Comparative Transcriptomic Analysis Reveals Molecular Mechanisms Underlying Scale Adhesion Differences Between Carassius auratus indigentiaus and Carassius auratus gibelio
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Fish
2.2. Scale Morphology and Embedding Parameter Analysis
2.3. Sampling
2.4. RNA Extraction and Sequencing
2.5. Differentially Expressed Gene Analysis and Functional Enrichment
2.6. Quantitative PCR (qPCR) Validation of RNA-Seq Data
2.7. Data Collection and Statistical Analysis
3. Results
3.1. Scale Morphology and Embedding Parameter Analysis
3.2. Gene Expression Analysis
3.3. GO/KEGG Analysis of DEGs in CaDT Versus CaGB
3.4. Scale Sac-Specific Expressed Genes Analysis
3.5. Validation of RNA-Seq Results by qPCR
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sire, J.Y.; Arnulf, I. The development of squamation in four teleostean fishes with a survey of the literature. Jpn. J. Ichthyol. 1990, 37, 133–143. [Google Scholar] [CrossRef]
- Zhang, Z.; Ji, F.; Jiang, S.; Wu, Z.; Xu, Q. Scale development-related genes identified by transcriptome analysis. Fishes 2022, 7, 64. [Google Scholar] [CrossRef]
- Xu, B.; Cui, Y.; A, L.; Zhang, H.; Ma, Q.; Wei, F.; Liang, J. Transcriptomic and proteomic strategies to reveal the mechanism of Gymnocypris przewalskii scale development. BMC Genom. 2024, 25, 140. [Google Scholar] [CrossRef]
- Khayer-Dastjerdi, A.; Barthelat, F. Teleost fish scales amongst the toughest collagenous materials. J. Mech. Behav. Biomed. Mater. 2015, 52, 95–107. [Google Scholar] [CrossRef]
- Vernerey, F.J.; Barthelat, F. On the mechanics of fishscale structures. Int. J. Solids Struct. 2010, 47, 2268–2275. [Google Scholar] [CrossRef]
- Quan, H.; Yang, W.; Lapeyriere, M.; Schaible, E.; Ritchie, R.O.; Meyers, M.A. Structure and mechanical adaptability of a modern elasmoid fish scale from the common carp. Matter 2020, 3, 842–863. [Google Scholar] [CrossRef]
- Tang, J.; Zhou, S.; Wang, Y.J.; Hu, J.B.; Wang, X.B.; Wang, G.L.; Jiang, H.; Yan, X.J. Early cover of squamation and the development of primary scales for pamps argenteus. Aata. Hydrobiol. Sin. 2023, 47, 1948–1953. [Google Scholar]
- Aib, H.; Czédli, H.; Baranyai, E.; Sajtos, Z.; Döncző, B.; Parvez, M.S.; Berta, C.; Varga, Z.; Benhizia, R.; Nyeste, K. Fish scales as a non-invasive method for monitoring trace and macroelement pollution. Biology 2025, 14, 344. [Google Scholar] [CrossRef] [PubMed]
- Salindeho, N.; Mokolensang, J.F.; Manu, L.; Taslim, N.A.; Nurkolis, F.; Gunawan, W.B.; Yusuf, M.; Mayulu, N.; Tsopmo, A. Fish scale rich in functional compounds and peptides: A potential nutraceutical to overcome undernutrition. Front. Nutr. 2022, 9, 1072370. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.S.; Ebrahimi, H.; Ghosh, R. Fish scale inspired structures-a review of materials, manufacturing and models. Bioinspir. Biomim. 2022, 17, 061001. [Google Scholar] [CrossRef]
- Ghods, S.; Waddell, S.; Weller, E.; Renteria, C.; Jiang, H.Y.; Janak, J.M.; Mao, S.S.; Linley, T.J.; Arola, D. On the regeneration of fish scales: Structure and mechanical behavior. J. Exp. Biol. 2020, 223, jeb211144. [Google Scholar] [CrossRef]
- Lin, C.C.; Ritch, R.; Lin, S.M.; Ni, M.H.; Chang, Y.C.; Lu, Y.L.; Lai, H.J.; Lin, F.H. A new fish scale-derived scaffold for corneal regeneration. Eur. Cell. Mater. 2010, 19, 50–57. [Google Scholar] [CrossRef]
- Kodali, D.; Hembrick-Holloman, V.; Gunturu, D.R.; Samuel, T.; Jeelani, S.; Rangari, V.K. Influence of fish scale-based hydroxyapatite on forcespun polycaprolactone fiber scaffolds. ACS Omega 2022, 7, 8323–8335. [Google Scholar] [CrossRef] [PubMed]
- Xu, N.; Peng, X.; Li, H.; Liu, J.; Cheng, J.; Qi, X.; Ye, S.; Gong, H.; Zhao, X.; Yu, J.; et al. Marine-derived collagen as biomaterials for human health. Front. Nutr. 2021, 8, 702108. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Dai, Y.; Tong, X.; Zhang, Y.; Zhou, Y.; Cheng, J.; Jiang, Y.; Yang, R.; Wang, X.; Cao, G.; et al. Circ-ddg derived from cyprinid herpesvirus 2 promotes viral replication. Microbiol. Spectr. 2022, 10, e0094322. [Google Scholar] [CrossRef]
- Gui, J.; Zhou, L. Genetic basis and breeding application of clonal diversity and dual reproduction modes in polyploid Carassius auratus gibelio. Sci. China Life. Sci. 2010, 53, 409–415. [Google Scholar] [CrossRef] [PubMed]
- Zeng, D.; Zhang, Y.; Xia, H.; Liu, L.; Tu, Y.; Chen, M.; Yang, P. Multi-organ transcriptomics provide insights into growth regulation in the Dongtingking crucian carp (Carassius auratus indigentiaus). Comp. Biochem. Physiol. Part D Genom. Proteom. 2025, 56, 101538. [Google Scholar] [CrossRef]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. Fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef]
- Su, W.L.; Liu, N.; Mei, L.; Luo, J.; Zhu, Y.J.; Liang, Z. Global Transcriptomic profile analysis of genes involved in lignin biosynthesis and accumulation induced by boron deficiency in poplar roots. Biomolecules 2019, 9, 156. [Google Scholar] [CrossRef]
- Li, B.; Dewey, C.N. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 2011, 12, 323. [Google Scholar] [CrossRef]
- Bakhtiarizadeh, M.R.; Salehi, A.; Alamouti, A.A.; Abdollahi-Arpanahi, R.; Salami, S.A. Deep transcriptome analysis using RNA-Seq suggests novel insights into molecular aspects of fat-tail metabolism in sheep. Sci. Rep. 2019, 9, 9203. [Google Scholar] [CrossRef]
- Yu, G.; Wang, L.G.; Han, Y.; He, Q.Y. clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS 2012, 16, 284–287. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−∆∆CT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Xiong, S.T.; Ying, Y.R.; Long, Z.; Li, J.H.; Zhang, Y.B.; Xiao, T.Y.; Zhao, X. Zebrafish MARCH7 negatively regulates IFN antiviral response by degrading TBK1. Int. J. Biol. Macromol. 2023, 15, 124384. [Google Scholar] [CrossRef]
- Yoon, S.; Leube, R.E. Keratin intermediate filaments: Intermediaries of epithelial cell migration. Essays Biochem. 2019, 63, 521–533. [Google Scholar] [CrossRef]
- Osmani, N.; Labouesse, M. Remodeling of keratin-coupled cell adhesion complexes. Curr. Opin. Cell Biol. 2015, 32, 30–38. [Google Scholar] [CrossRef]
- Ronquist, K.G.; Ek, B.; Stavreus-Evers, A.; Larsson, A.; Ronquist, G. Human prostasomes express glycolytic enzymes with capacity for ATP production. Am. J. Physiol. Endocrinol. Metab. 2013, 304, E576–E582. [Google Scholar] [CrossRef]
- Liao, H.; Gaur, A.; McConie, H.; Shekar, A.; Wang, K.; Chang, J.T.; Breton, G.; Denicourt, C. Human NOP2/NSUN1 regulates ribosome biogenesis through non-catalytic complex formation with box C/D snoRNPs. Nucleic. Acids Res. 2022, 50, 10695–10716. [Google Scholar] [CrossRef]
- Rescan, P.Y.; Montfort, J.; Rallière, C.; Le Cam, A.; Esquerré, D.; Hugot, K. Dynamic gene expression in fish muscle during recovery growth induced by a fasting-refeeding schedule. BMC Genom. 2007, 8, 438. [Google Scholar] [CrossRef] [PubMed]
- Grumet, M.; Rutishauser, U.; Edelman, G.M. Neural cell adhesion molecule is on embryonic muscle cells and mediates adhesion to nerve cells in vitro. Nature 1982, 295, 693–695. [Google Scholar] [CrossRef] [PubMed]
- Rathjen, F.G.; Schachner, M. Immunocytological and biochemical characterization of a new neuronal cell surface component (L1 antigen) which is involved in cell adhesion. EMBO J. 1984, 3, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Quan, X.J.; Hassan, B.A. From skin to nerve: Flies, vertebrates and the first helix. Cell. Mol. Life Sci. 2005, 62, 2036–2049. [Google Scholar] [CrossRef] [PubMed]
- Aoki, T.; Hirono, I.; Kurokawa, K.; Fukuda, H.; Nahary, R.; Eldar, A.; Davison, A.J.; Waltzek, T.B.; Bercovier, H.; Hedrick, R.P. Genome sequences of three koi herpesvirus isolates representing the expanding distribution of an emerging disease threatening koi and common carp worldwide. J. Virol. 2007, 81, 5058–5065. [Google Scholar] [CrossRef] [PubMed]







Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Xiong, L.-M.; Liu, K.-J.; Chen, H.-T.; Xie, Y.-M.; Chen, X.-Z.; Zhang, L.; Xiong, S.-T. Comparative Transcriptomic Analysis Reveals Molecular Mechanisms Underlying Scale Adhesion Differences Between Carassius auratus indigentiaus and Carassius auratus gibelio. Fishes 2025, 10, 559. https://doi.org/10.3390/fishes10110559
Li X, Xiong L-M, Liu K-J, Chen H-T, Xie Y-M, Chen X-Z, Zhang L, Xiong S-T. Comparative Transcriptomic Analysis Reveals Molecular Mechanisms Underlying Scale Adhesion Differences Between Carassius auratus indigentiaus and Carassius auratus gibelio. Fishes. 2025; 10(11):559. https://doi.org/10.3390/fishes10110559
Chicago/Turabian StyleLi, Xin, Li-Ming Xiong, Ke-Jun Liu, Hai-Tai Chen, Yi-Ming Xie, Xian-Zhuo Chen, Lei Zhang, and Shu-Ting Xiong. 2025. "Comparative Transcriptomic Analysis Reveals Molecular Mechanisms Underlying Scale Adhesion Differences Between Carassius auratus indigentiaus and Carassius auratus gibelio" Fishes 10, no. 11: 559. https://doi.org/10.3390/fishes10110559
APA StyleLi, X., Xiong, L.-M., Liu, K.-J., Chen, H.-T., Xie, Y.-M., Chen, X.-Z., Zhang, L., & Xiong, S.-T. (2025). Comparative Transcriptomic Analysis Reveals Molecular Mechanisms Underlying Scale Adhesion Differences Between Carassius auratus indigentiaus and Carassius auratus gibelio. Fishes, 10(11), 559. https://doi.org/10.3390/fishes10110559

