A Simplified Method for Extracting the Movement Trajectories of Small Aquatic Animals
Abstract
1. Introduction
2. Materials and Methods
2.1. The Sample Collection
2.2. Video Techniques and Quantification and Analysis of Swimming Behavior
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Block, B.A.; Jonsen, I.D.; Jorgensen, S.J.; Winship, A.J.; Shaffer, S.A.; Bograd, S.J.; Hazen, E.L.; Foley, D.G.; Breed, G.A.; Harrison, A.L.; et al. Tracking apex marine predator movements in a dynamic ocean. Nature 2011, 475, 86–90. [Google Scholar] [CrossRef] [PubMed]
- Ella, H.; Genin, A. Capture of zooplankton by site-attached fish: Striking dynamics under different flow speeds and prey paths. Front. Mar. Sci. 2024, 10, 1327581. [Google Scholar] [CrossRef]
- Nathan, R.; Getz, W.M.; Revilla, E.; Holyoak, M.; Kadmon, R.; Saltz, D.; Smouse, P.E. A movement ecology paradigm for unifying organismal movement research. Proc. Natl. Acad. Sci. USA 2008, 105, 19052–19059. [Google Scholar] [CrossRef] [PubMed]
- Dur, G.; Souissi, S.; Schmitt, F.G.; Beyrend-Dur, D.; Hwang, J.S. Mating and mate choice in Pseudodiaptomus annandalei (Copepoda: Calanoida). J. Exp. Mar. Biol. Ecol. 2011, 402, 1–11. [Google Scholar] [CrossRef]
- Kruk, M.R. Measuring behaviour into the twenty-first century. Trends Neurosci. 1997, 20, 187–189. [Google Scholar] [CrossRef]
- Patullo, B.W.; Jolley-Rogers, G.; Macmillan, D.L. Video tracking in the extreme: Video analysis for nocturnal underwater animal movement. Behav. Res. Methods 2007, 39, 783–788. [Google Scholar] [CrossRef]
- Strickler, J.R. Observing free-swimming copepods mating. Philos. Trans. R. Soc. B 1998, 353, 671–680. [Google Scholar] [CrossRef]
- Clarke, R.D.; Buskey, E.J.; Marsden, K.C. Effects of water motion and prey behavior on zooplankton capture by two coral reef fishes. Mar. Biol. 2005, 146, 1145–1155. [Google Scholar] [CrossRef]
- Liu, X.; Ban, S. Size-mediated temperature effect on embryonic development in Eodiaptomus japonicus (Copepoda, Calanoida) in Lake Biwa, Japan. J. Plankton Res. 2020, 42, 779–782. [Google Scholar] [CrossRef]
- Kiørboe, T. Mate finding, mating, and population dynamics in a planktonic copepod Oithona davisae: There are too few males. Limnol. Oceanogr. 2007, 52, 1511–1522. [Google Scholar] [CrossRef]
- Parsons, G.R.; Smiley, P. The effect of environmental changes on swimming performance of the White Crappie. J. Freshw. Ecol. 2003, 18, 89–96. [Google Scholar] [CrossRef]
- Ryan, S.M.; Dodson, S.I. Seasonal analysis of Daphnia pulicaria swimming behavior. Hydrobiologia 1998, 384, 111–118. [Google Scholar] [CrossRef]
- Kane, A.S.; Salierno, J.D.; Gipson, G.T.; Molteno, T.C.A.; Hunter, C. A video-based movement analysis system to quantify behavioral stress responses of fish. Water Res. 2004, 38, 3993–4001. [Google Scholar] [CrossRef] [PubMed]
- Hays, G.C.; Ferreira, L.C.; Sequeira, A.M.M.; Meekan, M.G.; Duarte, C.M.; Bailey, H.; Bailleul, F.; Bowen, W.D.; Caley, M.J.; Costa, D.P.; et al. Key questions in marine megafauna movement ecology. Trends Ecol. Evol. 2016, 31, 463–475. [Google Scholar] [CrossRef]
- Jacoby, D.M.P.; Brooks, E.J.; Croft, D.P.; Sims, D.W. Developing a deeper understanding of animal movements and spatial dynamics through novel application of network analyses. Methods Ecol. Evol. 2012, 3, 574–583. [Google Scholar] [CrossRef]
- Dujon, A.M.; Lindstrom, R.T.; Hays, G.C. The accuracy of Fastloc-GPS locations and implications for animal tracking. Methods Ecol. Evol. 2014, 5, 1162–1169. [Google Scholar] [CrossRef]
- Witt, M.J.; Åkesson, S.; Broderick, A.C.; Coyne, M.S.; Ellick, J.; Formia, A.; Hays, G.C.; Luschi, P.; Stroud, S.; Godley, B.J. Assessing accuracy and utility of satellite-tracking data using Argos-linked Fastloc-GPS. Anim. Behav. 2010, 80, 571–581. [Google Scholar] [CrossRef]
- Davis, C.S.; Gallager, S.M.; Berman, M.S.; Haury, L.R.; Strickler, J.R. The Video Plankton Recorder (VPR) design and initial results. Arch. Hydrobiol. Beih. Ergeb. Limnol. 1992, 36, 67–81. [Google Scholar]
- Sainmont, J.; Gislason, A.; Heuschele, J.; Webster, C.N.; Sylvander, P.; Wang, M.; Varpe, Ø. Inter- and intra-specific diurnal habitat selection of zooplankton during the spring bloom observed by Video Plankton Recorder. Mar. Biol. 2014, 161, 1931–1941. [Google Scholar] [CrossRef]
- Liu, X.; Nakamoto, Y.; Dur, G.; Ban, S. Mate-seeking behavior in the calanoid copepod Eodiaptomus japonicus. J. Plankton Res. 2022, 44, 961–965. [Google Scholar] [CrossRef]
- Seuront, L. Hydrocarbon contamination decreases mating success in a marine planktonic copepod. PLoS ONE 2011, 6, e26283. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Dur, G.; Ban, S.; Sakai, Y.; Ohmae, S.; Morita, T. Planktivorous fish predation masks anthropogenic disturbances on decadal trends in zooplankton biomass and body size structure in Lake Biwa, Japan. Limnol. Oceanogr. 2020, 65, 667–682. [Google Scholar] [CrossRef]
- Liu, X.; Dur, G.; Ban, S.; Sakai, Y.; Ohmae, S.; Morita, T. Quasi-decadal periodicities in growth and production of the copepod Eodiaptomus japonicus in Lake Biwa, Japan, related to the Arctic Oscillation. Limnol. Oceanogr. 2021, 66, 3783–3795. [Google Scholar] [CrossRef]
- Kiørboe, T. Fluid dynamic constraints on resource acquisition in small pelagic organisms. Eur. Phys. J. Spec. Top. 2016, 225, 669–683. [Google Scholar] [CrossRef]
- Liu, X.; Beyrend-Dur, D.; Dur, G.; Ban, S. Effects of temperature on life history traits of Eodiaptomus japonicus (Copepoda: Calanoida) from Lake Biwa (Japan). Limnology 2014, 15, 85–97. [Google Scholar] [CrossRef]
- Liu, X.; Beyrend, D.; Dur, G.; Ban, S. Combined effects of temperature and food concentration on growth and reproduction of Eodiaptomus japonicus (Copepoda: Calanoida) from Lake Biwa (Japan). Freshw. Biol. 2015, 60, 2003–2018. [Google Scholar] [CrossRef]
- Dur, G.; Souissi, S.; Schmitt, F.; Michalec, F.G.; Mahjoub, M.S.; Hwang, J.S. Effects of animal density, volume, and the use of 2D/3D recording on behavioral studies of copepods. Hydrobiologia 2011, 666, 197–214. [Google Scholar] [CrossRef]
- Gao, H.; Liu, X.; Ban, S. Effect of acute acidic stress on survival and metabolic activity of zooplankton from Lake Biwa, Japan. Inland Waters 2022, 12, 488–498. [Google Scholar] [CrossRef]
- Buskey, E.J.; Mann, C.G.; Swift, E. Photophobic responses of calanoid copepods: Possible adaptive value. J. Plankton Res. 1987, 9, 857–870. [Google Scholar] [CrossRef]
- Buskey, E.J.; Peterson, J.O.; Ambler, J.W. The role of photoreception in the swarming behavior of the copepod Dioithona oculata. Mar. Freshw. Behav. Physiol. 1995, 26, 273–285. [Google Scholar] [CrossRef]
- David, A.; Whitehead, L.A. LED-based white light. Comptes Rendus Phys. 2018, 19, 169–181. [Google Scholar] [CrossRef]
- MathWorks. The Language of Technical Computing; Version 9.11.0 (R2021b); MATLAB: Natick, MA, USA, 2021. [Google Scholar]
- Uttieri, M.; Nihongi, A.; Mazzocchi, M.G.; Strickler, J.R.; Zambianchi, E. Pre-copulatory swimming behaviour of Leptodiaptomus ashlandi (Copepoda: Calanoida): A fractal approach. J. Plankton Res. 2007, 29, i17–i26. [Google Scholar] [CrossRef]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef] [PubMed]
- Svetlichny, L.; Larsen, P.S.; Kiørboe, T. Kinematic and dynamic scaling of copepod swimming. Fluids 2020, 5, 68. [Google Scholar] [CrossRef]
- van Duren, L.A.; Videler, J.J. Escape from viscosity: The kinematics and hydrodynamics of copepod foraging and escape swimming. J. Exp. Biol. 2003, 206, 269–279. [Google Scholar] [CrossRef]
- Buskey, E.J.; Lenz, P.H.; Hartline, D.K. Escape behavior of planktonic copepods in response to hydrodynamic disturbances: High speed video analysis. Mar. Ecol. Prog. Ser. 2002, 235, 135–146. [Google Scholar] [CrossRef]
- Takayama, Y.; Hirahara, M.; Liu, X.; Ban, S.; Toda, T. Are egg production and respiration of the marine pelagic copepod Acartia steueri influenced by crowding? Aquac. Res. 2020, 51, 3741–3750. [Google Scholar] [CrossRef]
- Bradshaw, M.; Ho, D.; Fear, M.W.; Gelain, F.; Wood, F.M.; Iyer, K.S. Designer self-assembling hydrogel scaffolds can impact skin cell proliferation and migration. Sci. Rep. 2014, 4, 6903. [Google Scholar] [CrossRef]
- Woods, A.; Docherty, T.; Koch, R. Image distortions in stereoscopic video systems. Stereosc. Disp. Appl. IV 1993, 1915, 36–48. [Google Scholar] [CrossRef]
- Thibault, S.; Gauvin, J.; Doucet, M.; Wang, M. Enhanced optical design by distortion control. Opt. Des. Eng. II 2005, 5962, 596211. [Google Scholar] [CrossRef]
- Lyu, S.; Lauden, H.N.; Wang, L.; Chen, G.; Wang, Z.; Lin, K.; Wang, X. Acoustic telemetry system as a novel approach for evaluating the effective attraction of fish to artificial reefs. Front. Mar. Sci. 2023, 10, 1130547. [Google Scholar] [CrossRef]
- Cooke, S.J.; Hinch, S.G.; Wikelski, M.; Andrews, R.D.; Kuchel, L.J.; Wolcott, T.G.; Butler, P.J. Biotelemetry: A mechanistic approach to ecology. Trends Ecol. Evol. 2004, 19, 334–343. [Google Scholar] [CrossRef] [PubMed]
- Mazzocchi, M.G.; Paffenhöfer, G.A. Swimming and feeding behaviour of the planktonic copepod Clausocalanus furcatus. J. Plankton Res. 1999, 21, 1501–1518. [Google Scholar] [CrossRef]
- Uttieri, M.; Hinow, P.; Pastore, R.; Bianco, G.; d’Alcalá, M.R.; Mazzocchi, M.G. Homeostatic swimming of zooplankton upon crowding: The case of the copepod Centropages typicus. J. R. Soc. Interface 2021, 18, 20210270. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Gao, H.; Hao, A.; Iseri, Y. A Simplified Method for Extracting the Movement Trajectories of Small Aquatic Animals. Methods Protoc. 2025, 8, 67. https://doi.org/10.3390/mps8040067
Liu X, Gao H, Hao A, Iseri Y. A Simplified Method for Extracting the Movement Trajectories of Small Aquatic Animals. Methods and Protocols. 2025; 8(4):67. https://doi.org/10.3390/mps8040067
Chicago/Turabian StyleLiu, Xin, Huanan Gao, Aimin Hao, and Yasushi Iseri. 2025. "A Simplified Method for Extracting the Movement Trajectories of Small Aquatic Animals" Methods and Protocols 8, no. 4: 67. https://doi.org/10.3390/mps8040067
APA StyleLiu, X., Gao, H., Hao, A., & Iseri, Y. (2025). A Simplified Method for Extracting the Movement Trajectories of Small Aquatic Animals. Methods and Protocols, 8(4), 67. https://doi.org/10.3390/mps8040067