A Simple Protocol for Certifying Graph States and Applications in Quantum Networks
Abstract
:1. Introduction
2. Protocol
- The source distributes Mn-partite systems to the n players. In the honest case, this will be M copies of the graph state .
- For copy , each player performs their part of the measurement of stabiliser . If all the stabilisers output value , Accept, otherwise Reject.
- For copy r the state is the quantum output of the protocol.
3. Security
- Completeness. If the players recieve M copies of the ideal resource state , then for all keys k
- Soundness. Denoting the expected output state over all key strings as , and denoting the projection , then
4. Applications
4.1. Verified Blind Quantum Computation
4.2. Verified t-Designs
4.3. Quantum Metrology
4.4. Secret Sharing over Untrusted Channels
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Hein, M.; Eisert, J.; Briegel, H.J. Multiparty entanglement in graph states. Phys. Rev. A 2004, 69, 062311. [Google Scholar] [CrossRef] [Green Version]
- Schlingemann, D.; Werner, R.F. Quantum error-correcting codes associated with graphs. Phys. Rev. A 2001, 65, 012308. [Google Scholar] [CrossRef] [Green Version]
- Raussendorf, R.; Briegel, H.J. A one-way quantum computer. Phys. Rev. Lett. 2001, 86, 5188. [Google Scholar] [CrossRef]
- Markham, D.; Sanders, B.C. Graph states for quantum secret sharing. Phys. Rev. A 2008, 78, 042309. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.L.; Chen, L.K.; Li, W.; Huang, H.L.; Liu, C.; Chen, C.; Luo, Y.H.; Su, Z.E.; Wu, D.; Li, Z.D.; et al. Experimental ten-photon entanglement. Phys. Rev. Lett. 2016, 117, 210502. [Google Scholar] [CrossRef]
- Barz, S.; Kashefi, E.; Broadbent, A.; Fitzsimons, J.F.; Zeilinger, A.; Walther, P. Demonstration of blind quantum computing. Science 2012, 335, 303–308. [Google Scholar] [CrossRef] [Green Version]
- Bell, B.; Markham, D.; Herrera-Martí, D.; Marin, A.; Wadsworth, W.; Rarity, J.; Tame, M. Experimental demonstration of graph-state quantum secret sharing. Nat. Commun. 2014, 5, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Cai, Y.; Roslund, J.; Ferrini, G.; Arzani, F.; Xu, X.; Fabre, C.; Treps, N. Multimode entanglement in reconfigurable graph states using optical frequency combs. Nat. Commun. 2017, 8, 15645. [Google Scholar] [CrossRef] [Green Version]
- Yokoyama, S.; Ukai, R.; Armstrong, S.C.; Sornphiphatphong, C.; Kaji, T.; Suzuki, S.; Yoshikawa, J.I.; Yonezawa, H.; Menicucci, N.C.; Furusawa, A. Ultra-large-scale continuous-variable cluster states multiplexed in the time domain. Nat. Photonics 2013, 7, 982–986. [Google Scholar] [CrossRef] [Green Version]
- Ciampini, M.A.; Orieux, A.; Paesani, S.; Sciarrino, F.; Corrielli, G.; Crespi, A.; Ramponi, R.; Osellame, R.; Mataloni, P. Path-polarization hyperentangled and cluster states of photons on a chip. Light Sci. Appl. 2016, 5, e16064. [Google Scholar] [CrossRef]
- Barreiro, J.T.; Müller, M.; Schindler, P.; Nigg, D.; Monz, T.; Chwalla, M.; Hennrich, M.; Roos, C.F.; Zoller, P.; Blatt, R. An open-system quantum simulator with trapped ions. Nature 2011, 470, 486–491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monz, T.; Schindler, P.; Barreiro, J.T.; Chwalla, M.; Nigg, D.; Coish, W.A.; Harlander, M.; Hänsel, W.; Hennrich, M.; Blatt, R. 14-qubit entanglement: Creation and coherence. Phys. Rev. Lett. 2011, 106, 130506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, C.; Xu, K.; Liu, W.; Yang, C.P.; Zheng, S.B.; Deng, H.; Xie, Q.; Huang, K.; Guo, Q.; Zhang, L.; et al. 10-qubit entanglement and parallel logic operations with a superconducting circuit. Phys. Rev. Lett. 2017, 119, 180511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cramer, J.; Kalb, N.; Rol, M.A.; Hensen, B.; Blok, M.S.; Markham, M.; Twitchen, D.J.; Hanson, R.; Taminiau, T.H. Repeated quantum error correction on a continuously encoded qubit by real-time feedback. Nat. Commun. 2016, 7, 1–7. [Google Scholar] [CrossRef] [PubMed]
- D’Ariano, G.M.; Paris, M.G.; Sacchi, M.F. Quantum tomography. Adv. Imaging Electron Phys. 2003, 128, 206–309. [Google Scholar]
- Jungnitsch, B.; Moroder, T.; Gühne, O. Entanglement witnesses for graph states: General theory and examples. Phys. Rev. A 2011, 84, 032310. [Google Scholar] [CrossRef] [Green Version]
- McKague, M. Self-testing graph states. In Conference on Quantum Computation, Communication, and Cryptography; Springer: Berlin, Germany, 2011; pp. 104–120. [Google Scholar]
- Pappa, A.; Chailloux, A.; Wehner, S.; Diamanti, E.; Kerenidis, I. Multipartite entanglement verification resistant against dishonest parties. Phys. Rev. Lett. 2012, 108, 260502. [Google Scholar] [CrossRef]
- Lyons, D.W.; Walck, S.N. Entanglement verification using local unitary stabilizers. Phys. Rev. A 2013, 87, 062321. [Google Scholar] [CrossRef] [Green Version]
- McCutcheon, W.; Pappa, A.; Bell, B.; McMillan, A.; Chailloux, A.; Lawson, T.; Mafu, M.; Markham, D.; Diamanti, E.; Kerenidis, I.; et al. Experimental verification of multipartite entanglement in quantum networks. Nat. Commun. 2016, 7, 13251. [Google Scholar] [CrossRef]
- Markham, D.; Marin, A. Practical Sharing of Quantum Secrets over Untrusted Channels. In International Conference on Information Theoretic Security; Springer: Cham, Switzerland, 2015; pp. 1–14. [Google Scholar]
- Barnum, H.; Crépeau, C.; Gottesman, D.; Smith, A.; Tapp, A. Authentication of quantum messages. In Proceedings of the 43rd Annual IEEE Symposium on Foundations of Computer Science, Vancouver, BC, Canada, 19 November 2002; pp. 449–458. [Google Scholar]
- Walther, P.; Resch, K.J.; Rudolph, T.; Schenck, E.; Weinfurter, H.; Vedral, V.; Aspelmeyer, M.; Zeilinger, A. Experimental one-way quantum computing. Nature 2005, 434, 169. [Google Scholar] [CrossRef]
- Bell, B.; Herrera-Martí, D.; Tame, M.; Markham, D.; Wadsworth, W.; Rarity, J. Experimental demonstration of a graph state quantum error-correction code. Nat. Commun. 2014, 5, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Unnikrishnan, A.; Markham, D. Authenticated teleportation and verification in a noisy network. arXiv 2019, arXiv:1911.07000. [Google Scholar]
- Gheorghiu, A.; Kapourniotis, T.; Kashefi, E. Verification of quantum computation: An overview of existing approaches. Theory Comput. Syst. 2019, 63, 715–808. [Google Scholar] [CrossRef] [Green Version]
- Broadbent, A.; Fitzsimons, J.; Kashefi, E. Universal blind quantum computation. In Proceedings of the FOCS’09—50th Annual IEEE Symposium on Foundations of Computer Science, 2009, Atlanta, GA, USA, 25–27 October 2009; pp. 517–526. [Google Scholar]
- Fitzsimons, J.F.; Kashefi, E. Unconditionally verifiable blind computation. arXiv 2012, arXiv:1203.5217. [Google Scholar]
- Hayashi, M.; Hajdusek, M. Self-guaranteed measurement-based quantum computation. arXiv 2016, arXiv:1603.02195. [Google Scholar] [CrossRef] [Green Version]
- Hayashi, M.; Morimae, T. Verifiable measurement-only blind quantum computing with stabilizer testing. Phys. Rev. Lett. 2015, 115, 220502. [Google Scholar] [CrossRef] [Green Version]
- Raussendorf, R.; Harrington, J.; Goyal, K. Topological fault-tolerance in cluster state quantum computation. New J. Phys. 2007, 9, 199. [Google Scholar] [CrossRef]
- Fujii, K.; Hayashi, M. Verifiable fault tolerance in measurement-based quantum computation. Phys. Rev. A 2017, 96, 030301. [Google Scholar] [CrossRef] [Green Version]
- Turner, P.S.; Markham, D. Derandomizing quantum circuits with measurement-based unitary designs. Phys. Rev. Lett. 2016, 116, 200501. [Google Scholar] [CrossRef]
- Emerson, J.; Weinstein, Y.S.; Saraceno, M.; Lloyd, S.; Cory, D.G. Pseudo-random unitary operators for quantum information processing. Science 2003, 302, 2098–2100. [Google Scholar] [CrossRef] [Green Version]
- Hayden, P.; Leung, D.; Shor, P.W.; Winter, A. Randomizing quantum states: Constructions and applications. Commun. Math. Phys. 2004, 250, 371–391. [Google Scholar] [CrossRef] [Green Version]
- Müller, M.P.; Adlam, E.; Masanes, L.; Wiebe, N. Thermalization and canonical typicality in translation-invariant quantum lattice systems. Commun. Math. Phys. 2015, 340, 499–561. [Google Scholar]
- Matthews, J.C.; Whittaker, R.; O’Brien, J.L.; Turner, P.S. Testing randomness with photons by direct characterization of optical t-designs. Phys. Rev. A 2015, 91, 020301. [Google Scholar] [CrossRef] [Green Version]
- Hayden, P.; Preskill, J. Black holes as mirrors: Quantum information in random subsystems. J. High Energy Phys. 2007, 2007, 120. [Google Scholar] [CrossRef] [Green Version]
- Mezher, R.; Ghalbouni, J.; Dgheim, J.; Markham, D. Efficient quantum pseudorandomness with simple graph states. Phys. Rev. A 2018, 97, 022333. [Google Scholar] [CrossRef] [Green Version]
- Brandão, F.G.; Harrow, A.W.; Horodecki, M. Local random quantum circuits are approximate polynomial-designs. Commun. Math. Phys. 2016, 346, 397–434. [Google Scholar]
- Brandão, F.G.; Harrow, A.W.; Horodecki, M. Efficient Quantum Pseudorandomness. Phys. Rev. Lett. 2016, 116, 170502. [Google Scholar]
- Giovannetti, V.; Lloyd, S.; Maccone, L. Advances in quantum metrology. Nat. Photonics 2011, 5, 222–229. [Google Scholar] [CrossRef]
- Tóth, G.; Apellaniz, I. Quantum metrology from a quantum information science perspective. J. Phys. A Math. Theor. 2014, 47, 424006. [Google Scholar]
- Augusiak, R.; Kołodyński, J.; Streltsov, A.; Bera, M.N.; Acin, A.; Lewenstein, M. Asymptotic role of entanglement in quantum metrology. Phys. Rev. A 2016, 94, 012339. [Google Scholar] [CrossRef] [Green Version]
- Braunstein, S.L.; Caves, C.M. Statistical distance and the geometry of quantum states. Phys. Rev. Lett. 1994, 72, 3439. [Google Scholar] [CrossRef] [PubMed]
- Keet, A.; Fortescue, B.; Markham, D.; Sanders, B.C. Quantum secret sharing with qudit graph states. Phys. Rev. A 2010, 82, 062315. [Google Scholar] [CrossRef] [Green Version]
- Tóth, G.; Gühne, O. Detecting genuine multipartite entanglement with two local measurements. Phys. Rev. Lett. 2005, 94, 060501. [Google Scholar]
- He, Q.; Reid, M. Genuine multipartite Einstein-Podolsky-Rosen steering. Phys. Rev. Lett. 2013, 111, 250403. [Google Scholar] [CrossRef]
- Cavalcanti, E.G.; Hall, M.J.; Wiseman, H.M. Entanglement verification and steering when Alice and Bob cannot be trusted. Phys. Rev. A 2013, 87, 032306. [Google Scholar] [CrossRef] [Green Version]
- Li, C.M.; Chen, K.; Chen, Y.N.; Zhang, Q.; Chen, Y.A.; Pan, J.W. Genuine high-order einstein-podolsky-rosen steering. Phys. Rev. Lett. 2015, 115, 010402. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Markham, D.; Krause, A. A Simple Protocol for Certifying Graph States and Applications in Quantum Networks. Cryptography 2020, 4, 3. https://doi.org/10.3390/cryptography4010003
Markham D, Krause A. A Simple Protocol for Certifying Graph States and Applications in Quantum Networks. Cryptography. 2020; 4(1):3. https://doi.org/10.3390/cryptography4010003
Chicago/Turabian StyleMarkham, Damian, and Alexandra Krause. 2020. "A Simple Protocol for Certifying Graph States and Applications in Quantum Networks" Cryptography 4, no. 1: 3. https://doi.org/10.3390/cryptography4010003
APA StyleMarkham, D., & Krause, A. (2020). A Simple Protocol for Certifying Graph States and Applications in Quantum Networks. Cryptography, 4(1), 3. https://doi.org/10.3390/cryptography4010003