholar] [CrossRef]
- Ghandar, A.; Ahmed, A.; Zulfiqar, S.; Hua, Z.; Hanai, M.; Theodoropoulos, G. A Decision Support System for Urban Agriculture Using Digital Twin: A Case Study With Aquaponics. IEEE Access 2021, 9, 35691–35708. [Google Scholar] [CrossRef]
- Le, N.-B.-V.; Huh, J.-H. AgTech: Building Smart Aquaculture Assistant System Integrated IoT and Big Data Analysis. IEEE Trans. AgriFood Electron. 2024, 2, 471–482. [Google Scholar] [CrossRef]
- Lee, S.Y.; Jeong, D.Y.; Choi, J.; Jo, S.K.; Park, D.H.; Kim, J.G. LSTM model to predict missing data of dissolved oxygen in land-based aquaculture farm. ETRI J. 2024, 46, 1047–1060. [Google Scholar] [CrossRef]
- Chen, L.; Yang, X.; Sun, C.; Wang, Y.; Xu, D.; Zhou, C. Feed intake prediction model for group fish using the MEA-BP neural network in intensive aquaculture. Inf. Process. Agric. 2020, 7, 261–271. [Google Scholar] [CrossRef]
- Yang, Y.; Yu, H.; Zhang, X.; Zhang, P.; Tu, W.; Gu, L. Fish behavior recognition based on an audio-visual multimodal interactive fusion network. Aquac. Eng. 2024, 107, 102471. [Google Scholar] [CrossRef]
- Måløy, H. EchoBERT: A transformer-based approach for behavior detection in echograms. IEEE Access 2020, 8, 218372–218385. [Google Scholar] [CrossRef]
- Almansa, C.; Masaló, I.; Reig, L.; Piedrahita, R.; Oca, J. Influence of tank hydrodynamics on vertical oxygen stratification in flatfish tanks. Aquac. Eng. 2014, 63, 1–8. [Google Scholar] [CrossRef]
- Khater, E.S.; Bahnasawy, A.; El-Ghobashy, H.; Shaban, Y.; Elsheikh, F.; El-Reheem, S.A.; Aboegela, M. Mathematical model for predicting oxygen concentration in tilapia fish farms. Sci. Rep. 2021, 11, 24130. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Fu, X.; Xue, Y.; Chang, X.; Bai, X. A review on basic theory and technology of agricultural energy internet. IET Renew. Power Gener. 2023, 18, 1318–1331. [Google Scholar] [CrossRef]
- Mohammadi Moghadam, M.; Rajabi Islami, H.; Ezam, M.; Mousavi, S.A. Optimizing flow uniformity and velocity fields in aquaculture tanks by modifying water inlets and nozzles arrangement: A computational fluid dynamics study. Aquac. Eng. 2024, 106, 102431. [Google Scholar] [CrossRef]
- Labatut, R.A.; Ebeling, J.M.; Bhaskaran, R.; Timmons, M.B. Modeling hydrodynamics and path/residence time of aquaculture-like particles in a mixed-cell raceway (MCR) using 3D computational fluid dynamics (CFD). Aquac. Eng. 2015, 67, 39–52. [Google Scholar] [CrossRef]
- Zhou, Y.; Xue, B.; Liu, H.; Liu, H.; Liu, Y.; Ma, Z.; Ren, X.; Zhao, Y.; Du, S. Numerical simulation of bionic fish group movement in a land-based aquaculture tank. Aquac. Eng. 2024, 104, 102388. [Google Scholar] [CrossRef]
- Gorle, J.M.R.; Terjesen, B.F.; Summerfelt, S.T. Influence of inlet and outlet placement on the hydrodynamics of culture tanks for Atlantic salmon. Int. J. Mech. Sci. 2020, 188, 105944. [Google Scholar] [CrossRef]
- Sin, M.G.; An, C.H.; Cha, S.J.; Kim, M.J.; Kim, H.N. A method for minimizing the zone of low water flow velocity in a bottom center drain circular aquaculture tank. J. World Aquac. Soc. 2021, 52, 1221–1233. [Google Scholar] [CrossRef]
- An, C.-H.; Sin, M.-G.; Kim, M.-J.; Jong, I.-B.; Song, G.-J.; Choe, C. Effect of bottom drain positions on circular tank hydraulics: CFD simulations. Aquac. Eng. 2018, 83, 138–150. [Google Scholar] [CrossRef]
- Liu, H.; Zhou, Y.; Ren, X.; Liu, S.; Liu, H.; Li, M. Numerical modeling and application of the effects of fish movement on flow field in recirculating aquaculture system. Ocean Eng. 2023, 285, 115432. [Google Scholar] [CrossRef]
- Terjesen, B.F.; Summerfelt, S.T.; Nerland, S.; Ulgenes, Y.; Fjæra, S.O.; Megård Reiten, B.K.; Selset, R.; Kolarevic, J.; Brunsvik, P.; Bæverfjord, G.; et al. Design, dimensioning, and performance of a research facility for studies on the requirements of fish in RAS environments. Aquac. Eng. 2013, 54, 49–63. [Google Scholar] [CrossRef]
- Ohrem, S.J.; Kelasidi, E.; Bloecher, N. Analysis of a novel autonomous underwater robot for biofouling prevention and inspection in fish farms. In Proceedings of the 2020 28th Mediterranean conference on control and automation (MED), Saint-Rapha, France, 15–18 September 2020; pp. 1002–1008. [Google Scholar]
- Skaldebø, M.; Ohrem, S.J.; Amundsen, H.B.; Kelasidi, E.; Bloecher, N. Framework for autonomous navigation for a permanent resident aquaculture net grooming robot. In Proceedings of the 2023 31st Mediterranean Conference on Control and Automation (MED), Limassol, Cyprus, 26–29 June 2023; pp. 356–363. [Google Scholar]
- López-Barajas, S.; Sanz, P.J.; Marín-Prades, R.; Gómez-Espinosa, A.; González-García, J.; Echagüe, J. Inspection operations and hole detection in fish net cages through a hybrid underwater intervention system using deep learning techniques. J. Mar. Sci. Eng. 2023, 12, 80. [Google Scholar] [CrossRef]
- Gorgan-Mohammadi, F.; Rajaee, T.; Zounemat-Kermani, M. Decision tree models in predicting water quality parameters of dissolved oxygen and phosphorus in lake water. Sustain. Water Resour. Manag. 2022, 9, 1. [Google Scholar] [CrossRef]
- Fang, X.; Wang, H.; Liu, G.; Tian, X.; Ding, G.; Zhang, H. Industry application of digital twin: From concept to implementation. Int. J. Adv. Manuf. Technol. 2022, 121, 4289–4312. [Google Scholar] [CrossRef]
- Alver, M.O.; Føre, M.; Alfredsen, J.A. Effect of cage size on oxygen levels in Atlantic salmon sea cages: A model study. Aquaculture 2023, 562, 738831. [Google Scholar] [CrossRef]
- Føre, M.; Frank, K.; Norton, T.; Svendsen, E.; Alfredsen, J.A.; Dempster, T.; Berckmans, D. Precision fish farming: A new framework to improve production in aquaculture. Biosyst. Eng. 2018, 173, 176–193. [Google Scholar] [CrossRef]
- Lien, A.M.; Schellewald, C.; Stahl, A.; Frank, K.; Skøien, K.R.; Tjølsen, J.I. Determining spatial feed distribution in sea cage aquaculture using an aerial camera platform. Aquac. Eng. 2019, 87, 102018. [Google Scholar] [CrossRef]
- Burke, M.; Grant, J.; Filgueira, R.; Stone, T. Oceanographic processes control dissolved oxygen variability at a commercial Atlantic salmon farm: Application of a real-time sensor network. Aquaculture 2021, 533, 736143. [Google Scholar] [CrossRef]
- Alver, M.O.; Skøien, K.R.; Føre, M.; Aas, T.S.; Oehme, M.; Alfredsen, J.A. Modelling of surface and 3D pellet distribution in Atlantic salmon (Salmo salar L.) cages. Aquac. Eng. 2016, 72, 20–29. [Google Scholar] [CrossRef]
- Alver, M.O.; Føre, M.; Alfredsen, J.A. Predicting oxygen levels in Atlantic salmon (Salmo salar) sea cages. Aquaculture 2022, 548, 737720. [Google Scholar] [CrossRef]
- Zhang, S.; Yu, G.; Wang, Y.; Li, D.; Li, W. Numerical investigations on temperature and flow field performance of octagonal culture tank under different physical parameters for fish growth based on computational fluid dynamics. Comput. Electron. Agric. 2022, 195, 106821. [Google Scholar] [CrossRef]
- Chahid, A.; N’Doye, I.; Majoris, J.E.; Berumen, M.L.; Laleg-Kirati, T.M. Fish growth trajectory tracking using Q-learning in precision aquaculture. Aquaculture 2022, 550, 737838. [Google Scholar] [CrossRef]
- Mahmoud, M.M.M.; Darwish, R.; Bassiuny, A.M. Development of an economic smart aquaponic system based on IoT. J. Eng. Res. 2024, 12, 886–894. [Google Scholar] [CrossRef]
- Teramoto, T.; Wasielesky, W.; Krummenauer, D.; Bueno, G.W.; Proença, D.C.; Gaona, C.A.P. Appling machine learning for estimating total suspended solids in BFT aquaculture system. Aquac. Eng. 2024, 106, 102439. [Google Scholar] [CrossRef]
- Ni, Q.J.; Cao, X.H.; Tan, C.Q.; Peng, W.Q.; Kang, X.Y. An improved graph convolutional network with feature and temporalattention for multivariate water quality prediction. Environ. Sci. Pollut. Res. 2023, 30, 11516–11529. [Google Scholar] [CrossRef] [PubMed]
- Brijs, J.; Føre, M.; Gräns, A.; Clark, T.D.; Axelsson, M.; Johansen, J.L. Bio-sensing technologies in aquaculture: How remote monitoring can bring us closer to our farm animals. Philos. Trans. R. Soc. B. 2021, 376, 20200218. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Park, E.; Cho, S.; Kwon, K.; Ko, Y.M. Probabilistic Modeling of Fish Growth in Smart Aquaculture Systems. Trans. Internet Inf. Syst. 2023, 17, 2259–2277. [Google Scholar]
- Yasruddin, M.L.; Husin, Z.M.; Ismail, A.H.; Keong, T.W. Smart aquaculture: An advanced intelligent predictive analysis of disease risks and recommendation system for managing fish health. Neural Comput. Appl. 2025, 37, 14499–14520. [Google Scholar] [CrossRef]
- Ahmed, M.S.; Aurpa, T.T.; Azad, M.A.K. Fish Disease Detection Using Image Based Machine Learning Techniquein Aquaculture. J. King Saud Univ.-Comput. Inf. Sci. 2022, 34, 5170–5182. [Google Scholar] [CrossRef]
- Ren, X.; Hu, Y.; Zhou, Y.; Du, S.; Sun, W.; Liu, H.; Liu, Y. Numerical simulation of inlet placement on sewage characteristics in the rounded square aquaculture tank with single inlet. J. Oceanol. Limnol. 2024, 42, 1359–1382. [Google Scholar] [CrossRef]
- An, C.-H.; Kim, U.-S.; Kim, K.-H.; Jon, R.-G.; Sin, M.-G. Self-cleaning performance of three bottom drain modes in circular culture tank: Experimental and numerical study. Aquac. Eng. 2023, 101, 102329. [Google Scholar] [CrossRef]
- Alnemari, A.M.; Elmessery, W.M.; Moghanm, F.S.; Espinosa, V.; Shams, M.Y.; Elwakeel, A.E.; Saeed, O.; Eid, M.H.; Alhag, S.K.; Al-Shuraym, L.A.; et al. Energy optimization in large-scale recirculating aquaculture systems: Implementation and performance analysis of a hybrid deep learning approach. Aquac. Eng. 2025, 111, 102561. [Google Scholar] [CrossRef]
- Yu, G.; Zhang, S.; Chen, X.; Li, D.; Li, W.; Wang, Y. Numerical investigations on dissolved oxygen field performance of octagonal culture tank based on computational fluid dynamics. Comput. Electron. Agric. 2024, 218, 108737. [Google Scholar] [CrossRef]
- Du, Z.; Cui, M.; Xu, X.; Bai, Z.; Han, J.; Li, W.; Li, D. Harnessing multimodal data fusion to advance accurate identification of fish feeding intensity. Biosyst. Eng. 2024, 246, 135–149. [Google Scholar] [CrossRef]
- Budaev, S.; Dumitru, M.L.; Enberg, K.; Handeland, S.O.; Higginson, A.D.; Kristiansen, T.S.; Opdal, A.F.; Railsback, S.F.; Rønnestad, I.; Vollset, K.W.; et al. Premises for a digital twin of the Atlantic salmon in its world: Agency, robustness, subjectivity and prediction. Aquac. Fish. 2024, 4, e153. [Google Scholar] [CrossRef]
- Komarudin, M.; Septama, H.D.; Yulianti, T.; Yudamson, A.; Hendri, J.; Arafat, M.A.D. Multi node sensors for water quality monitoring towards precision aquaculture. IOP Conf. Ser Earth Environ. Sci. 2021, 739, 012026. [Google Scholar] [CrossRef]
- Mileti, A.; Arduini, D.; Watson, G.; Giangrande, A. Blockchain traceability in trading biomasses obtained with an Integrated Multi-Trophic Aquaculture. Sustainability 2022, 15, 767. [Google Scholar] [CrossRef]
NO. | Types of the Sensors | Function | Effect |
---|---|---|---|
1 | Water quality sensors | Monitor parameters such as pH, dissolved oxygen, ammonia, salinity, and temperature | Provide continuous updates on the water’s suitability for fish health |
2 | Fish behavior sensors | Track movement, feeding patterns, and activity levels | Help assess fish health and behavior, indicating whether fish are stressed, sick, or thriving |
3 | Feeding systems sensors | Track the amount of dispensed and timing of feed dispensing | Ensure optimal feeding schedules and minimize feed waste |
4 | Waste management sensors | Measure organic waste levels in tanks or cages | Allow for efficient waste removal and maintain water quality |
NO. | Category | Description |
---|---|---|
1 | Water systems | Model to simulate water flow, circulation, and aeration dynamics |
2 | Fish health models | Incorporate data on fish growth, feeding behavior, and stress indicators |
3 | Waste management | Simulate the accumulation of waste, the performance of filtration systems, and water quality improvements |
4 | Feeding systems | Model the timing, quantity, and type of feed required for optimal fish growth, considering environmental and biological data |
Challenge Type | Causes/Manifestations | Impact |
---|---|---|
Environmental interference | Harsh conditions | Sensor degradation and malfunctions |
Calibration issues | Sensor drift over time | Errors in real-time data fed to DT systems; compromised data reliability |
Connectivity issues | Unreliable internet/network; connection interruptions | Hindered real-time data collection; delayed updates reducing system effectiveness |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Xu, Y.; Li, H.; Zhao, X.; Su, Y.; Qi, C.; Qu, K.; Cui, Z. The Application of Digital Twin Technology in the Development of Intelligent Aquaculture: Status and Opportunities. Fishes 2025, 10, 363. https://doi.org/10.3390/fishes10080363
Chen J, Xu Y, Li H, Zhao X, Su Y, Qi C, Qu K, Cui Z. The Application of Digital Twin Technology in the Development of Intelligent Aquaculture: Status and Opportunities. Fishes. 2025; 10(8):363. https://doi.org/10.3390/fishes10080363
Chicago/Turabian StyleChen, Jianlei, Yong Xu, Hao Li, Xinguo Zhao, Yang Su, Chunhao Qi, Keming Qu, and Zhengguo Cui. 2025. "The Application of Digital Twin Technology in the Development of Intelligent Aquaculture: Status and Opportunities" Fishes 10, no. 8: 363. https://doi.org/10.3390/fishes10080363
APA StyleChen, J., Xu, Y., Li, H., Zhao, X., Su, Y., Qi, C., Qu, K., & Cui, Z. (2025). The Application of Digital Twin Technology in the Development of Intelligent Aquaculture: Status and Opportunities. Fishes, 10(8), 363. https://doi.org/10.3390/fishes10080363