Sickle Cell Disease—Genetics, Pathophysiology, Clinical Presentation and Treatment
Abstract
:1. Introduction
2. Classification
3. Epidemiology
4. Pathophysiology
5. Disease Modifiers
6. Clinical Manifestations
6.1. Vaso-Occlusive Crisis (Pain)
6.2. Anaemia
6.3. Acute Aplastic Crisis
6.4. Infection
6.5. Splenic Sequestration Crisis
6.6. Other Complications
6.7. Psychosocial Impact
7. Treatment and Management
8. Management of Acute Vaso-Occlusive Crises (Pain)
Supportive Care
9. Disease Modifying and Curative Treatments
9.1. Hydroxycarbamide
- Frequent painful episodes (>3 per annum) or chronic debilitating pain not controlled by usual protocols.
- History of stroke or a high risk for stroke or other severe vaso-occlusive events.
- Severe symptomatic anaemia.
- History of acute chest syndrome.
9.2. l-Glutamine
9.3. Blood Transfusion
9.4. Bone Marrow Transplantation (BMT)
10. New and Emerging Therapies for Sickle Cell Disease
10.1. Treatments that Reduce HbS Polymerisation
10.2. Nutritional Supplements
10.3. Agents that Reduce Cell Adhesion to Activated Microvascular Endothelium: Targeted Selectin Inhibitors (Crizanlizumab, Rivipansel, Heparins and Heparin-Derived Molecules)
10.4. Agents that Improve Blood Flow through Anticoagulant Effect: Antiplatelet and Anticoagulant Agents
10.4.1. Prasugrel
10.4.2. Apixaban
10.5. Agents that Restore Depleted Nitric Oxide within the Microvasculature: Statins, l-Arginine, PDE9
10.6. Gene Therapy
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Herrick, J.B. Peculiar Elongated and Sickle-shaped Red Blood Corpuscles in a Case of Severe Anemiaa. Yale J. Biol. Med. 2001, 74, 543–548. [Google Scholar]
- Hoban, M.D.; Orkin, S.H.; Bauer, D.E. Genetic treatment of a molecular disorder: Gene therapy approaches to sickle cell disease. Blood 2016, 127, 839–848. [Google Scholar] [CrossRef] [PubMed]
- Ingram, V.M. Anecdotal, Historical and Critical Commentaries on Genetics Sickle-Cell Anemia Hemoglobin: The Molecular Biology of the First “Molecular Disease”—The Crucial Importance of Serendipity. Genetics 2004, 167, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Ballas, S.K.; Kesen, M.R.; Goldberg, M.F.; Lutty, G.A.; Dampier, C.; Osunkwo, I.; Wang, W.C.; Hoppe, C.; Hagar, W.; Darbari, D.S.; et al. Beyond the Definitions of the Phenotypic Complications of Sickle Cell Disease: An Update on Management. Sci. World J. 2012, 2012, 949535. [Google Scholar] [CrossRef]
- Weatherall, D.J. The inherited diseases of hemoglobin are an emerging global health burden. Blood 2010, 115, 4331–4336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- American Society of Haematology. Sickle Cell Disease Family Fact Sheet 2015. Available online: http://www.michigan.gov/documents/mdch/Sickle_Cell_Fact_Sheet_465285_7.pdf (accessed on 10 February 2019).
- Ansong, D.; Akoto, A.O.; Ocloo, D.; Ohene-frempong, K. Sickle Cell Disease: Management Options and Challenges in Developing Countries. Mediterr. J. Hematol. Infect. Dis. 2013, 5, e2013062. [Google Scholar] [CrossRef] [PubMed]
- Piel, F.B.; Steinberg, M.H.; Rees, D.C. Sickle Cell Disease. N. Engl. J. Med. 2017, 376, 1561–1573. [Google Scholar] [CrossRef] [Green Version]
- Steinberg, M.H. Genetic etiologies for phenotypic diversity in sickle cell anemia. Sci. World J. 2009, 9, 46–67. [Google Scholar] [CrossRef]
- De Montalembert, M. Management of children with sickle cell anemia: A collaborative work. Arch. Pediatr. 2002, 9, 1195–1201. [Google Scholar] [PubMed]
- Weatherall, D.J. The challenge of haemoglobinopathies in resource-poor countries. Br. J. Haematol. 2011, 154, 736–744. [Google Scholar] [CrossRef] [Green Version]
- Grosse, S.D.; Odame, I.; Atrash, H.K.; Amendah, D.D.; Piel, F.B.; Williams, T.N. Sickle cell disease in Africa: A neglected cause of early childhood mortality. Am. J. Prev. Med. 2011, 41, S398–S405. [Google Scholar] [CrossRef] [PubMed]
- Piel, F.B.; Patil, A.P.; Howes, R.E.; Nyangiri, O.A.; Gething, P.W.; Dewi, M.; Temperley, W.H.; Williams, T.N.; Weatherall, D.J.; Hay, S.I. Global epidemiology of sickle haemoglobin in neonates: A contemporary geostatistical model-based map and population estimates. Lancet 2013, 381, 142–151. [Google Scholar] [CrossRef]
- Cronin, E.K.; Normand, C.; Henthorn, J.S.; Hickman, M.; Davies, S.C. Costing model for neonatal screening and diagnosis of haemoglobinopathies. Arch. Dis. Child. Fetal Neonatal Ed. 1998, 79, F161–F167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinez, P.A.; Angastiniotis, M.; Eleftheriou, A.; Gulbis, B.; Pereira, M.D.; Petrova-Benedict, R.; Corrons, J.L. Haemoglobinopathies in Europe: Health & migration policy perspectives. Orphanet J. Rare. Dis. 2014, 9, 97. [Google Scholar]
- Modell, B.; Petrou, M.; Layton, M.; Slater, C.; Ward, R.H.; Rodeck, C.; Varnavides, L.; Nicolaides, K.; Gibbons, S.; Fitches, A.; et al. Audit of prenatal diagnosis for haemoglobin disorders in the United Kingdom: The first 20 years. BMJ 1997, 315, 779–784. [Google Scholar] [CrossRef]
- Cela, E.; Bellón, J.M.; de la Cruz, M.; Beléndez, C.; Berrueco, R.; Ruiz, A.; Elorza, I.; Díaz de Heredia, C.; Cervera, A.; Vallés, G.; et al. National registry of hemoglobinopathies in Spain (REPHem). Pediatr. Blood Cancer 2017, 64, e26322. [Google Scholar] [CrossRef] [PubMed]
- Huntsman, R.G. Hemoglobinopathies: How big a problem? Can. Med. Assoc. J. 1978, 119, 675. [Google Scholar] [PubMed]
- Inusa, B.P.; Colombatti, R. European migration crises: The role of national hemoglobinopathy registries in improving patient access to care. Pediatr. Blood Cancer 2017, 64, e26515. [Google Scholar] [CrossRef] [PubMed]
- Lindenau, J.D.; Wagner, S.C.; Castro, S.M.; Hutz, M.H. The effects of old and recent migration waves in the distribution of HBB* S globin gene haplotypes. Genet. Mol. Biol. 2016, 39, 515–523. [Google Scholar] [CrossRef]
- Dormandy, E.; James, J.; Inusa, B.; Rees, D. How many people have sickle cell disease in the UK? J. Public Health 2017, 40, e291–e295. [Google Scholar] [CrossRef]
- Lobitz, S.; Telfer, P.; Cela, E.; Allaf, B.; Angastiniotis, M.; Backman Johansson, C.; Badens, C.; Bento, C.; Bouva, M.J.; Canatan, D.; et al. Newborn screening for sickle cell disease in Europe: Recommendations from a Pan-European Consensus Conference. Br. J. Haematol. 2018, 183, 648–660. [Google Scholar] [CrossRef] [PubMed]
- Grosse, R.; Lukacs, Z.; Cobos, P.N.; Oyen, F.; Ehmen, C.; Muntau, B.; Timmann, C.; Noack, B. The prevalence of sickle cell disease and its implication for newborn screening in Germany (Hamburg metropolitan area). Pediatr. Blood Cancer 2016, 63, 168–170. [Google Scholar] [CrossRef] [PubMed]
- Colombatti, R.; Martella, M.; Cattaneo, L.; Viola, G.; Cappellari, A.; Bergamo, C.; Azzena, S.; Schiavon, S.; Baraldi, E.; Dalla Barba, B.; et al. Results of a multicenter universal newborn screening program for sickle cell disease in Italy: A call to action. Pediatr. Blood Cancer 2019, 66, e27657. [Google Scholar] [CrossRef] [PubMed]
- Telfer, P.; Coen, P.; Chakravorty, S.; Wilkey, O.; Evans, J.; Newell, H.; Smalling, B.; Amos, R.; Stephens, A.; Rogers, D.; et al. Clinical outcomes in children with sickle cell disease living in England: A neonatal cohort in East London. haematologica 2007, 92, 905–912. [Google Scholar] [CrossRef] [PubMed]
- Quinn, C.T.; Rogers, Z.R.; McCavit, T.L.; Buchanan, G.R. Improved survival of children and adolescents with sickle cell disease. Blood 2010, 115, 3447–3452. [Google Scholar] [CrossRef] [Green Version]
- Makani, J.; Cox, S.E.; Soka, D.; Komba, A.N.; Oruo, J.; Mwamtemi, H.; Magesa, P.; Rwezaula, S.; Meda, E.; Mgaya, J.; et al. Mortality in sickle cell anemia in Africa: A prospective cohort study in Tanzania. PLoS ONE 2011, 6, e14699. [Google Scholar] [CrossRef]
- Chakravorty, S.; Williams, T.N. Sickle cell disease: A neglected chronic disease of increasing global health importance. Arch. Dis. Child. 2015, 100, 48–53. [Google Scholar] [CrossRef]
- Kuznik, A.; Habib, A.G.; Munube, D.; Lamorde, M. Newborn screening and prophylactic interventions for sickle cell disease in 47 countries in sub-Saharan Africa: A cost-effectiveness analysis. BMC Health Serv. Res. 2016, 16, 304. [Google Scholar] [CrossRef]
- Makani, J.; Soka, D.; Rwezaula, S.; Krag, M.; Mghamba, J.; Ramaiya, K.; Cox, S.E.; Grosse, S.D. Health policy for sickle cell disease in Africa: Experience from Tanzania on interventions to reduce under-five mortality. Trop. Med. Int. Health 2015, 20, 184–187. [Google Scholar] [CrossRef] [PubMed]
- Gardner, R.V. Sickle Cell Disease: Advances in Treatment. Ochsner J. 2018, 18, 377–389. [Google Scholar] [CrossRef]
- Manwani, D.; Frenette, P.S. Vaso-occlusion in sickle cell disease: Pathophysiology and novel targeted therapies. Blood 2013, 122, 3892–3898. [Google Scholar] [CrossRef] [PubMed]
- Hebbel, R.P. Ischemia-reperfusion injury in sickle cell anemia: Relationship to acute chest syndrome, endothelial dysfunction, arterial vasculopathy, and inflammatory pain. Hematol. Oncol. Clin. North Am. 2014, 28, 181–198. [Google Scholar] [CrossRef]
- Sebastiani, P.; Nolan, V.G.; Baldwin, C.T.; Abad-Grau, M.M.; Wang, L.; Adewoye, A.H.; McMahon, L.C.; Farrer, L.A.; Taylor, J.G.; Kato, G.J.; et al. A network model to predict the risk of death in sickle cell disease. Blood 2007, 110, 2727–2735. [Google Scholar] [CrossRef] [Green Version]
- Frenette, P.S.; Atweh, G.F. Sickle cell disease: Old discoveries, new concepts, and future promise. J. Clin. Investig. 2007, 117, 850–858. [Google Scholar] [CrossRef]
- Akinsheye, I.; Alsultan, A.; Solovieff, N.; Ngo, D.; Baldwin, C.T.; Sebastiani, P.; Chui, D.H.; Steinberg, M.H. Fetal hemoglobin in sickle cell anemia. Blood 2011, 118, 19–27. [Google Scholar] [CrossRef] [Green Version]
- Bhatnagar, P.; Purvis, S.; Barron-Casella, E.; DeBaun, M.R.; Casella, J.F.; Arking, D.E.; Keefer, J.R. Genome-wide association study identifies genetic variants influencing F-cell levels in sickle-cell patients. Eur. J. Hum. Genet. 2011, 56, 316. [Google Scholar] [CrossRef]
- Watson, J. A study of sickling of young erythrocytes in sickle cell anemia. Blood 1948, 3, 465–469. [Google Scholar]
- Inati, A. Recent advances in improving the management of sickle cell disease. Blood Rev. 2009, 23, S9–S13. [Google Scholar] [CrossRef]
- Bonds, D.R. Three decades of innovation in the management of sickle cell disease: The road to understanding the sickle cell disease clinical phenotype. Blood Rev. 2005, 19, 99–110. [Google Scholar] [CrossRef]
- Watson, R.J.; Burko, H.; Megas, H.; Robinson, M. The hand-foot syndrome in sickle-cell disease in young children. Pediatrics 1963, 31, 975–982. [Google Scholar]
- Piel, F.B.; Tewari, S.; Brousse, V.; Analitis, A.; Font, A.; Menzel, S.; Chakravorty, S.; Thein, S.L.; Inusa, B.; Telfer, P.; et al. Associations between environmental factors and hospital admissions for sickle cell disease. Haematologica 2017, 102, 666–675. [Google Scholar] [CrossRef]
- Brousse, V.; Buffet, P.; Rees, D. The spleen and sickle cell disease: The sick (led) spleen. Br. J. Haematol. 2014, 166, 165–176. [Google Scholar] [CrossRef]
- Minhas, P.S.; KVirdi, J.; Patel, R. Double whammy-acute splenic sequestration crisis in patient with aplastic crisis due to acute parvovirus infection. J. Commun. Hosp. Int. Med. Perspect. 2017, 7, 194–195. [Google Scholar] [CrossRef] [PubMed]
- Tubman, V.N.; Makani, J. Turf wars: Exploring splenomegaly in sickle cell disease in malaria-endemic regions. Br. J. Haematol. 2017, 177, 938–946. [Google Scholar] [CrossRef] [PubMed]
- Booth, C.; Inusa, B.; Obaro, S.K. Infection in sickle cell disease: A review. Int. J. Infect. Dis. 2010, 14, e2–e12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morrissey, B.J.; Bycroft, T.P.; Almossawi, O.; Wilkey, O.B.; Daniels, J.G. Incidence and predictors of bacterial infection in febrile children with sickle cell disease. Hemoglobin 2015, 39, 316–319. [Google Scholar] [PubMed]
- Rezende, P.V.; Viana, M.B.; Murao, M.; Chaves, A.C.; Ribeiro, A.C. Acute splenic sequestration in a cohort of children with sickle cell anemia. J. Pediatr. (Rio J.) 2009, 85, 163–169. [Google Scholar] [CrossRef]
- Araujo, A.N. Acute splenic sequestration in children with sickle cell anemia. J. Pediatr. (Rio J.) 2009, 85, 373–374. [Google Scholar] [CrossRef]
- Habara, A.; Steinberg, M.H. Minireview: Genetic basis of heterogeneity and severity in sickle cell disease. Exp. Biol. Med. 2016, 241, 689–696. [Google Scholar] [CrossRef] [Green Version]
- National Heart Lung and Blood Institute. Evidence-Based Management of Sickle Cell Disease: Expert Panel Report. 2014. Available online: https://www.nhlbi.nih.gov/health-topics/evidence-based-management-sickle-cell-disease (accessed on 10 February 2019).
- Oteng-Ntim, E.; Meeks, D.; Seed, P.T.; Webster, L.; Howard, J.; Doyle, P.; Chappell, L.C. Adverse maternal and perinatal outcomes in pregnant women with sickle cell disease: Systematic review and meta-analysis. Blood 2015, 125, 3316–3325. [Google Scholar] [CrossRef]
- Anie, K.A.; Green, J. Psychological therapies for sickle cell disease and pain. Cochrane Database Syst. Rev. 2015. [Google Scholar] [CrossRef]
- Mulder, N.; Nembaware, V.; Adekile, A.; Anie, K.A.; Inusa, B.; Brown, B.; Campbell, A.; Chinenere, F.; Chunda-Liyoka, C.; Derebail, V.K.; et al. Proceedings of a Sickle Cell Disease Ontology workshop—Towards the first comprehensive ontology for sickle cell disease. Appl. Transl. Genom. 2016, 9, 23–29. [Google Scholar] [CrossRef]
- Hsu, L.L.; Green, N.S.; Ivy, E.D.; Neunert, C.E.; Smaldone, A.; Johnson, S.; Castillo, S.; Castillo, A.; Thompson, T.; Hampton, K.; et al. Community health workers as support for sickle cell care. Am. J. Prev. Med. 2016, 51, S87–S98. [Google Scholar] [CrossRef]
- Ohaeri, J.U.; Shokunbi, W.A. Psychosocial burden of sickle cell disease on caregivers in a Nigerian setting. J. Natl. Med. Assoc. 2002, 94, 1058. [Google Scholar] [PubMed]
- Sickle Cell Society. Standards for the Clinical Care of Adults with Sickle Cell Disease in the UK—2018. Available online: https://www.sicklecellsociety.org/sicklecellstandards/ (accessed on 10 Fbruary 2019).
- Dampier, C.; LeBeau, P.; Rhee, S.; Lieff, S.; Kesler, K.; Ballas, S.; Rogers, Z.; Wang, W.; Comprehensive Sickle Cell Centers (CSCC) Clinical Trial Consortium (CTC) Site Investigators. Health-related quality of life in adults with sickle cell disease (SCD): A report from the comprehensive sickle cell centers clinical trial consortium. Am. J. Hematol. 2011, 86, 203–205. [Google Scholar] [CrossRef] [PubMed]
- Lebensburger, J.D.; Miller, S.T.; Howard, T.H.; Casella, J.F.; Brown, R.C.; Lu, M.; Iyer, R.V.; Sarnaik, S.; Rogers, Z.R.; Wang, W.C.; et al. Influence of severity of anemia on clinical findings in infants with sickle cell anemia: Analyses from the BABY HUG study. Pediatr. Blood Cancer 2012, 59, 675–678. [Google Scholar] [CrossRef] [PubMed]
- Vichinsky, E.P. Comprehensive care in sickle cell disease: Its impact on morbidity and mortality. Semin. Hematol. 1991, 28, 220–226. [Google Scholar]
- Matthews, C.; Walton, E.K.; Inusa, B. Sickle cell disease in childhood. Stud. BMJ 2014, 22. [Google Scholar] [CrossRef]
- Murad, M.H.; Hazem, A.; Prokop, L. Hydroxyurea for Sickle Cell Disease: A Systematic Review of Benefits, Harms, and Barriers of Utilization, 2012 Prepared for the National Heart, Lung, and Blood Institute (NHLBI) Prepared by the Knowledge and Encounter Research Unit. Mayo Clin. 2012, 2012, 1–116. [Google Scholar]
- Ware, R.E. Optimizing hydroxyurea therapy for sickle cell anemia. ASH Educ. Program Book 2015, 2015, 436–443. [Google Scholar] [CrossRef]
- Steinberg, M.H.; Barton, F.; Castro, O.; Pegelow, C.H.; Ballas, S.K.; Kutlar, A.; Orringer, E.; Bellevue, R.; Olivieri, N.; Eckman, J.; et al. Effect of hydroxyurea on mortality and morbidity in adult sickle cell anemia: Risks and benefits up to 9 years of treatment. JAMA 2003, 289, 1645–1651. [Google Scholar] [CrossRef] [PubMed]
- Strouse, J.J.; Lanzkron, S.; Beach, M.C.; Haywood, C.; Park, H.; Witkop, C.; Wilson, R.F.; Bass, E.B.; Segal, J.B. Hydroxyurea for sickle cell disease: A systematic review for efficacy and toxicity in children. Pediatrics 2008, 122, 1332–1342. [Google Scholar] [CrossRef] [PubMed]
- Inusa, B.P.D.; Atoyebi Wale, A.A.; Idhate, T.; Dogara, L.; Ijei, I.; Qin, Y.; Anie, K.; Lawson, J.O.; Hsu, L. Low-dose hydroxycarbamide therapy may offer similar benefit as maximum tolerated dose for children and young adults with sickle cell disease in low-middle-income settings. F1000Research 2018, 7, F1000 Faculty Rev-1407. [Google Scholar] [CrossRef]
- Qureshi, A.; Kaya, B.; Pancham, S.; Keenan, R.; Anderson, J.; Akanni, M.; Howard, J.; British Society for Haematology. Guidelines for the use of hydroxycarbamide in children and adults with sickle cell disease: A British Society for Haematology Guideline. Br. J. Haematol. 2018, 181, 460–475. [Google Scholar] [CrossRef]
- Hassan, A.; Awwalu, S.; Okpetu, L.; Waziri, A.D. Effect of hydroxyurea on clinical and laboratory parameters of sickle cell anaemia patients in North–West Nigeria. Egypt J. Haematol. 2017, 42, 70. [Google Scholar] [CrossRef]
- Niihara, Y.; Miller, S.T.; Kanter, J.; Lanzkron, S.; Smith, W.R.; Hsu, L.L.; Gordeuk, V.R.; Viswanathan, K.; Sarnaik, S.; Osunkwo, I.; Guillaume, E. A phase 3 trial of l-glutamine in sickle cell disease. N. Engl. J. Med. 2018, 379, 226–235. [Google Scholar] [CrossRef]
- Quinn, C.T. l-glutamine for sickle cell anemia: More questions than answers. Blood 2018, 132, 689–693. [Google Scholar] [CrossRef]
- Danaee, A.; Inusa, B.; Howard, J.; Kesse-Adu, R.; Robinson, S. hyperhaemolysis in patients with haemoglobinopathies: A single centre experience: 229. Br. J. Haematol. 2014, 165, 96. [Google Scholar]
- Adewoyin, A.S.; Obieche, J.C. Hypertransfusion therapy in sickle cell disease in Nigeria. Adv. Hematol. 2014, 2014, 923593. [Google Scholar] [CrossRef]
- Kassim, A.A.; Sharma, D. Hematopoietic stem cell transplantation for sickle cell disease: The changing landscape. Hematol. Oncol. Stem Cell Ther. 2017, 10, 259–266. [Google Scholar] [CrossRef]
- Wiebking, V.; Hütker, S.; Schmid, I.; Immler, S.; Feuchtinger, T.; Albert, M.H. Reduced toxicity, myeloablative HLA-haploidentical hematopoietic stem cell transplantation with post-transplantation cyclophosphamide for sickle cell disease. Ann. Hematol. 2017, 96, 1373–1377. [Google Scholar] [CrossRef] [PubMed]
- Hashmi, S.K.; Srivastava, A.; Rasheed, W.; Adil, S.; Wu, T.; Jagasia, M.; Nassar, A.; Hwang, W.Y.; Hamidieh, A.A.; Greinix, H.T.; et al. Cost and quality issues in establishing hematopoietic cell transplant program in developing countries. Hematol. Oncol. Stem Cell Ther. 2017, 10, 167–172. [Google Scholar] [CrossRef]
- Metcalf, B.; Chuang, C.; Dufu, K.; Patel, M.P.; Silva-Garcia, A.; Johnson, C.; Lu, Q.; Partridge, J.R.; Patskovska, L.; Patskovsky, Y.; et al. Discovery of GBT440, an orally bioavailable R-state stabilizer of sickle cell hemoglobin. ACS Med. Chem. Lett. 2017, 8, 321–326. [Google Scholar] [CrossRef] [PubMed]
- Daak, A.A.; Ghebremeskel, K.; Hassan, Z.; Attallah, B.; Azan, H.H.; Elbashir, M.I.; Crawford, M. Effect of omega-3 (n−3) fatty acid supplementation in patients with sickle cell anemia: Randomized, double-blind, placebo-controlled trial. Am. J. Clin. Nutr. 2012, 97, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Tomer, A.; Kasey, S.; Connor, W.E.; Clark, S.; Harker, L.A.; Eckman, J.R. Reduction of pain episodes and prothrombotic activity in sickle cell disease by dietary n-3 fatty acids. Thromb. Haemost. 2001, 85, 966–974. [Google Scholar] [CrossRef]
- Dixit, R.; Nettem, S.; Madan, S.S.; Soe, H.H.; Abas, A.B.; Vance, L.D.; Stover, P.J. Folate supplementation in people with sickle cell disease. Cochrane. Database Syst. Rev. 2018. [Google Scholar] [CrossRef]
- Adzu, B.; Masimirembwa, C.; Mustapha, K.B.; Thelingwani, R.; Kirim, R.A.; Gamaniel, K.S. Effect of NIPRISAN® on CYP3A4 activity in vitro. Eur. J. Drug Metab. Pharmacokinet. 2015, 40, 115–118. [Google Scholar] [CrossRef]
- Cordeiro, N.J.; Oniyangi, O. Phytomedicines (medicines derived from plants) for sickle cell disease. Cochrane Database Syst. Rev. 2004. [Google Scholar] [CrossRef]
- Ataga, K.I.; Kutlar, A.; Kanter, J.; Liles, D.; Cancado, R.; Friedrisch, J.; Guthrie, T.H.; Knight-Madden, J.; Alvarez, O.A.; Gordeuk, V.R.; et al. Crizanlizumab for the prevention of pain crises in sickle cell disease. N. Engl. J. Med. 2017, 376, 429–439. [Google Scholar] [CrossRef]
- Kelley, D.; Jones, L.T.; Wu, J.; Bohm, N. Evaluating the safety and effectiveness of venous thromboembolism prophylaxis in patients with sickle cell disease. J. Thromb. Thrombolysis 2017, 43, 463–468. [Google Scholar] [CrossRef]
- Van Zuuren, E.J.; Fedorowicz, Z. Low-molecular-weight heparins for managing vasoocclusive crises in people with sickle cell disease: A summary of a cochrane systematic review. Hemoglobin 2014, 38, 221–223. [Google Scholar] [CrossRef]
- Heeney, M.M.; Hoppe, C.C.; Abboud, M.R.; Inusa, B.; Kanter, J.; Ogutu, B.; Brown, P.B.; Heath, L.E.; Jakubowski, J.A.; Zhou, C.; et al. A multinational trial of prasugrel for sickle cell vaso-occlusive events. N. Engl. J. Med. 2016, 374, 625–635. [Google Scholar] [CrossRef]
- Hoppe, C.C.; Styles, L.; Heath, L.E.; Zhou, C.; Jakubowski, J.A.; Winters, K.J.; Brown, P.B.; Rees, D.C.; Heeney, M.M. Design of the DOVE (Determining Effects of Platelet Inhibition on Vaso-Occlusive Events) trial: A global Phase 3 double-blind, randomized, placebo-controlled, multicenter study of the efficacy and safety of prasugrel in pediatric patients with sickle cell anemia utilizing a dose titration strategy. Pediatr. Blood Cancer 2016, 63, 299–305. [Google Scholar]
- Telen, M.J. Beyond hydroxyurea: New and old drugs in the pipeline for sickle cell disease. Blood 2016, 127, 810–819. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Xu, C.; Manwani, D.; Frenette, P.S. Neutrophils, platelets, and inflammatory pathways at the nexus of sickle cell disease pathophysiology. Blood 2016, 127, 801–809. [Google Scholar] [CrossRef] [PubMed]
- Ribeil, J.A.; Hacein-Bey-Abina, S.; Payen, E.; Magnani, A.; Semeraro, M.; Magrin, E.; Caccavelli, L.; Neven, B.; Bourget, P.; El Nemer, W.; et al. Gene therapy in a patient with sickle cell disease. N. Engl. J. Med. 2017, 376, 848–855. [Google Scholar] [CrossRef]
- Inusa, B.P.; Anie, K.A.; Lamont, A.; Dogara, L.G.; Ojo, B.; Ijei, I.; Atoyebi, W.; Gwani, L.; Gani, E.; Hsu, L. Utilising the ‘Getting to Outcomes®’ Framework in Community Engagement for Development and Implementation of Sickle Cell Disease Newborn Screening in Kaduna State, Nigeria. Int. J. Neonatal Screen. 2018, 4, 33. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Inusa, B.P.D.; Hsu, L.L.; Kohli, N.; Patel, A.; Ominu-Evbota, K.; Anie, K.A.; Atoyebi, W. Sickle Cell Disease—Genetics, Pathophysiology, Clinical Presentation and Treatment. Int. J. Neonatal Screen. 2019, 5, 20. https://doi.org/10.3390/ijns5020020
Inusa BPD, Hsu LL, Kohli N, Patel A, Ominu-Evbota K, Anie KA, Atoyebi W. Sickle Cell Disease—Genetics, Pathophysiology, Clinical Presentation and Treatment. International Journal of Neonatal Screening. 2019; 5(2):20. https://doi.org/10.3390/ijns5020020
Chicago/Turabian StyleInusa, Baba P. D., Lewis L. Hsu, Neeraj Kohli, Anissa Patel, Kilali Ominu-Evbota, Kofi A. Anie, and Wale Atoyebi. 2019. "Sickle Cell Disease—Genetics, Pathophysiology, Clinical Presentation and Treatment" International Journal of Neonatal Screening 5, no. 2: 20. https://doi.org/10.3390/ijns5020020
APA StyleInusa, B. P. D., Hsu, L. L., Kohli, N., Patel, A., Ominu-Evbota, K., Anie, K. A., & Atoyebi, W. (2019). Sickle Cell Disease—Genetics, Pathophysiology, Clinical Presentation and Treatment. International Journal of Neonatal Screening, 5(2), 20. https://doi.org/10.3390/ijns5020020