Evaluation of a New Laboratory Protocol for Newborn Screening for Congenital Adrenal Hyperplasia in New Zealand
Abstract
:1. Introduction
2. Materials and Methods
2.1. CAH Screening Protocol 1 (Original Protocol)
2.2. CAH Screening Protocol 2 (Revised Protocol)
2.3. Data Analysis
3. Results
3.1. Number of Screening Tests and CAH Cases Detected by Screening (2018–2021)
3.2. Screening Specificity and Positive Predictive Value (2018–2021)
3.3. Screening Sensitivity for SV-CAH
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Miller, W.L.; Auchus, R.J. The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders. Endocr. Rev. 2011, 32, 81–151. [Google Scholar] [CrossRef] [Green Version]
- Speiser, P.W.; Arlt, W.; Auchus, R.J.; Baskin, L.S.; Conway, G.S.; Merke, D.P.; Meyer-Bahlburg, H.F.L.; Miller, W.L.; Murad, M.H.; Oberfield, S.E.; et al. Congenital Adrenal Hyperplasia Due to Steroid 21-Hydroxylase Deficiency: An Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 2018, 103, 4043–4088. [Google Scholar] [CrossRef] [Green Version]
- Heather, N.L.; Seneviratne, S.N.; Webster, D.; Derraik, J.G.B.; Jefferies, C.; Carll, J.; Jiang, Y.; Cutfield, W.S.; Hofman, P.L. Newborn screening for congenital adrenal hyperplasia in New Zealand, 1994–2013. J. Clin. Endocrinol. Metab. 2015, 100, 1002–1008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fingerhut, R. False positive rate in newborn screening for congenital adrenal hyperplasia (CAH)–ether extraction reveals two distinct reasons for elevated 17 alpha-hydroxyprogesterone (17-OHP) values. Steroids 2009, 74, 662–665. [Google Scholar] [CrossRef]
- de Hora, M.R.; Heather, N.L.; Patel, T.; Bresnahan, L.G.; Webster, D.; Hofman, P.L. Measurement of 17-Hydroxyprogesterone by LCMSMS Improves Newborn Screening for CAH Due to 21-Hydroxylase Deficiency in New Zealand. Int. J. Neonatal Screen. 2020, 6, 6. [Google Scholar] [CrossRef] [Green Version]
- Schwarz, E.; Liu, A.P.; Randall, H.; Haslip, C.; Keune, F.; Murray, M.; Longo, N.; Pasquali, M. Use of Steroid Profiling by UPLC-MS/MS as a Second Tier Test in Newborn Screening for Congenital Adrenal Hyperplasia: The Utah Experience. Pediatr. Res. 2009, 66, 230–235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, L.Q.; Tavakoli, N.P.; Morrissey, M.; Spink, D.C.; Cao, Z.M. Liquid chromatography-tandem mass spectrometry analysis of 17-hydroxyprogesterone in dried blood spots revealed matrix effect on immunoassay. Anal. Bioanal. Chem. 2018, 411, 395–402. [Google Scholar] [CrossRef] [PubMed]
- Hicks, R.A.; Yee, J.K.; Mao, C.S.; Graham, S.; Kharrazi, M.; Lorey, F.; Lee, W.P. Precursor-to-product ratios reflect biochemical phenotype in congenital adrenal hyperplasia. Metabolomics 2014, 10, 123–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monostori, P.; Szabo, P.; Marginean, O.; Bereczki, C.; Karg, E. Concurrent Confirmation and Differential Diagnosis of Congenital Adrenal Hyperplasia from Dried Blood Spots: Application of a Second-Tier LC-MS/MS Assay in a Cross-Border Cooperation for Newborn Screening. Horm. Res. Paediatr. 2015, 84, 311–318. [Google Scholar] [CrossRef] [PubMed]
- Lai, F.; Srinivasan, S.; Wiley, V. Evaluation of a Two-Tier Screening Pathway for Congenital Adrenal Hyperplasia in the New South Wales Newborn Screening Programme. Int. J. Neonatal Screen. 2020, 6, 63. [Google Scholar] [CrossRef]
- de Hora, M.R.; Heather, N.L.; Patel, T.; Bresnahan, L.G.; Webster, D.; Hofman, P.L. Implementing steroid profiling by liquid chromatography-tandem mass spectrometry improves newborn screening for congenital adrenal hyperplasia in New Zealand. Clin. Endocrinol. 2021, 94, 904–912. [Google Scholar] [CrossRef] [PubMed]
- Held, P.K.; Bialk, E.R.; Lasarev, M.R.; Allen, D.B. 21-Deoxycortisol is a Key Screening Marker for 21-Hydroxylase Deficiency. J. Pediatr. 2021, 242, 213–219 e1. [Google Scholar] [CrossRef] [PubMed]
- Janzen, N.; Peter, M.; Sander, S.; Steuerwald, U.; Terhardt, M.; Holtkamp, U.; Sander, J. Newborn screening for congenital adrenal hyperplasia: Additional steroid profile using liquid chromatography-tandem mass spectrometry. J. Clin. Endocrinol. Metab. 2007, 92, 2581–2589. [Google Scholar] [CrossRef]
- de Hora, M.R.; Heather, N.L.; Webster, D.; Albert, B.B.; Hofman, P.L. Birth weight or Gestational Age Adjusted Second Tier LCMSMS Cut-offs Improve Newborn Screening for CAH in New Zealand. J. Clin. Endocrinol. Metab. 2021, 106, e3390–e3399. [Google Scholar] [CrossRef] [PubMed]
- Grecsó, N.; Zádori, A.; Szécsi, I.; Baráth, Á.; Galla, Z.; Bereczki, C.; Monostori, P. Storage stability of five steroids and in dried blood spots for newborn screening and retrospective diagnosis of congenital adrenal hyperplasia. PLoS ONE 2020, 15, e0233724. [Google Scholar] [CrossRef]
- Gurian, E.A.; Kinnamon, D.D.; Henry, J.J.; Waisbren, S.E. Expanded newborn screening for biochemical disorders: The effect of a false-positive result. Pediatrics 2006, 117, 1915–1921. [Google Scholar] [CrossRef] [PubMed]
- Sarafoglou, K.; Banks, K.; Gaviglio, A.; Hietala, A.; McCann, M.; Thomas, W. Comparison of one-tier and two-tier newborn screening metrics for congenital adrenal hyperplasia. J. Pediatr. 2014, 164, 1136–1140. [Google Scholar] [CrossRef] [PubMed]
- Sarafoglou, K.; Banks, K.; Kyllo, J.; Pittock, S.; Thomas, W. Cases of congenital adrenal hyperplasia missed by newborn screening in Minnesota. JAMA 2012, 307, 2371–2374. [Google Scholar] [CrossRef] [Green Version]
- Stroek, K.; Ruiter, A.; van der Linde, A.; Ackermans, M.; Bouva, M.J.; Engel, H.; Jakobs, B.; Kemper, E.A.; Akker, E.L.T.V.D.; van Albada, M.E.; et al. Second-tier Testing for 21-Hydroxylase Deficiency in the Netherlands: A Newborn Screening Pilot Study. J. Clin. Endocrinol. Metab. 2021, 106, e4487–e4496. [Google Scholar] [CrossRef]
- Lind-Holst, M.; Bækvad-Hansen, M.; Berglund, A.; Cohen, A.S.; Melgaard, L.; Skogstrand, K.; Duno, M.; Main, K.M.; Hougaard, D.M.; Gravholt, C.H.; et al. Neonatal Screening for Congenital Adrenal Hyperplasia in Denmark: 10 Years of Experience. Horm. Res. Paediatr. 2022, 95, 35–42. [Google Scholar] [CrossRef]
- Heather, N.L.; Nordenstrom, A. Newborn Screening for CAH—Challenges and Opportunities. Int. J. Neonatal Screen. 2021, 7, 11. [Google Scholar] [CrossRef] [PubMed]
- Held, P.K.; Bird, I.M.; Heather, N.L. Newborn Screening for Congenital Adrenal Hyperplasia: Review of Factors Affecting Screening Accuracy. Int. J. Neonatal Screen. 2020, 6, 67. [Google Scholar] [CrossRef] [PubMed]
- Miller, W. Congenital Adrenal Hyperplasia: Time to Replace 17OHP with 21-Deoxycortisol. Horm. Res. Paediatr. 2019, 91, 416–420. [Google Scholar] [CrossRef]
- Coulm, B.; Coste, J.; Tardy, V.; Ecosse, E.; Roussey, M.; Morel, Y.; Carel, J.; for the DHCSF Study Group. Efficiency of Neonatal Screening for Congenital Adrenal Hyperplasia Due to 21-Hydroxylase Deficiency in Children Born in Mainland France Between 1996 and 2003. Arch. Pediatr. Adolesc. Med. 2012, 166, 113–120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borrajo, G.; Doña, V. How Long are Residual Newborn Screening Specimens Useful for Retesting when Stored in Suboptimal and Uncontrolled Conditions of Temperature and Humidity? J. Inborn Error Metab. Screen. 2021, 9, e20210010. [Google Scholar] [CrossRef]
LCMSMS Data | ||||||||
---|---|---|---|---|---|---|---|---|
No | Sex | Age (Days) | BW (g) | GA | 1st Tier 17OHP | 17OHP | (17OHP + A4)/F | 21DF |
1 | M | 2 | 3655 | 39 | 715 | 462 | 52.6 | 32 |
2 | F | 3 | 2450 | 39 | 599 | 301 | 11.9 | 29 |
3 | F | 2 | 4095 | 41 | 358 | 143 | 13.6 | 8 |
4 | F | 2 | 2560 | 38 | 338 | 128 | 6.8 | 64 |
5 | F | 2 | 2960 | 38 | 627 | 551 | 9.8 | <2 a |
6 | F | 1 | 4060 | 39 | 667 | 1422 | 81.7 | 88 |
7 | M | 2 | 3810 | 39 | 613 | 383 | 18.8 | 39 |
8 | F | 2 | 3890 | 41 | 686 | 833 | 20.8 | 73 |
9 | M | 2 | 2902 | 38 | 250 | 112 | 3.7 | 22 |
10 | M | 2 | 3975 | 37 | 434 | 138 | 4.8 | 25 |
11 | M | 2 | 3670 | 39 | 670 | 761 | 28.3 | 64 |
Laboratory Cut-offs (BW ≥ 1500 g) | ≥27 | ≥23 | ≥1.4 | ≥3 |
LCMSMS Data | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Case No. | Year | Sex | Age | GA | BW (g) | 1st Tier 17OHP | 2nd Tier 17OHP Immuno | Protocol 1 Screening Result | 17OHP | 21DF | Protocol 2 Screening Result |
12 | 2017 | M | 3 | 37 | 3010 | 278 | 140 | Positive | 95 | 5 | Positive |
13 | 2014 | M | 3 | 41 | 4330 | 401 | 326 | Positive | 232 | 6 | Positive |
14 | 2014 | F | 3 | 41 | 3750 | 319 | 93 | Positive | 46 | 3 | Positive |
15 | 2013 | F | 3 | 38 | 3610 | 209 | 179 | Positive | 114 | 2 | Positive |
16 | 2013 | F | 1 | 36 | 2580 | 91 | 38 | Positive | 20 | 19 | Positive |
17 | 2013 | F | 1 | 41 | 4200 | 242 | 211 | Positive | 212 | 209 | Positive |
18 | 2012 | F | 2 | 40 | 3650 | 211 | 160 | Positive | 61 | 14 | Positive |
19 | 2012 | M | 4 | 40 | 3165 | 69 | 53 | Positive | 36 | 10 | Positive |
20 | 2012 | F | 1 | 40 | 4100 | 108 | 56 | Positive | 44 | 11 | Positive |
21 | 2011 | M | 3 | 39 | 2970 | 207 | 142 | Positive | 84 | 10 | Positive |
22 | 2010 | F | 1 | 34 | 2410 | 295 | 239 | Positive | 158 | 34 | Positive |
23 | 2010 | F | 0 | 38 | - | 144 | 111 | Positive | 76 | 24 | Positive |
24 | 2010 | F | 1 | 39 | 3710 | 305 | 131 | Positive | 73 | 44 | Positive |
25 | 2009 | M | 2 | 31 | 1810 | 354 | 305 | Positive | 194 | 38 | Positive |
26 | 2009 | F | 5 | 40 | 3200 | 301 | 201 | Positive | 268 | 47 | Positive |
27 | 2008 | M | 4 | 40 | 3750 | 135 | 66 | Positive | 42 | 2 | Positive |
28 | 2008 | M | 3 | - | 4340 | 282 | 63 | Positive | 39 | 19 | Positive |
29 | 2008 | M | 2 | 39 | 3350 | 255 | 186 | Positive | 97 | <2 | Positive |
30 | 2008 | F | 2 | 41 | 3605 | 326 | 267 | Positive | 115 | 66 | Positive |
31 | 2007 | F | 3 | - | 4360 | 248 | 215 | Positive | 86 | 38 | Positive |
32 | 2007 | M | 2 | 41 | 4330 | 415 | 185 | Positive | 81 | 21 | Positive |
33 | 2006 | M | 3 | 40 | 3620 | 404 | 575 | Positive | 326 | 9 | Positive |
34 | 2006 | F | 3 | 42 | 3230 | 123 | 66 | Positive | 33 | 48 | Positive |
35 | 2005 | F | 2 | 39 | 3340 | 444 | 285 | Positive | 160 | 12 | Positive |
36 | 2005 | F | 4 | - | 3760 | 127 | 67 | Positive | 41 | 16 | Positive |
CAH Cases Not Detected by Screening | |||||||||||
37 | 2014 | M | 4 | - | 4770 | 30 | 17 | Negative | 30 | 5 | Positive |
38 | 2010 | F | 4 | 38 | 2930 | 72 | 19 | Negative | 19 | 13 | Positive |
39 | 2010 | M | 2 | - | 3655 | 34 | 17 | Negative | 8 | 7 | Positive |
40 | 2009 | F | 3 | 40 | 3360 | 30 | 21 | Negative | 12 | 11 | Positive |
41 | 2015 | F | 2 | 39 | 3450 | 5 | - | Negative | 2 | <2 | Negative |
42 | 2015 | M | 3 | 39 | 3770 | 26 | - | Negative | 12 | 10 | Negative * |
43 | 2012 | F | 4 | 39 | 3640 | 13 | - | Negative | 6 | <2 | Negative |
44 | 2010 | F | 3 | 40 | 3110 | 6 | - | Negative | 1 | <2 | Negative |
45 | 2008 | F | 5 | 31 | 1640 | 4 | - | Negative | 2 | <2 | Negative |
46 | 2006 | F | 3 | 40 | 3530 | 11 | Negative | 4 | <2 | Negative | |
Laboratory Screening Cut-offs | ≥27 | ≥23 | ≥27 | ≥3 |
Protocol 1 | Protocol 2 | |
---|---|---|
No Second Tier Tests | ||
BW ≤ 1500 g NICU | 1149 | 652 |
BW ≥ 1500 g NICU | 765 | 765 |
Community or Birthing Units | 489 | 489 |
Positive Tests | ||
BW ≤ 1500 g NICU | 36 | 3 |
BW ≥ 1500 g NICU | 48 | 12 |
Community or Birthing Units | 25 | 9 |
False Positive Tests | ||
BW ≤ 1500 g NICU | 36 | 3 |
BW ≥ 1500 g NICU | 45 | 9 |
Community or Birthing Units | 17 | 1 |
Total FP Tests | 98 | 13 |
Screening Specificity | 99.96% | >99.99% |
Chi Squared Test | X2 = 53.0324, p < 0.0001 | |
Retrospective and Prospective Confirmed CAH NBS Specimens | ||
Number of Specimens | 46 | |
Positive Test Results | 36 | 40 |
Sensitivity | 78% | 87% |
Chi Squared Test | X2 = 2.24, p = 0.1338 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Hora, M.R.; Heather, N.L.; Webster, D.R.; Albert, B.B.; Hofman, P.L. Evaluation of a New Laboratory Protocol for Newborn Screening for Congenital Adrenal Hyperplasia in New Zealand. Int. J. Neonatal Screen. 2022, 8, 56. https://doi.org/10.3390/ijns8040056
de Hora MR, Heather NL, Webster DR, Albert BB, Hofman PL. Evaluation of a New Laboratory Protocol for Newborn Screening for Congenital Adrenal Hyperplasia in New Zealand. International Journal of Neonatal Screening. 2022; 8(4):56. https://doi.org/10.3390/ijns8040056
Chicago/Turabian Stylede Hora, Mark R., Natasha L. Heather, Dianne R. Webster, Benjamin B. Albert, and Paul L. Hofman. 2022. "Evaluation of a New Laboratory Protocol for Newborn Screening for Congenital Adrenal Hyperplasia in New Zealand" International Journal of Neonatal Screening 8, no. 4: 56. https://doi.org/10.3390/ijns8040056
APA Stylede Hora, M. R., Heather, N. L., Webster, D. R., Albert, B. B., & Hofman, P. L. (2022). Evaluation of a New Laboratory Protocol for Newborn Screening for Congenital Adrenal Hyperplasia in New Zealand. International Journal of Neonatal Screening, 8(4), 56. https://doi.org/10.3390/ijns8040056