Validation on the First-Tier Fully Automated High-Throughput SMN1, SMN2, TREC, and RPP30 Quantification by Quadruplex Droplet Digital PCR for Newborn Screening for Spinal Muscular Atrophy and Severe Combined Immunodeficiency
Abstract
1. Introduction
2. Materials and Methods
2.1. Specimens
2.2. First-Tier Quadruplex ddPCR of SMN1, SMN2, TREC, and RPP30
2.2.1. DNA Extraction from DBS
2.2.2. ddPCR Method
2.2.3. Precision
2.2.4. Accuracy
2.2.5. Limit of Blank, Limit of Detection, and Limit of Quantification
2.2.6. Linearity of TREC Measurement
2.2.7. Storage Stability
2.3. Second-Tier Sanger Sequencing for SMN1 and SMN2 Exon 7
2.4. Statistical Analysis
3. Results
3.1. Precision
3.2. Accuracy
3.3. Limit of Blank, Limit of Detection, and Limit of Quantification
3.4. Linearity of TREC Measurement
3.5. Storage Stability
3.6. Distribution Study of SMN1 and SMN2 Copy Numbers
3.7. Reference Interval of TREC Concentration
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CDC | Centers for Disease Control and Prevention |
CV | Coefficient of variation |
DBS | Dried blood spots |
ddPCR | Droplet digital PCR |
LoB | Limit of blank |
LoD | Limit of detection |
LoQ | Limit of quantification |
MLPA | Multiplex ligation-dependent probe amplification |
NBS | Newborn screening |
NGS | Next-generation sequencing |
NSQAP | Newborn screening quality assurance program |
qPCR | Quantitative PCR |
SCID | Severe combined immunodeficiency |
SD | Standard deviation |
SMA | Spinal muscular atrophy |
TREC | T-cell receptor excision circle |
References
- Taylor, J.L.; Lee, F.K.; Yazdanpanah, G.K.; Staropoli, J.F.; Liu, M.; Carulli, J.P.; Sun, C.; Dobrowolski, S.F.; Hannon, W.H.; Vogt, R.F. Newborn blood spot screening test using multiplexed real-time PCR to simultaneously screen for spinal muscular atrophy and severe combined immunodeficiency. Clin. Chem. 2015, 61, 412–419. [Google Scholar] [CrossRef] [PubMed]
- Furnier, S.M.; Durkin, M.S.; Baker, M.W. Translating molecular technologies into routine newborn screening practice. Int. J. Neonatal Screen. 2020, 6, 80. [Google Scholar] [CrossRef]
- Hale, K.; Ojodu, J.; Singh, S. Landscape of spinal muscular atrophy newborn screening in the United States: 2018–2021. Int. J. Neonatal Screen. 2021, 7, 33. [Google Scholar] [CrossRef]
- Keinath, M.C.; Prior, D.E.; Prior, T.W. Spinal muscular atrophy: Mutations, testing, and clinical relevance. Appl. Clin. Genet. 2021, 14, 11–25. [Google Scholar] [CrossRef]
- Dangouloff, T.; Vrščaj, E.; Servais, L.; Osredkar, D.; Group, S.N.W.S. Newborn screening programs for spinal muscular atrophy worldwide: Where we stand and where to go. Neuromuscul. Disord. 2021, 31, 574–582. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, C.; Wu, D.W.; Wang, B.Y.; Xiao, R.; Huang, X.L.; Yang, X.; Gao, Z.G.; Yang, R.L. Comprehensive newborn screening for severe combined immunodeficiency, X-linked agammaglobulinemia, and spinal muscular atrophy: The Chinese experience. World J. Pediatr. 2024, 20, 1270–1282. [Google Scholar] [CrossRef]
- Glascock, J.; Sampson, J.; Haidet-Phillips, A.; Connolly, A.; Darras, B.; Day, J.; Finkel, R.; Howell, R.R.; Klinger, K.; Kuntz, N.; et al. Treatment algorithm for infants diagnosed with spinal muscular atrophy through newborn screening. J. Neuromuscul. Dis. 2018, 5, 145–158. [Google Scholar] [CrossRef]
- Wirth, B.; Brichta, L.; Schrank, B.; Lochmüller, H.; Blick, S.; Baasner, A.; Heller, R. Mildly affected patients with spinal muscular atrophy are partially protected by an increased SMN2 copy number. Hum. Genet. 2006, 119, 422–428. [Google Scholar] [CrossRef]
- Wirth, B. Spinal muscular atrophy: In the challenge lies a solution. Trends Neurosci. 2021, 44, 306–322. [Google Scholar] [CrossRef] [PubMed]
- Eggermann, K.; Gläser, D.; Abicht, A.; Wirth, B. Spinal muscular atrophy (5qSMA): Best practice of diagnostics, newborn screening and therapy. Med. Genet. 2020, 32, 263–272. [Google Scholar] [CrossRef]
- Glascock, J.; Sampson, J.; Connolly, A.M.; Darras, B.T.; Day, J.W.; Finkel, R.; Howell, R.R.; Klinger, K.W.; Kuntz, N.; Prior, T.; et al. Revised recommendations for the treatment of infants diagnosed with spinal muscular atrophy via newborn screening who have 4 copies of SMN2. J. Neuromuscul. Dis. 2020, 7, 97–100. [Google Scholar] [CrossRef]
- Society for Neuroscience and Neurology, Chinese Research Hospital Association; Dedicated Fund for Neuromuscular Disorders, March of Dimes Birth Defects Foundation of China; Wu, S.; Tian, G.; Yang, R. Expert consensus on newborn screening for spinal muscular atrophy (2023 edition). Zhonghua Yi Xue Za Zhi 2023, 103, 2075–2081. [Google Scholar] [CrossRef]
- Vill, K.; Schwartz, O.; Blaschek, A.; Gläser, D.; Nennstiel, U.; Wirth, B.; Burggraf, S.; Röschinger, W.; Becker, M.; Czibere, L.; et al. Newborn screening for spinal muscular atrophy in Germany: Clinical results after 2 years. Orphanet J. Rare Dis. 2021, 16, 153. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Lee, H.; Shin, S.; Lee, S.T.; Lee, K.A.; Choi, J.R. Analytical validation of the droplet digital PCR assay for diagnosis of spinal muscular atrophy. Clin. Chim. Acta 2020, 510, 787–789. [Google Scholar] [CrossRef]
- Shum, B.O.V.; Henner, I.; Cairns, A.; Pretorius, C.; Wilgen, U.; Barahona, P.; Ungerer, J.P.J.; Bennett, G. Technical feasibility of newborn screening for spinal muscular atrophy by next-generation DNA sequencing. Front. Genet. 2023, 14, 1095600. [Google Scholar] [CrossRef]
- Strunk, A.; Abbes, A.; Stuitje, A.R.; Hettinga, C.; Sepers, E.M.; Snetselaar, R.; Schouten, J.; Asselman, F.-L.; Cuppen, I.; Lemmink, H.; et al. Validation of a fast, robust, inexpensive, two-tiered neonatal screening test algorithm on dried blood spots for spinal muscular atrophy. Int. J. Neonatal Screen. 2019, 5, 21. [Google Scholar] [CrossRef]
- Rouzier, C.; Chaussenot, A.; Paquis-Flucklinger, V. Molecular diagnosis and genetic counseling for spinal muscular atrophy (SMA). Arch. Pediatr. 2020, 27, 7S9–7S14. [Google Scholar] [CrossRef]
- Stabley, D.L.; Harris, A.W.; Holbrook, J.; Chubbs, N.J.; Lozo, K.W.; Crawford, T.O.; Swoboda, K.J.; Funanage, V.L.; Wang, W.; Mackenzie, W.; et al. SMN1 and SMN2 copy numbers in cell lines derived from patients with spinal muscular atrophy as measured by array digital PCR. Mol. Genet. Genomic Med. 2015, 3, 248–257. [Google Scholar] [CrossRef]
- Schorling, D.C.; Becker, J.; Pechmann, A.; Langer, T.; Wirth, B.; Kirschner, J. Discrepancy in redetermination of SMN2 copy numbers in children with SMA. Neurology 2019, 96, 267–269. [Google Scholar] [CrossRef]
- Alías, L.; Bernal, S.; Barceló, M.J.; Also-Rallo, E.; Martínez-Hernández, R.; Rodríguez-Alvarez, F.J.; Hernández-Chico, C.; Baiget, M.; Tizzano, E.F. Accuracy of marker analysis, quantitative real-time polymerase chain reaction, and multiple ligation-dependent probe amplification to determine SMN2 copy number in patients with spinal muscular atrophy. Genet. Test. Mol. Biomarkers 2011, 15, 587–594. [Google Scholar] [CrossRef] [PubMed]
- Cuscó, I.; Bernal, S.; Blasco-Pérez, L.; Calucho, M.; Alias, L.; Fuentes-Prior, P.; Tizzano, E.F. Practical guidelines to manage discordant situations of SMN2 copy number in patients with spinal muscular atrophy. Neurol. Genet. 2020, 6, e530. [Google Scholar] [CrossRef] [PubMed]
- Chien, Y.H.; Chiang, S.C.; Weng, W.C.; Lee, N.C.; Lin, C.J.; Hsieh, W.S.; Lee, W.T.; Jong, Y.J.; Ko, T.M.; Hwu, W.L. Presymptomatic diagnosis of spinal muscular atrophy through newborn screening. J. Pediatr. 2017, 190, 124–129. [Google Scholar] [CrossRef] [PubMed]
- Kwan, A.; Abraham, R.S.; Currier, R.; Brower, A.; Andruszewski, K.; Abbott, J.K.; Baker, M.; Ballow, M.; Bartoshesky, L.E.; Bonilla, F.A.; et al. Newborn screening for severe combined immunodeficiency in 11 screening programs in the United States. JAMA 2014, 312, 729–738. [Google Scholar] [CrossRef] [PubMed]
- Vidal-Folch, N.; Milosevic, D.; Majumdar, R.; Gavrilov, D.; Matern, D.; Raymond, K.; Rinaldo, P.; Tortorelli, S.; Abraham, R.S.; Oglesbee, D. A droplet digital PCR method for severe combined immunodeficiency newborn screening. J. Mol. Diagn. 2017, 19, 755–765. [Google Scholar] [CrossRef]
- Wang, K.C.; Fang, C.Y.; Chang, C.C.; Chiang, C.K.; Chen, Y.W. A rapid molecular diagnostic method for spinal muscular atrophy. J. Neurogenet. 2021, 35, 29–32. [Google Scholar] [CrossRef]
- Vidal-Folch, N.; Gavrilov, D.; Raymond, K.; Rinaldo, P.; Tortorelli, S.; Matern, D.; Oglesbee, D. Multiplex droplet digital PCR method applicable to newborn screening, carrier status, and assessment of spinal muscular atrophy. Clin. Chem. 2018, 64, 1753–1761. [Google Scholar] [CrossRef]
- Jiang, L.; Lin, R.; Gallagher, S.; Zayac, A.; Butchbach, M.E.R.; Hung, P. Development and validation of a 4-color multiplexing spinal muscular atrophy (SMA) genotyping assay on a novel integrated digital PCR instrument. Sci. Rep. 2020, 10, 19892. [Google Scholar] [CrossRef]
- Grüner, N.; Stambouli, O.; Ross, R.S. Dried blood spots—preparing and processing for use in immunoassays and in molecular techniques. JoVE 2015, 97, 52619. [Google Scholar] [CrossRef]
- Bio-Rad Laboratories. ddPCR™ Expert Design Assay: ddPCR SMN/RPP30/TREC Multiplex, Human, Homo sapiens. Available online: https://www.bio-rad.com/digital-assays/assay-detail/dHsaEXD54223818 (accessed on 26 February 2024).
- The dMIQE Group; Huggett, J.F. The digital MIQE guidelines update: Minimum information for publication of quantitative digital PCR experiments for 2020. Clin. Chem. 2020, 66, 1012–1029, Erratum in Clin. Chem. 2020, 66, 1464. [Google Scholar] [CrossRef]
- Makowski, G.S.; Davis, E.L.; Hopper, S.M. The effect of storage on Guthrie cards: Implications for deoxyribonucleic acid amplification. Ann. Clin. Lab. Sci. 1996, 26, 458–469. [Google Scholar]
- Kraszewski, J.N.; Kay, D.M.; Stevens, C.F.; Koval, C.; Haser, B.; Ortiz, V.; Albertorio, A.; Cohen, L.L.; Jain, R.; Andrew, S.P.; et al. Pilot study of population-based newborn screening for spinal muscular atrophy in New York state. Genet. Med. 2018, 20, 608–613. [Google Scholar] [CrossRef] [PubMed]
- Kumar, B.; Barton, S.; Kordowska, J.; Eaton, R.B.; Counihan, A.M.; Hale, J.E.; Comeau, A.M. Novel modification of a confirmatory SMA sequencing assay that can be used to determine SMN2 copy number. Int. J. Neonatal Screen. 2021, 7, 47. [Google Scholar] [CrossRef]
- Lam, S.T.S.; Cheng, M.L. Neonatal screening in Hong Kong and Macau. Southeast Asian J. Trop. Med. Public Health 2003, 34, 73–75. [Google Scholar]
- Kleinle, S.; Scholz, V.; Benet-Pagés, A.; Wohlfrom, T.; Gehling, S.; Scharf, F.; Rost, S.; Prott, E.-C.; Grinzinger, S.; Hotter, A.; et al. Closing the gap—Detection of 5q-spinal muscular atrophy by short-read next-generation sequencing and unexpected results in a diagnostic patient cohort. J. Neuromuscul. Dis. 2023, 10, 835–846. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Harting, J.; Farrow, E.; Thiffault, I.; Kasperaviciute, D.; Consortium, G.E.R.; Hoischen, A.; Gilissen, C.; Pastinen, T.; Eberle, M.A. Comprehensive SMN1 and SMN2 profiling for spinal muscular atrophy analysis using long-read PacBio HiFi sequencing. Am. J. Hum. Genet. 2023, 110, 240–250. [Google Scholar] [CrossRef] [PubMed]
NSQAP Specimens | NSQAP Classification | Copy Number Results by First-Tier ddPCR | Our Classification | ||||
SMN1 | SMN2 | ||||||
1 | Normal | 2.0 | 1.0 | Normal | |||
2 | SMA | 0.0 | 1.9 | SMA | |||
3 | Carrier | 0.9 | 1.9 | Carrier | |||
4 | SMA | 0.0 | 1.9 | SMA | |||
5 | Carrier | 0.9 | 1.9 | Carrier | |||
SMA Patient Specimens | Copy Number Results by MLPA | Copy Number Results by First-Tier ddPCR | Second-Tier Sanger Sequencing Results | ||||
SMN1 | SMN2 | SMN1 | SMN2 | Assay A | Assay B | SMN1 Exon 7 | |
1 | 0 | 2 | 0.0 | 2.0 | No peak | c.840T | Absent |
2 | 0 | 2 | 0.0 | 2.0 | No peak | c.840T | Absent |
3 | 0 | 3 | 0.0 | 3.0 | No peak | c.840T | Absent |
4 | 0 | 3 | 0.0 | 3.1 | No peak | c.840T | Absent |
5 | 0 | 4 | 0.0 | 4.0 | No peak | c.840T | Absent |
6 | 0 | 4 | 0.0 | 4.0 | No peak | c.840T | Absent |
Specimen No. | ddPCR Results | NSQAP Results | ||
---|---|---|---|---|
TREC Copies/µL Blood 1 | RPP30 Copies/µL Blood 2 | Our Classification | ||
1 | 326 | 10,932 | Negative | Negative |
2 | 130 | 14,472 | Negative | Negative |
3 | 141 | 15,927 | Negative | Negative |
4 | 168 | 9998 | Negative | Negative |
5 | 0 | 144,892 | Positive | Positive |
6 | 0 | 122,741 | Positive | Positive |
7 | 0 | 120,351 | Positive | Positive |
8 | 0 | 73,699 | Positive | Positive |
9 | 0 | 0 | Unqualified sample | Unqualified sample |
10 | 0 | 4 | Unqualified sample | Unqualified sample |
Gene | Copy Number | Sample Number | Frequency, % |
---|---|---|---|
SMN1 | 1 | 43 | 2.3 |
2 | 1707 | 91.4 | |
3 | 111 | 6.0 | |
4 | 4 | 0.2 | |
5 | 2 | 0.1 | |
SMN2 | 0 | 90 | 4.8 |
1 | 669 | 35.7 | |
2 | 1040 | 55.7 | |
3 | 57 | 3.1 | |
4 | 5 | 0.3 | |
5 | 5 | 0.3 | |
6 | 1 | 0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the International Society for Neonatal Screening. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mak, C.M.; Ho, T.Y.C.; Yip, M.K.; Song, F.E.; Tam, R.C.M.; Yu, L.W.Y.; Ke, A.A.; Law, E.C.Y.; Chan, T.C.H.; Yeung, M.C.W. Validation on the First-Tier Fully Automated High-Throughput SMN1, SMN2, TREC, and RPP30 Quantification by Quadruplex Droplet Digital PCR for Newborn Screening for Spinal Muscular Atrophy and Severe Combined Immunodeficiency. Int. J. Neonatal Screen. 2025, 11, 97. https://doi.org/10.3390/ijns11040097
Mak CM, Ho TYC, Yip MK, Song FE, Tam RCM, Yu LWY, Ke AA, Law ECY, Chan TCH, Yeung MCW. Validation on the First-Tier Fully Automated High-Throughput SMN1, SMN2, TREC, and RPP30 Quantification by Quadruplex Droplet Digital PCR for Newborn Screening for Spinal Muscular Atrophy and Severe Combined Immunodeficiency. International Journal of Neonatal Screening. 2025; 11(4):97. https://doi.org/10.3390/ijns11040097
Chicago/Turabian StyleMak, Chloe Miu, Timothy Yiu Cheong Ho, Man Kwan Yip, Felicite Enyu Song, Raymond Chiu Mo Tam, Leanne Wing Ying Yu, Ann Anhong Ke, Eric Chun Yiu Law, Toby Chun Hei Chan, and Matthew Chun Wing Yeung. 2025. "Validation on the First-Tier Fully Automated High-Throughput SMN1, SMN2, TREC, and RPP30 Quantification by Quadruplex Droplet Digital PCR for Newborn Screening for Spinal Muscular Atrophy and Severe Combined Immunodeficiency" International Journal of Neonatal Screening 11, no. 4: 97. https://doi.org/10.3390/ijns11040097
APA StyleMak, C. M., Ho, T. Y. C., Yip, M. K., Song, F. E., Tam, R. C. M., Yu, L. W. Y., Ke, A. A., Law, E. C. Y., Chan, T. C. H., & Yeung, M. C. W. (2025). Validation on the First-Tier Fully Automated High-Throughput SMN1, SMN2, TREC, and RPP30 Quantification by Quadruplex Droplet Digital PCR for Newborn Screening for Spinal Muscular Atrophy and Severe Combined Immunodeficiency. International Journal of Neonatal Screening, 11(4), 97. https://doi.org/10.3390/ijns11040097