Unveiling the Genomic Landscape of Pseudorasbora parva, the Most Invasive Freshwater Fish Worldwide: A Key Step Towards Understanding Invasion Dynamics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. DNA Extraction and Sequencing
2.3. Bio-Informatic Analysis
2.4. Variant Analysis
2.5. Gene Ontology Enrichment Analysis
3. Results
3.1. Illumina Sequencing and Mapping
3.2. Variant Calling
3.3. pN/pS Ratios and GO Enrichment
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gozlan, R.E.; Britton, J.R.; Cowx, I.; Copp, G.H. Current Knowledge on Non-Native Freshwater Fish Introductions. J. Fish Biol. 2010, 76, 751–786. [Google Scholar] [CrossRef]
- Bernery, C.; Bellard, C.; Courchamp, F.; Brosse, S.; Gozlan, R.E.; Jarić, I.; Teletchea, F.; Leroy, B. Freshwater Fish Invasions: A Comprehensive Review. Annu. Rev. Ecol. Evol. Syst. 2022, 53, 427–456. [Google Scholar] [CrossRef]
- Hulme, P.E. Trade, Transport and Trouble: Managing Invasive Species Pathways in an Era of Globalization. J. Appl. Ecol. 2009, 46, 10–18. [Google Scholar] [CrossRef]
- Stiers, I.; Crohain, N.; Josens, G.; Triest, L. Impact of Three Aquatic Invasive Species on Native Plants and Macroinvertebrates in Temperate Ponds. Biol. Invasions 2011, 13, 2715–2726. [Google Scholar] [CrossRef]
- Gallardo, B.; Clavero, M.; Sánchez, M.I.; Vilà, M. Global Ecological Impacts of Invasive Species in Aquatic Ecosystems. Glob. Change Biol. 2016, 22, 151–163. [Google Scholar] [CrossRef]
- Perdereau, E.; Dedeine, F.; Christidès, J.-P.; Dupont, S.; Bagnères, A.-G. Competition between Invasive and Indigenous Species: An Insular Case Study of Subterranean Termites. Biol. Invasions 2011, 13, 1457–1470. [Google Scholar] [CrossRef]
- Graebner, R.C.; Callaway, R.M.; Montesinos, D. Invasive Species Grows Faster, Competes Better, and Shows Greater Evolution toward Increased Seed Size and Growth than Exotic Non-Invasive Congeners. Plant Ecol. 2012, 213, 545–553. [Google Scholar] [CrossRef]
- Salo, P.; Korpimäki, E.; Banks, P.B.; Nordström, M.; Dickman, C.R. Alien Predators Are More Dangerous than Native Predators to Prey Populations. Proc. R. Soc. B Biol. Sci. 2007, 274, 1237–1243. [Google Scholar] [CrossRef]
- Crowl, T.A.; Crist, T.O.; Parmenter, R.R.; Belovsky, G.; Lugo, A.E. The Spread of Invasive Species and Infectious Disease as Drivers of Ecosystem Change. Front. Ecol. Environ. 2008, 6, 238–246. [Google Scholar] [CrossRef]
- Chapin III, F.S.; Zavaleta, E.S.; Eviner, V.T.; Naylor, R.L.; Vitousek, P.M.; Reynolds, H.L.; Hooper, D.U.; Lavorel, S.; Sala, O.E.; Hobbie, S.E.; et al. Consequences of Changing Biodiversity. Nature 2000, 405, 234–242. [Google Scholar] [CrossRef]
- Clavero, M.; García-Berthou, E. Invasive Species Are a Leading Cause of Animal Extinctions. Trends Ecol. Evol. 2005, 20, 110. [Google Scholar] [CrossRef] [PubMed]
- Didham, R.K.; Tylianakis, J.M.; Hutchison, M.A.; Ewers, R.M.; Gemmell, N.J. Are Invasive Species the Drivers of Ecological Change? Trends Ecol. Evol. 2005, 20, 470–474. [Google Scholar] [CrossRef]
- Villéger, S.; Blanchet, S.; Beauchard, O.; Oberdorff, T.; Brosse, S. Homogenization Patterns of the World’s Freshwater Fish Faunas. Proc. Natl. Acad. Sci. USA 2011, 108, 18003–18008. [Google Scholar] [CrossRef] [PubMed]
- Simberloff, D. Biological Invasions: Much Progress plus Several Contorversies. Contrib. Sci. 2013, 9, 7–16. [Google Scholar] [CrossRef]
- Roman, J.; Darling, J.A. Paradox Lost: Genetic Diversity and the Success of Aquatic Invasions. Trends Ecol. Evol. 2007, 22, 454–464. [Google Scholar] [CrossRef]
- Estoup, A.; Ravigné, V.; Hufbauer, R.; Vitalis, R.; Gautier, M.; Facon, B. Is There a Genetic Paradox of Biological Invasion? Annu. Rev. Ecol. Evol. Syst. 2016, 47, 51–72. [Google Scholar] [CrossRef]
- Rius, M.; Turon, X. Phylogeography and the Description of Geographic Patterns in Invasion Genomics. Front. Ecol. Evol. 2020, 8, 595711. [Google Scholar] [CrossRef]
- Ekmekçi, F.; Kirankaya, Ş. Distribution of an Invasive Fish Species, Pseudorasbora parva (Temminck & Schlegel, 1846) in Turkey. Turk. J. Zool. 2006, 30, 329–334. [Google Scholar]
- Gozlan, R.E. Pseudorasbora parva Temminck & Schlegel (Topmouth Gudgeon). In A Handbook of Global Freshwater Invasive Species; Routledge: London, UK, 2012; ISBN 978-0-203-12723-0. [Google Scholar]
- Xing, Y.; Zhang, C.; Fan, E.; Zhao, Y. Freshwater Fishes of China: Species Richness, Endemism, Threatened Species and Conservation. Divers. Distrib. 2016, 22, 358–370. [Google Scholar] [CrossRef]
- Gozlan, R.E.; Andreou, D.; Asaeda, T.; Beyer, K.; Bouhadad, R.; Burnard, D.; Caiola, N.; Cakic, P.; Djikanovic, V.; Esmaeili, H.R.; et al. Pan-Continental Invasion of Pseudorasbora parva: Towards a Better Understanding of Freshwater Fish Invasions. Fish Fish. 2010, 11, 315–340. [Google Scholar] [CrossRef]
- Combe, M.; Gozlan, R.E. The Rise of the Rosette Agent in Europe: An Epidemiological Enigma. Transbound. Emerg. Dis. 2018, 65, 1474–1481. [Google Scholar] [CrossRef]
- Gozlan, R.E.; Záhorská, E.; Cherif, E.; Asaeda, T.; Britton, J.R.; Chang, C.-H.; Hong, T.; Miranda, R.; Musil, J.; Povz, M.; et al. Native Drivers of Fish Life History Traits Are Lost during the Invasion Process. Ecol. Evol. 2020, 10, 8623–8633. [Google Scholar] [CrossRef]
- Gozlan, R.E.; Combe, M. Emergence of the Fungal Rosette Agent in the World: Current Risk to Fish Biodiversity and Aquaculture. J. Fungi 2023, 9, 426. [Google Scholar] [CrossRef]
- Gozlan, R. Monitoring Fungal Infections in Fish. Nature 2012, 485, 446. [Google Scholar] [CrossRef] [PubMed]
- Simon, A.; Britton, R.; Gozlan, R.; Van Oosterhout, C.; Volckaert, F.A.M.; Hänfling, B. Invasive Cyprinid Fish in Europe Originate from the Single Introduction of an Admixed Source Population Followed by a Complex Pattern of Spread. PLoS ONE 2011, 6, e18560. [Google Scholar] [CrossRef] [PubMed]
- Simon, A.; Gozlan, R.E.; Robert Britton, J.; Van Oosterhout, C.; Hänfling, B. Human Induced Stepping-Stone Colonisation of an Admixed Founder Population: The Spread of Topmouth Gudgeon (Pseudorasbora parva) in Europe. Aquat. Sci. 2015, 77, 17–25. [Google Scholar] [CrossRef]
- Hardouin, E.A.; Andreou, D.; Zhao, Y.; Chevret, P.; Fletcher, D.H.; Britton, J.R.; Gozlan, R.E. Reconciling the Biogeography of an Invader through Recent and Historic Genetic Patterns: The Case of Topmouth Gudgeon Pseudorasbora parva. Biol. Invasions 2018, 20, 2157–2171. [Google Scholar] [CrossRef]
- Brazier, T.; Cherif, E.; Martin, J.-F.; Gilles, A.; Blanchet, S.; Zhao, Y.; Combe, M.; McCairns, R.J.S.; Gozlan, R.E. The Influence of Native Populations’ Genetic History on the Reconstruction of Invasion Routes: The Case of a Highly Invasive Aquatic Species. Biol. Invasions 2022, 24, 2399–2420. [Google Scholar] [CrossRef]
- Baltazar-Soares, M.; Blanchet, S.; Cote, J.; Tarkan, A.S.; Záhorská, E.; Gozlan, R.E.; Eizaguirre, C. Genomic Footprints of a Biological Invasion: Introduction from Asia and Dispersal in Europe of the Topmouth Gudgeon (Pseudorasbora parva). Mol. Ecol. 2020, 29, 71–85. [Google Scholar] [CrossRef]
- Hammond, S.A.; Warren, R.L.; Vandervalk, B.P.; Kucuk, E.; Khan, H.; Gibb, E.A.; Pandoh, P.; Kirk, H.; Zhao, Y.; Jones, M.; et al. The North American Bullfrog Draft Genome Provides Insight into Hormonal Regulation of Long Noncoding RNA. Nat. Commun. 2017, 8, 1433. [Google Scholar] [CrossRef]
- Tao, W.; Xu, L.; Zhao, L.; Zhu, Z.; Wu, X.; Min, Q.; Wang, D.; Zhou, Q. High-Quality Chromosome-Level Genomes of Two Tilapia Species Reveal Their Evolution of Repeat Sequences and Sex Chromosomes. Mol. Ecol. Resour. 2021, 21, 543–560. [Google Scholar] [CrossRef] [PubMed]
- Liao, M.; Xu, M.; Hu, R.; Xu, Z.; Bonvillain, C.; Li, Y.; Li, X.; Luo, X.; Wang, J.; Wang, J.; et al. The Chromosome-Level Genome Assembly of the Red Swamp Crayfish Procambarus clarkii. Sci. Data 2024, 11, 885. [Google Scholar] [CrossRef]
- Combe, M.; Cherif, E.; Charrier, A.; Barbey, B.; Chague, M.; Carrel, G.; Chasserieau, C.; Foissy, J.-M.; Gerard, B.; Gozlan, Z. Towards Unravelling the Rosette Agent Enigma: Spread and Emergence of the Co-Invasive Host-Pathogen Complex, Pseudorasbora parva-Sphaerothecum Destruens. Sci. Total Environ. 2022, 806, 150427. [Google Scholar]
- Guillemaud, T.; Beaumont, M.A.; Ciosi, M.; Cornuet, J.-M.; Estoup, A. Inferring Introduction Routes of Invasive Species Using Approximate Bayesian Computation on Microsatellite Data. Heredity 2010, 104, 88–99. [Google Scholar] [CrossRef]
- Chun, Y.J.; Fumanal, B.; Laitung, B.; Bretagnolle, F. Gene Flow and Population Admixture as the Primary Post-invasion Processes in Common Ragweed (Ambrosia artemisiifolia) Populations in France. New Phytol. 2010, 185, 1100–1107. [Google Scholar] [CrossRef] [PubMed]
- Bernos, T.A.; Lajbner, Z.; Kotlík, P.; Hill, J.M.; Marková, S.; Yick, J.; Mandrak, N.E.; Jeffries, K.M. Assessing the Impacts of Adaptation to Native-Range Habitats and Contemporary Founder Effects on Genetic Diversity in an Invasive Fish. Evol. Appl. 2024, 17, e70006. [Google Scholar] [CrossRef]
- Kreiner, J.M.; Giacomini, D.A.; Bemm, F.; Waithaka, B.; Regalado, J.; Lanz, C.; Hildebrandt, J.; Sikkema, P.H.; Tranel, P.J.; Weigel, D.; et al. Multiple Modes of Convergent Adaptation in the Spread of Glyphosate-Resistant Amaranthus Tuberculatus. Proc. Natl. Acad. Sci. USA 2019, 116, 21076–21084. [Google Scholar] [CrossRef]
- Olazcuaga, L.; Loiseau, A.; Parrinello, H.; Paris, M.; Fraimout, A.; Guedot, C.; Diepenbrock, L.M.; Kenis, M.; Zhang, J.; Chen, X.; et al. A Whole-Genome Scan for Association with Invasion Success in the Fruit Fly Drosophila Suzukii Using Contrasts of Allele Frequencies Corrected for Population Structure. Mol. Biol. Evol. 2020, 37, 2369–2385. [Google Scholar] [CrossRef] [PubMed]
- North, H.L.; McGaughran, A.; Jiggins, C.D. Insights into Invasive Species from Whole-Genome Resequencing. Mol. Ecol. 2021, 30, 6289–6308. [Google Scholar] [CrossRef]
- Allardi, J.; Chancerel, F. Note Ichtyologique—Sur la présence en France de Pseudorasbora parva (Schlegel, 1842). Bull. Fr. Pêche Piscic. 1988, 308, 35–37. [Google Scholar] [CrossRef]
- Schmieder, R.; Edwards, R. Quality Control and Preprocessing of Metagenomic Datasets. Bioinformatics 2011, 27, 863–864. [Google Scholar] [CrossRef] [PubMed]
- Langmead, B.; Salzberg, S.L. Fast Gapped-Read Alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359. [Google Scholar] [CrossRef] [PubMed]
- Danecek, P.; Bonfield, J.K.; Liddle, J.; Marshall, J.; Ohan, V.; Pollard, M.O.; Whitwham, A.; Keane, T.; McCarthy, S.A.; Davies, R.M.; et al. Twelve Years of SAMtools and BCFtools. GigaScience 2021, 10, giab008. [Google Scholar] [CrossRef]
- Cingolani, P.; Platts, A.; Wang, L.L.; Coon, M.; Nguyen, T.; Wang, L.; Land, S.J.; Lu, X.; Ruden, D.M. A Program for Annotating and Predicting the Effects of Single Nucleotide Polymorphisms, SnpEff: SNPs in the Genome of Drosophila Melanogaster Strain W1118; Iso-2; Iso-3. Fly 2012, 6, 80–92. [Google Scholar] [CrossRef] [PubMed]
- De Mita, S.; Siol, M. EggLib: Processing, Analysis and Simulation Tools for Population Genetics and Genomics. BMC Genet. 2012, 13, 27. [Google Scholar] [CrossRef]
- Sakai, A.K.; Allendorf, F.W.; Holt, J.S.; Lodge, D.M.; Molofsky, J.; With, K.A.; Baughman, S.; Cabin, R.J.; Cohen, J.E.; Ellstrand, N.C.; et al. The Population Biology of Invasive Species. Annu. Rev. Ecol. Evol. Syst. 2001, 32, 305–332. [Google Scholar] [CrossRef]
- Bélouard, N.; Paillisson, J.-M.; Oger, A.; Besnard, A.-L.; Petit, E.J. Genetic Drift during the Spread Phase of a Biological Invasion. Mol. Ecol. 2019, 28, 4375–4387. [Google Scholar] [CrossRef]
- Barrett, R.; Schluter, D. Adaptation from Standing Genetic Variation. Trends Ecol. Evol. 2008, 23, 38–44. [Google Scholar] [CrossRef]
- Prentis, P.J.; Wilson, J.R.U.; Dormontt, E.E.; Richardson, D.M.; Lowe, A.J. Adaptive Evolution in Invasive Species. Trends Plant Sci. 2008, 13, 288–294. [Google Scholar] [CrossRef]
- Dogantzis, K.A.; Raffiudin, R.; Putra, R.E.; Shaleh, I.; Conflitti, I.M.; Pepinelli, M.; Roberts, J.; Holmes, M.; Oldroyd, B.P.; Zayed, A.; et al. Post-Invasion Selection Acts on Standing Genetic Variation despite a Severe Founding Bottleneck. Curr. Biol. 2024, 34, 1349–1356.e4. [Google Scholar] [CrossRef]
- Dlugosch, K.M.; Anderson, S.R.; Braasch, J.; Cang, F.A.; Gillette, H.D. The Devil Is in the Details: Genetic Variation in Introduced Populations and Its Contributions to Invasion. Mol. Ecol. 2015, 24, 2095–2111. [Google Scholar] [CrossRef] [PubMed]
- Stapley, J.; Santure, A.W.; Dennis, S.R. Transposable Elements as Agents of Rapid Adaptation May Explain the Genetic Paradox of Invasive Species. Mol. Ecol. 2015, 24, 2241–2252. [Google Scholar] [CrossRef]
- Stern, D.B.; Lee, C.E. Evolutionary Origins of Genomic Adaptations in an Invasive Copepod. Nat. Ecol. Evol. 2020, 4, 1084–1094. [Google Scholar] [CrossRef]
- LaFond, J.; Martin, K.R.; Dahn, H.; Richmond, J.Q.; Murphy, R.W.; Rollinson, N.; Savage, A.E. Invasive Bullfrogs Maintain MHC Polymorphism Including Alleles Associated with Chytrid Fungal Infection. Integr. Comp. Biol. 2022, 62, 262–274. [Google Scholar] [CrossRef]
- Privman, E.; Cohen, P.; Cohanim, A.B.; Riba-Grognuz, O.; Shoemaker, D.; Keller, L. Positive Selection on Sociobiological Traits in Invasive Fire Ants. Mol. Ecol. 2018, 27, 3116–3130. [Google Scholar] [CrossRef] [PubMed]
- Zayed, A.; Whitfield, C.W. A Genome-Wide Signature of Positive Selection in Ancient and Recent Invasive Expansions of the Honey Bee Apis mellifera. Proc. Natl. Acad. Sci. USA 2008, 105, 3421–3426. [Google Scholar] [CrossRef]
- Han, G.-D.; Dong, Y.-W. Rapid Climate-Driven Evolution of the Invasive Species Mytilus galloprovincialis over the Past Century. Anthropocene Coasts 2020, 3, 13–29. [Google Scholar] [CrossRef]
- Chen, Y.; Gao, Y.; Huang, X.; Li, S.; Zhan, A. Local Environment-driven Adaptive Evolution in a Marine Invasive Ascidian (Molgula manhattensis). Ecol. Evol. 2021, 11, 4252–4266. [Google Scholar] [CrossRef]
- Du, Z.; Wang, X.; Duan, Y.; Liu, S.; Tian, L.; Song, F.; Cai, W.; Li, H. Global Invasion History and Genomic Signatures of Adaptation of the Highly Invasive Sycamore Lace Bug. Genom. Proteom. Bioinform. 2024, 22, qzae074. [Google Scholar] [CrossRef]
- Keane, R.M.; Crawley, M.J. Exotic Plant Invasions and the Enemy Release Hypothesis. Trends Ecol. Evol. 2002, 17, 164–170. [Google Scholar] [CrossRef]
- Liu, H.; Stiling, P. Testing the Enemy Release Hypothesis: A Review and Meta-Analysis. Biol. Invasions 2006, 8, 1535–1545. [Google Scholar] [CrossRef]
- Selechnik, D.; Richardson, M.F.; Shine, R.; Brown, G.P.; Rollins, L.A. Immune and Environment-Driven Gene Expression during Invasion: An Eco-Immunological Application of RNA-Seq. Ecol. Evol. 2019, 9, 6708–6721. [Google Scholar] [CrossRef] [PubMed]
- Charbonnel, N.; Galan, M.; Tatard, C.; Loiseau, A.; Diagne, C.; Dalecky, A.; Parrinello, H.; Rialle, S.; Severac, D.; Brouat, C. Differential Immune Gene Expression Associated with Contemporary Range Expansion in Two Invasive Rodents in Senegal. Sci. Rep. 2020, 10, 18257. [Google Scholar] [CrossRef]
- Prüter, H.; Franz, M.; Twietmeyer, S.; Böhm, N.; Middendorff, G.; Portas, R.; Melzheimer, J.; Kolberg, H.; Von Samson-Himmelstjerna, G.; Greenwood, A.D.; et al. Increased Immune Marker Variance in a Population of Invasive Birds. Sci. Rep. 2020, 10, 21764. [Google Scholar] [CrossRef]
- Colautti, R.I.; Ricciardi, A.; Grigorovich, I.A.; MacIsaac, H.J. Is Invasion Success Explained by the Enemy Release Hypothesis? Ecol. Lett. 2004, 7, 721–733. [Google Scholar] [CrossRef]
- Spurgin, L.G.; Richardson, D.S. How Pathogens Drive Genetic Diversity: MHC, Mechanisms and Misunderstandings. Proc. R. Soc. B Biol. Sci. 2010, 277, 979–988. [Google Scholar] [CrossRef]
- Radwan, J.; Babik, W.; Kaufman, J.; Lenz, T.L.; Winternitz, J. Advances in the Evolutionary Understanding of MHC Polymorphism. Trends Genet. 2020, 36, 298–311. [Google Scholar] [CrossRef] [PubMed]
- Eizaguirre, C.; Lenz, T.L.; Kalbe, M.; Milinski, M. Rapid and Adaptive Evolution of MHC Genes under Parasite Selection in Experimental Vertebrate Populations. Nat. Commun. 2012, 3, 621. [Google Scholar] [CrossRef] [PubMed]
- Konopiński, M.K.; Fijarczyk, A.M.; Biedrzycka, A. Complex Patterns Shape Immune Genes Diversity during Invasion of Common Raccoon in Europe—Selection in Action despite Genetic Drift. Evol. Appl. 2023, 16, 134–151. [Google Scholar] [CrossRef]
- Cao, L.; Fang, H.; Yan, D.; Wu, X.M.; Zhang, J.; Chang, M.X. CD44a Functions as a Regulator of P53 Signaling, Apoptosis and Autophagy in the Antibacterial Immune Response. Commun. Biol. 2022, 5, 889. [Google Scholar] [CrossRef]
- Grayfer, L.; Belosevic, M. Molecular Characterization of Novel Interferon Gamma Receptor 1 Isoforms in Zebrafish (Danio rerio) and Goldfish (Carassius auratus L.). Mol. Immunol. 2009, 46, 3050–3059. [Google Scholar] [CrossRef] [PubMed]
- Marenkov, O.M.; Izhboldina, O.O.; Nazarenko, M.M.; Mylostyvyi, R.V.; Khramkova, O.M.; Kapshuk, N.O.; Prychepa, M.V.; Nesterenko, O.S. Influence of Heavy Metals on Physiological and Biochemical Parameters of Pseudorasbora parva (Cypriniformes, Cyprinidae). Regul. Mech. Biosyst. 2021, 12, 745–752. [Google Scholar] [CrossRef]
- Nocita, A.; La Sala, G.; Busatto, T.; Santini, G.; Balzani, P. Population Structure and Dietary Plasticity of Four Invasive Populations of the Topmouth Gudgeon Pseudorasbora parva. Int. Rev. Hydrobiol. 2022, 107, 167–178. [Google Scholar] [CrossRef]
- Monden, S. The Effect of Introduction and Stocking of Fish on the Parasitological Fauna. Ph.D. Thesis, KU Leuven, Laboratory Ecology & Aquaculture, Biology Department, Leuven, Belgium, 1998. [Google Scholar]
- Czeczuga, B.; Kiziewicz, B.; Danilkiewicz, Z. Zoosporic Fungi Growing on the Specimens of Certain Fish Species Recently Introduced to Polish Waters. Acta Ichthyol. Piscat. 2002, 32, 117–125. [Google Scholar] [CrossRef]
- Ahne, W.; Thomsen, I. Isolation of Pike Fry Rhabdovirus from Pseudorasbora parva (Temminck & Schlegel). J. Fish Dis. 1986, 9, 555–556. [Google Scholar]
- Wellband, K.W.; Pettitt-Wade, H.; Fisk, A.T.; Heath, D.D. Standing Genetic Diversity and Selection at Functional Gene Loci Are Associated with Differential Invasion Success in Two Non-Native Fish Species. Mol. Ecol. 2018, 27, 1572–1585. [Google Scholar] [CrossRef]
Chromosome | Variant Frequency Genome-Wide | Variant Frequency in Exonic Regions |
---|---|---|
Chr1 | 0.00724 | 0.00018 |
Chr2 | 0.00528 | 0.00015 |
Chr3 | 0.00765 | 0.00020 |
Chr4 | 0.00723 | 0.00020 |
Chr5 | 0.00798 | 0.00021 |
Chr6 | 0.00595 | 0.00017 |
Chr7 | 0.00752 | 0.00020 |
Chr8 | 0.00680 | 0.00019 |
Chr9 | 0.00756 | 0.00022 |
Chr10 | 0.00760 | 0.00021 |
Chr11 | 0.00711 | 0.00016 |
Chr12 | 0.00790 | 0.00020 |
Chr13 | 0.00820 | 0.00023 |
Chr14 | 0.00546 | 0.00019 |
Chr15 | 0.00697 | 0.00019 |
Chr16 | 0.00769 | 0.00017 |
Chr17 | 0.00820 | 0.00021 |
Chr18 | 0.00657 | 0.00019 |
Chr19 | 0.00695 | 0.00019 |
Chr20 | 0.00569 | 0.00016 |
Chr21 | 0.00830 | 0.00022 |
Chr22 | 0.00772 | 0.00019 |
Chr23 | 0.00834 | 0.00024 |
Chr24 | 0.00737 | 0.00018 |
Chr25 | 0.00708 | 0.00022 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Combe, M.; Deremarque, T.; Givens, J.; Gozlan, R.E. Unveiling the Genomic Landscape of Pseudorasbora parva, the Most Invasive Freshwater Fish Worldwide: A Key Step Towards Understanding Invasion Dynamics. Fishes 2025, 10, 297. https://doi.org/10.3390/fishes10060297
Combe M, Deremarque T, Givens J, Gozlan RE. Unveiling the Genomic Landscape of Pseudorasbora parva, the Most Invasive Freshwater Fish Worldwide: A Key Step Towards Understanding Invasion Dynamics. Fishes. 2025; 10(6):297. https://doi.org/10.3390/fishes10060297
Chicago/Turabian StyleCombe, Marine, Théo Deremarque, Justina Givens, and Rodolphe Elie Gozlan. 2025. "Unveiling the Genomic Landscape of Pseudorasbora parva, the Most Invasive Freshwater Fish Worldwide: A Key Step Towards Understanding Invasion Dynamics" Fishes 10, no. 6: 297. https://doi.org/10.3390/fishes10060297
APA StyleCombe, M., Deremarque, T., Givens, J., & Gozlan, R. E. (2025). Unveiling the Genomic Landscape of Pseudorasbora parva, the Most Invasive Freshwater Fish Worldwide: A Key Step Towards Understanding Invasion Dynamics. Fishes, 10(6), 297. https://doi.org/10.3390/fishes10060297