Problems of Connectionism
Abstract
:1. Introduction
2. Connectionism
- Connectionism is a physicalist theory that assumes that our mental states are identical to our brain states [15].
- Connectionism implies a strong and strict reductionism: all our mental states must be reducible to our brain states, and nothing can be cut off from this reduction [16].
- In addition, connectionism assumes that artificial neural networks are mirroring systems of our biological neural networks. Therefore, by studying the first, we can uncover a lot about the second [17].
- This theory is based on AI models and neural models. It uses AI to explain neural functioning [18].
3. Computational Problems
- (1)
- It does not consider the advancements in computational linguistics: since symbol manipulation is the basic trait of computational linguistics, we need to be sure that linguistic symbols are, in fact, reducible to neural connections [16].
- (2)
- The most evident consequence of our former reason is that connectionism does not try to inscribe itself in a theory of language, probably because the symbolic part of the theory remains unclear [36].
4. Theoretical Problems
- (a)
- Reductionism on qualia does not provide an explanation.
- (b)
- It is still unclear which mental states are designated as qualia and which are not.
- (c)
- Eliminating something does not solve the problem that arises from the discussion about that something.
Philosophy and Neuroscience
5. Concluding Remarks
- (A)
- As complete and coherent as possible.
- (B)
- Ready to move on and outmatch itself.
Author Contributions
Funding
Conflicts of Interest
References
- Amato, F.; López, A.; Peña-Méndez, E.M.; Vaňhara, P.; Hampl, A.; Havel, J. Artificial neural networks in medical diagnosis. J. Appl. Biomed. 2013, 11, 47–58. [Google Scholar] [CrossRef]
- Anderson, W. History and philosophy of science takes form. Stud. Hist. Philos. Sci. 2022, 93, 175–182. [Google Scholar] [CrossRef]
- Holzinger, A.; Goebel, R.; Mengel, M.; Müller, H. (Eds.) Artificial Intelligence and Machine Learning for Digital Pathology; Springer International Publishing: Cham, Switzerland, 2020; Volume 12090. [Google Scholar] [CrossRef]
- Arredondo, M.M.; Kovelman, I.; Satterfield, T.; Hu, X.; Stojanov, L.; Beltz, A.M. Person-specific connectivity mapping uncovers differences of bilingual language experience on brain bases of attention in children. Brain Lang. 2022, 227, 105084. [Google Scholar] [CrossRef]
- Barttfeld, P.; Petroni, A.; Báez, S.; Urquina, H.; Sigman, M.; Cetkovich, M.; Torralva, T.; Torrente, F.; Lischinsky, A.; Castellanos, X.; et al. Functional connectivity and temporal variability of brain connections in adults with attention deficit/hyperactivity disorder and bipolar disorder. Neuropsychobiology 2014, 69, 65–75. [Google Scholar] [CrossRef] [PubMed]
- William, B. Mental Mechanisms: Philosophical Perspective on Cognitive Neuroscience; Routledge: New York, NY, USA, 2008. [Google Scholar]
- Brugger, P.; Kollias, S.S.; Müri, R.M.; Crelier, G.; Hepp-Reymond, M.C.; Regard, M. Beyond re-membering: Phantom sensations of congenitally absent limbs. Proc. Natl. Acad. Sci. USA 2000, 97, 6167–6172. [Google Scholar] [CrossRef] [PubMed]
- Gennaro, C. Logic in Grammar: Polarity, Free Choice and Intervention, 1st ed.; Oxford University Press: Oxford, UK, 2013. [Google Scholar]
- Chomsky, N. New Horizons in the Study of Language and Mind; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Churchland, P.S. Neurophilosophy: The early years and new directions. Funct. Neurol. 2007, 22, 185–195. Available online: https://pubmed.ncbi.nlm.nih.gov/18182125/ (accessed on 3 March 2024).
- Churchland Patricia, S. Neurophilosophy: Toward a Unified Science of Mind-Brain: Toward a Unified Science of the Mind/Brain; MIT Press: Cambridge, MA, USA, 1986. [Google Scholar]
- Churchland, P.S. Touching a Nerve the Self as Brain; W.W. Norton&Company: New York, NY, USA, 2013. [Google Scholar]
- Churchland, P. Neurophilosophy at Work; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Churchland, P.M. The Engine of Reason, The Seat of the Soul: A Philosophical Journey into the Brain; MIT Press: Bradford, UK, 1996. [Google Scholar]
- Churchland, P.M. Matter and Consciousness, 3rd ed.; The MIT Press: Cambridge, MA, USA, 2013. [Google Scholar]
- Cowls, J.; King, T.; Taddeo, M.; Floridi, L. Designing AI for Social Good: Seven Essential Factors. SSRN Electron. 2019, 26, 1771–1796. [Google Scholar] [CrossRef]
- Crignon, C.; Lefebvre, D. The long time of dialogue between doctors and philosophers. Med. Sci. M/S 2020, 36, 1068–1073. [Google Scholar] [CrossRef]
- Davis, E.; Marcus, G. Causal generative models are just a start. Behav. Brain Sci. 2017, 40, e262. [Google Scholar] [CrossRef]
- Davis, E.S.; Marcus, G.F. Computational limits don’t fully explain human cognitive limitations. Behav. Brain Sci. 2020, 43, e7. [Google Scholar] [CrossRef]
- Davis, S. (Ed.) Vancouver Studies in Cognitive Science, Connectionism: Theory and Practice: Vol. II; Oxford University Press: Oxford, UK, 1992. [Google Scholar]
- del Pinal, G. The Logicality of Language: A new take on Triviality, “Ungrammaticality”, and Logical Form*. Noûs 2019, 53, 785–818. [Google Scholar] [CrossRef]
- delEtoile, J.; Adeli, H. Graph Theory and Brain Connectivity in Alzheimer’s Disease. Neurosci. Rev. J. Bringing Neurobiol. Neurol. Psychiatry 2017, 23, 616–626. [Google Scholar] [CrossRef] [PubMed]
- Dennett, D.C. Quining qualia. In Consciousness in Contemporary Science; Marcel, A.J., Bisiach, E., Eds.; Oxford University Press: Oxford, UK, 1988; Available online: https://philpapers.org/rec/DENQQ (accessed on 3 March 2024).
- Dennett, D.C. Quining Qualia. In Readings in Philosophy and Cognitive Science; MIT Press: Cambridge, MA, USA, 1993. [Google Scholar] [CrossRef]
- Dominey, P.F.; Inui, T.; Hoen, M. Neural network processing of natural language: II. Towards a unified model of corticostriatal function in learning sentence comprehension and non-linguistic sequencing. Brain Lang. 2009, 109, 80–92. [Google Scholar] [CrossRef] [PubMed]
- Ekhlasi, A.; Nasrabadi, A.M.; Mohammadi, M. Analysis of EEG brain connectivity of children with ADHD using graph theory and directional information transfer. Biomed. Technik. Biomed. Eng. 2022, 68, 133–146. [Google Scholar] [CrossRef] [PubMed]
- Esposito, R.; Bortoletto, M.; Miniussi, C. Integrating TMS, EEG, and MRI as an Approach for Studying Brain Connectivity. Neurosci. Rev. J. Bringing Neurobiol. Neurol. Psychiatry 2020, 26, 471–486. [Google Scholar] [CrossRef] [PubMed]
- Feuillet, L.; Dufour, H.; Pelletier, J. Brain of a white-collar worker. Lancet 2007, 370, 262. [Google Scholar] [CrossRef] [PubMed]
- Floridi, L. Ethics of Artificial Intelligence Principles, Challenges, and Opportunities; Oxford University Press: Oxford, UK, 2023. [Google Scholar]
- Fodor, J.A.; Pylyshyn, Z.W. Connectionism and cognitive architecture: A critical analysis. Cognition 1988, 28, 3–71. [Google Scholar] [CrossRef]
- Friston, K.J. Functional and effective connectivity: A review. Brain Connect. 2011, 1, 13–36. [Google Scholar] [CrossRef] [PubMed]
- Gallo, M.; Krajňanský, V.; Nenutil, R.; Holub, P.; Brázdil, T. Shedding light on the black box of a neural network used to detect prostate cancer in whole slide images by occlusion-based explainability. New Biotechnol. 2023, 78, 52–67. [Google Scholar] [CrossRef]
- Gatti, U.; Verde, A. Cesare Lombroso: Methodological ambiguities and brilliant intuitions. Int. J. Law Psychiatry 2012, 35, 19–26. [Google Scholar] [CrossRef]
- Genon, S.; Eickhoff, S.B.; Kharabian, S. Linking interindividual variability in brain structure to behaviour. Nat. Rev. Neurosci. 2022, 23, 307–318. [Google Scholar] [CrossRef]
- Goksan, S.; Argyri, F.; Clayden, J.D.; Liegeois, F.; Wei, L. Early childhood bilingualism: Effects on brain structure and function. F1000Research 2020, 9, 370. [Google Scholar] [CrossRef] [PubMed]
- Goździalski, K. Normativity and Ontology of Law in Early Greek Philosophy. Acta Univ. Lodziensis. Folia Iurid. 2022, 100, 107–125. [Google Scholar] [CrossRef]
- Guercio, J.M. The importance of a deeper knowledge of the history and theoretical foundations of behaviorism and behavior therapy: Part 2—1960–1985. Behav. Anal. Res. Pract. 2020, 20, 174–195. [Google Scholar] [CrossRef]
- Hansen, H.A.; Li, J.; Saygin, Z.M. Adults vs. neonates: Differentiation of functional connectivity between the basolateral amygdala and occipitotemporal cortex. PLoS ONE 2020, 15, e0237204. [Google Scholar] [CrossRef]
- Hartshorne, J.K.; Tenenbaum, J.B.; Pinker, S. A critical period for second language acquisition: Evidence from 2/3 million English speakers. Cognition 2018, 177, 263–277. [Google Scholar] [CrossRef]
- Haselager, W.F.G.; Van Rappard, J.F.H. Connectionism, Systematicity, and the Frame Problem. Minds Mach. 2013, 23, 161–179. [Google Scholar]
- Heller, M. How is philosophy in science possible? Philos. Probl. Sci. (Zagadnienia Filoz. W Nauce) 2019, 66, 231–249. Available online: https://zfn.edu.pl/index.php/zfn/article/view/482 (accessed on 3 March 2024).
- Ingram, K. IRIE International Review of Information Ethics Vol. 28 (06/2020) Katrina Ingram: AI and Ethics: Shedding Light on the Black Box 2 Author: IRIE International Review of Information Ethics Vol. 28 (06/2020). 2020. Available online: https://informationethics.ca/index.php/irie/article/view/380 (accessed on 3 March 2024).
- Izadi-Najafabadi, S.; Rinat, S.; Zwicker, J.G. Brain functional connectivity in children with developmental coordination disorder following rehabilitation intervention. Pediatr. Res. 2022, 91, 1459–1468. [Google Scholar] [CrossRef]
- Jacquette, D. Kripke and the Mind-Body Problem. Dialectica 1987, 4, 293–300. Available online: https://www.jstor.org/stable/42970584 (accessed on 3 March 2024). [CrossRef]
- Jespersen, K.V.; Stevner, A.; Fernandes, H.; Sørensen, S.D.; Van Someren, E.; Kringelbach, M.; Vuust, P. Reduced structural connectivity in Insomnia Disorder. J. Sleep Res. 2020, 29, e12901. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-García, J.; García, M.; Gutiérrez-Tobal, G.C.; Kheirandish-Gozal, L.; Vaquerizo-Villar, F.; Álvarez, D.; del Campo, F.; Gozal, D.; Hornero, R. An explainable deep-learning architecture for pediatric sleep apnea identification from overnight airflow and oximetry signals. Biomed. Signal Process. Control. 2024, 87, 105490. [Google Scholar] [CrossRef]
- Kim, J. Physicalism, or Something Near Enough; Princeton University Press: Princeton, NJ, USA, 2007. [Google Scholar] [CrossRef]
- Krotov, D.; Hopfield, J.J. Unsupervised learning by competing hidden units. Proc. Natl. Acad. Sci. USA 2019, 116, 7723–7731. [Google Scholar] [CrossRef] [PubMed]
- Kuhn, T.S.; Thomas, S.; Hacking, I. The Structure of Scientific Revolutions, 2012th ed.; The University of Chicago Press: Chicago, IL, USA, 1962. [Google Scholar]
- Lecun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Lewis, D. Elusive Knowledge. Australas. J. Philos. 1996, 74, 549–567. [Google Scholar] [CrossRef]
- Li, K.; Kadohisa, M.; Kusunoki, M.; Duncan, J.; Bundesen, C.; Ditlevsen, S. Distinguishing between parallel and serial processing in visual attention from neurobiological data. R. Soc. Open Sci. 2020, 7, 191553. [Google Scholar] [CrossRef]
- Lowe, E.J. Non-cartesian substance dualism and the problem of mental causation. Erkenntnis 2006, 65, 5–23. [Google Scholar] [CrossRef]
- Manning, C.D.; Clark, K.; Hewitt, J.; Khandelwal, U.; Levy, O. Emergent linguistic structure in artificial neural networks trained by self-supervision. Proc. Natl. Acad. Sci. USA 2020, 117, 30046–30054. [Google Scholar] [CrossRef]
- Marcus, G.F. Rethinking Eliminative Connectionism. Cogn. Psychol. 1998, 37, 243–282. [Google Scholar] [CrossRef]
- Marcus, G.F. Connectionism: With or without rules? Response to J.L. McClelland and D.C. Plaut. Trends Cogn. Sci. 1999, 3, 168–170. [Google Scholar] [CrossRef]
- Marcus, G.; Marblestone, A.; Dean, T. The atoms of neural computation. Science 2014, 346, 551–552. [Google Scholar] [CrossRef] [PubMed]
- Mcclelland, J.L. The Place of Modeling in Cognitive Science. Top. Cogn. Sci. 2009, 1, 11–38. [Google Scholar] [CrossRef] [PubMed]
- Montavon, G.; Samek, W.; Müller, K.R. Methods for interpreting and understanding deep neural networks. Digit. Signal Process. A Rev. J. 2018, 73, 1–15. [Google Scholar] [CrossRef]
- Morawetz, C.; Riedel, M.C.; Salo, T.; Berboth, S.; Eickhoff, S.B.; Laird, A.R.; Kohn, N. Multiple large-scale neural networks underlying emotion regulation. Neurosci. Biobehav. Rev. 2020, 116, 382–395. [Google Scholar] [CrossRef]
- Northoff, G. What Is Neurophilosophy? A Methodological Account. J. Gen. Philos. Sci./Z. Für Allg. Wiss. 2004, 35, 91–127. Available online: https://www.jstor.org/stable/25171275?searchText=neurophilosophy&searchUri=%2Faction%2FdoBasicSearch%3FQuery%3Dneurophilosophy&ab_segments=0%2Fbasic_search_gsv2%2Fcontrol&refreqid=fastly-default%3A4e8711ce1f3f03e0afdceaf704776883 (accessed on 3 March 2024). [CrossRef]
- Osada, T.; Ogawa, A.; Suda, A.; Nakajima, K.; Tanaka, M.; Oka, S.; Kamagata, K.; Aoki, S.; Oshima, Y.; Tanaka, S.; et al. Parallel cognitive processing streams in human prefrontal cortex: Parsing areal-level brain network for response inhibition. Cell Rep. 2021, 36, 109732. [Google Scholar] [CrossRef] [PubMed]
- Páez, A. The Pragmatic Turn in Explainable Artificial Intelligence (XAI). Minds Mach. 2019, 29, 441–459. [Google Scholar] [CrossRef]
- Parks, E.L.; Madden, D.J. Brain connectivity and visual attention. Brain Connect. 2013, 3, 317–338. [Google Scholar] [CrossRef]
- Pasquale, F. The Black Box Society: The Secret Algorithms That Control Money and Information; Harvard University Press: Cambridge, MA, USA, 2015. [Google Scholar]
- Pedreschi, D.; Giannotti, F.; Guidotti, R.; Monreale, A.; Ruggieri, S.; Turini, F. Meaningful Explanations of Black Box AI Decision Systems. Proc. AAAI Conf. Artif. Intell. 2019, 33, 9780–9784. [Google Scholar] [CrossRef]
- Pini, L.; Pievani, M.; Bocchetta, M.; Altomare, D.; Bosco, P.; Cavedo, E.; Galluzzi, S.; Marizzoni, M.; Frisoni, G.B. Brain atrophy in Alzheimer’s Disease and aging. Ageing Res. Rev. 2016, 30, 25–48. [Google Scholar] [CrossRef]
- Prabhu, S.P. Ethical challenges of machine learning and deep learning algorithms. Lancet. Oncol. 2019, 20, 621–622. [Google Scholar] [CrossRef]
- Pretzel, P.; Dhollander, T.; Chabrier, S.; Al-Harrach, M.; Hertz-Pannier, L.; Dinomais, M.; Groeschel, S. Structural brain connectivity in children after neonatal stroke: A whole-brain fixel-based analysis. NeuroImage. Clin. 2022, 34, 103035. [Google Scholar] [CrossRef] [PubMed]
- Putnam, H. The Nature of Mental States. In Readings in Philosophy of Psychology, Volume I; Block, N., Ed.; Harvard University Press: Cambridge, MA, USA, 1980; pp. 223–231. [Google Scholar] [CrossRef]
- Refinetti, R. Philosophy of science and physiology education. Am. J. Physiol. 1997, 272, S31–S35. [Google Scholar] [CrossRef] [PubMed]
- Remme, M.W.H.; Bergmann, U.; Alevi, D.; Schreiber, S.; Sprekeler, H.; Kempter, R. Hebbian plasticity in parallel synaptic pathways: A circuit mechanism for systems memory consolidation. PLoS Comput. Biol. 2021, 17, e1009681. [Google Scholar] [CrossRef]
- Roy, A. Is the connectionist notion of subconcepts flawed? In Proceedings of the International Joint Conference on Neural Networks, Barcelona, Spain, 18–23 July 2010. [Google Scholar] [CrossRef]
- Ruddick, W. Can Doctors and Philosophers Work Together? Hastings Cent. Rep. 1981, 11, 12. [Google Scholar] [CrossRef] [PubMed]
- Sato, J.; Safar, K.; Vandewouw, M.M.; Bando, N.; O’Connor, D.L.; Unger, S.L.; Taylor, M.J. Altered functional connectivity during face processing in children born with very low birth weight. Soc. Cogn. Affect. Neurosci. 2021, 16, 1182–1190. [Google Scholar] [CrossRef]
- Schneider, S. LOT, CTM, and the elephant in the room. Synthese 2009, 170, 235–250. [Google Scholar] [CrossRef]
- Erwin, S. Nature and the Greeks. Sci. Soc. 1955, 19, 186–189. [Google Scholar]
- Schröedinger, E. Science and Humanism: Physics in Our Time; Cambridge University Press: Cambridge, UK, 1951; Available online: https://books.google.it/books/about/Science_and_Humanism.html?id=P3GdnQEACAAJ&redir_esc=y (accessed on 3 March 2024).
- Seung, S. Connectome: How the Brain’s Wiring Makes us Who We Are, 2012th ed.; Penguin Books: London, UK, 2012. [Google Scholar]
- Sheffield, J.M.; Rogers, B.P.; Blackford, J.U.; Heckers, S.; Woodward, N.D. Insula functional connectivity in schizophrenia. Schizophr. Res. 2020, 220, 69–77. [Google Scholar] [CrossRef]
- Smythies, J.R. Neurophilosophy. Psychol. Med. 1992, 22, 547–549. [Google Scholar] [CrossRef]
- Surianarayanan, C.; Lawrence, J.J.; Chelliah, P.R.; Prakash, E.; Hewage, C. Convergence of Artificial Intelligence and Neuroscience towards the Diagnosis of Neurological Disorders—A Scoping Review. Sensors 2023, 23, 3062. [Google Scholar] [CrossRef]
- Świercz, P. The Problem of the Status of Harmony in Pythagorean Philosophy. Horyzonty Polityki 2019, 10, 105–118. [Google Scholar]
- Tabor, W. A dynamical systems perspective on the relationship between symbolic and non-symbolic computation. Cogn. Neurodyn. 2009, 3, 415–427. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Zalesky, A.; Bousman, C.; Everall, I.; Pantelis, C. Insula Functional Connectivity in Schizophrenia: Subregions, Gradients, and Symptoms. Biol. Psychiatry. Cogn. Neurosci. Neuroimaging 2019, 4, 399–408. [Google Scholar] [CrossRef] [PubMed]
- Wani, N.A.; Kumar, R.; Bedi, J. DeepXplainer: An interpretable deep learning based approach for lung cancer detection using explainable artificial intelligence. Comput. Methods Programs Biomed. 2024, 243, 107879. [Google Scholar] [CrossRef] [PubMed]
- Watson, J.B. Psychology as the Behaviorist Views It. Philos. Rev. 1913, 20, 158–177. Available online: https://philpapers.org/rec/WATPAT-21. (accessed on 3 March 2024). [CrossRef]
- Wiesen, D.; Bonilha, L.; Rorden, C.; Karnath, H.O. Disconnectomics to unravel the network underlying deficits of spatial exploration and attention. Sci. Rep. 2022, 12, 22315. [Google Scholar] [CrossRef]
- Wilson, E.O. Consilience: The Unity of Knowledge; Random House: New York, NY, USA, 1998. [Google Scholar]
- Yu, F.; Jiang, Q.J.; Sun, X.Y.; Zhang, R.W. A new case of complete primary cerebellar agenesis: Clinical and imaging findings in a living patient. Brain J. Neurol. 2015, 138 Pt 6, e353. [Google Scholar] [CrossRef]
- Zeki, S.; Shigihara, Y. Parallel processing in the brain’s visual form system: An fMRI study. Front. Hum. Neurosci. 2014, 8, 506. [Google Scholar] [CrossRef]
- Torres, N.V.; Santos, G. The (mathematical) modeling process in biosciences. Front. Genet. 2015, 6, 169934. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vassallo, M.; Sattin, D.; Parati, E.; Picozzi, M. Problems of Connectionism. Philosophies 2024, 9, 41. https://doi.org/10.3390/philosophies9020041
Vassallo M, Sattin D, Parati E, Picozzi M. Problems of Connectionism. Philosophies. 2024; 9(2):41. https://doi.org/10.3390/philosophies9020041
Chicago/Turabian StyleVassallo, Marta, Davide Sattin, Eugenio Parati, and Mario Picozzi. 2024. "Problems of Connectionism" Philosophies 9, no. 2: 41. https://doi.org/10.3390/philosophies9020041
APA StyleVassallo, M., Sattin, D., Parati, E., & Picozzi, M. (2024). Problems of Connectionism. Philosophies, 9(2), 41. https://doi.org/10.3390/philosophies9020041