Genotype Characteristics and Hearing Phenotype Analysis of Newborns with Biallelic GJB2 Mutations: A 652-Case–Cohort Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Subjects
2.2. Dried Blood Spot Preparation and DNA Extraction
2.3. Genetic Screening for Deafness-Related Gene Hotspot Mutations
2.4. Audiological Evaluation
2.5. Follow-Up Protocol
2.6. Statistical Analysis
3. Results
3.1. Genotype Distribution
3.2. Hearing Screening Results
3.3. Hearing Diagnosis Results
3.3.1. Incidence of Hearing Loss
3.3.2. Severity of Hearing Loss
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pimperton, H.; Kennedy, C.R. The impact of early identification of permanent childhood hearing impairment on speech and language outcomes. Arch. Dis. Child. 2012, 97, 648–653. [Google Scholar] [CrossRef] [PubMed]
- Xiao, H.; Amaerjiang, N.; Wang, W.; Li, M.; Zunong, J.; En, H.; Zhao, X.; Wen, C.; Yu, Y.; Huang, L.; et al. Hearing thresholds elevation and potential association with emotional problems among 1914 children in Beijing, China. Front. Pediatr. 2022, 10, 937301. [Google Scholar] [CrossRef]
- Kelsell, D.P.; Dunlop, J.; Stevens, H.P.; Lench, N.J.; Liang, J.N.; Parry, G.; Mueller, R.F.; Leigh, I.M. Connexin 26 mutations in hereditary non-syndromic sensorineural deafness. Nature 1997, 387, 80–83. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhao, X.; Huang, L.; Wen, C.; Wang, X.; Cheng, X. Analysis of genotype and hearing phenotype in infants with deafness-causing GJB2 gene mutations. J. Clin. Otorhinolaryngol. Head Neck Surg. 2020, 34, 113–118. (In Chinese) [Google Scholar] [CrossRef]
- Guo, C. Study on the Second Pathogenic Factor of Large Vestibular Aqueduct Syndrome and Analysis of Hearing Phenotype in Deaf Patients with GJB2 c.235delC Homozygous Mutation. Ph.D. Thesis, Chinese PLA Medical College, Beijing, China, 2021. (In Chinese). [Google Scholar]
- Zhong, M.; Ma, Q.; Li, C.; LU, X. Audiological phenotype analysis of infants with GJB2 gene p.V37I homozygous and compound heterozygous variants. J. Audiol. Speech Pathol. 2023, 31, 12–17. Available online: https://link.cnki.net/urlid/42.1391.R.20220609.1323.040 (accessed on 1 December 2025). (In Chinese).
- Wang, X.L.; Wang, X.Y.; Zhao, X.L.; Cheng, X.H.; Huang, L.H. Correlation between GJB2 p.V37I mutation and clinical phenotypes of deafness in children. Chin. J. Otol. 2019, 17, 227–233. (In Chinese) [Google Scholar]
- Ruan, Y.; Wen, C.; Cheng, X.; Zhang, W.; Zhao, L.; Xie, J.; Lu, H.; Ren, Y.; Meng, F.; Li, Y.; et al. Genetic screening of newborns for deafness over 11 years in Beijing, China: More infants could benefit from an expanded program. Biosci. Trends 2024, 18, 303–314. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.; Dai, Q.; Tao, W.; Wen, X.; Feng, D.; Deng, H.; Zhou, W.; Li, M.; Zhang, L. Suspension array-based deafness genetic screening in 53,033 Chinese newborns identifies high prevalence of 109G>A in GJB2. Int. J. Pediatr. Otorhinolaryngol. 2019, 126, 109630. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.F.; Lin, H.C.; Tsai, C.L.; Hsu, Y. GJB2 mutation spectrum in the Taiwanese population and genotype-phenotype comparisons in patients with hearing loss carrying GJB2 c.109G>A and c.235delC mutations. Hear. Res. 2022, 413, 108135. [Google Scholar] [CrossRef] [PubMed]
- Lu, M.; Yang, S.; Pei, Y. Analysis of common genetic deafness mutations in 52,120 newborns with abnormal hearing screening in Henan Province. South China J. Prev. Med. 2022, 48, 1126–1132. (In Chinese) [Google Scholar]
- Ruan, Y.; Cheng, X.H.; Zhang, W.; Zhao, L.; Xie, J.; Wen, C.; Li, Y.; Deng, L.; Huang, L. Mutation spectrum analysis of 23 deafness genes in newborn hearing genetic screening. Clin. J. Otorhinolaryngol. Head Neck Surg. 2024, 38, 267–272. (In Chinese) [Google Scholar] [CrossRef]
- Chen, Y.; Wang, Z.; Jiang, Y.; Lin, Y.; Wang, X.; Wang, Z.; Tang, Z.; Wang, Y.; Wang, J.; Gao, Y.; et al. Biallelic p.V37I variant in GJB2 is associated with increasing incidence of hearing loss with age. Genet. Med. 2022, 24, 915–923. [Google Scholar] [CrossRef] [PubMed]
- Ruan, Y.; Wen, C.; Cheng, X.; Zhang, W.; Xie, J.; Li, Y.; Deng, L.; Huang, L. Differential analysis of genotypes and hearing phenotypes in 142 children with GJB2 biallelic mutations. Chin. Arch. Otolaryngol. Head Neck Surg. 2024, 31, 569–573. (In Chinese) [Google Scholar] [CrossRef]
- Ruan, Y.; Wen, C.; Zhao, X.; Wang, X.; Cheng, X.; Zhao, L.; Zhang, W.; Huang, L. Analysis of deafness gene screening and follow-up results in 75,649 newborns. Chin. J. Otol. 2019, 17, 661–669. (In Chinese) [Google Scholar]
- Liu, H.; Liu, E.; Li, W.; He, L.; Zhang, J.; Wang, H.; Sun, Y.; Yang, L. Analysis of audiological diagnosis and common deafness gene screening results in children who failed hearing rescreening. Chin. J. Otol. 2023, 21, 76–81. (In Chinese) [Google Scholar]
- Zhang, J.; Wang, D.; Han, B.; Zhou, C.; Wang, Q. Systematic review and meta-analysis of combined newborn hearing and genetic screening. Chin. J. Otol. 2020, 18, 216–224. (In Chinese) [Google Scholar]
- Wu, Z.X.; Liang, L.S.; Yuan, G.L.; Mao, Z.Y.; Lv, L.Y.; Dai, Q.Q. Frequency and penetrance of GJB2 c.109G>A homozygous mutation in newborns. Gansu Med. J. 2021, 40, 921–922. (In Chinese) [Google Scholar]
- Snoeckx, R.L.; Huygen, P.L.; Feldmann, D.; Marlin, S.; Denoyelle, F.; Waligora, J.; Mueller-Malesinska, M.; Pollak, A.; Ploski, R.; Murgia, A.; et al. GJB2 mutations and degree of hearing loss: A multicenter study. Am. J. Hum. Genet. 2005, 77, 945–957. [Google Scholar] [CrossRef] [PubMed]
- Kriukelis, R.; Gabbett, M.T.; Beswick, R.; McInerney-Leo, A.M.; Driscoll, C.; Liddle, K. The congenital hearing phenotype in GJB2 in Queensland, Australia: V37I and mild hearing loss predominates. Eur. J. Hum. Genet. 2025, 33, 208–219. [Google Scholar] [CrossRef] [PubMed]
| Genotype | Biallelic Mutations | Number of Cases (n) |
|---|---|---|
| Homozygote | c.109G>A/c.109G>A | 537 |
| c.235delC/c.235delC | 6 | |
| Compound Heterozygote | c.109G>A/c.235delC | 83 |
| c.109G>A/c.176_191del16 | 3 | |
| c.109G>A/c.176_191del16/c.538C>T | 1 | |
| c.109G>A/c.299_300delAT | 15 | |
| c.109G>A/c.427C>T | 1 | |
| c.109G>A/c.512insAACG | 2 | |
| c.235delC/c.176_191del16 | 1 | |
| c.235delC/c.299_300delAT | 2 | |
| c.235delC/c.35delG | 1 |
| Group | Number of Cases (n) | Hearing Screening Pass [n (%)] | Hearing Screening Failure [n (%)] | |
|---|---|---|---|---|
| Unilateral Failure | Bilateral Failure | |||
| Homozygote | 543 | 350 (64.46%) | 33 (6.08%) | 160 (29.46%) |
| Compound Heterozygote | 109 | 75 (68.81%) | 8 (7.34%) | 26 (23.85%) |
| Group | Number of Cases (n) | Normal Hearing [n (%)] | Hearing Loss [n (%)] | |
|---|---|---|---|---|
| Unilateral | Bilateral | |||
| Homozygous mutation | 543 | 505 (93.00%) | 8 (1.47%) | 30 (5.53%) |
| Compound heterozygous mutation | 109 | 102 (93.58%) | 2 (1.83%) | 5 (4.59%) |
| Group | Number of Cases | Newborn Hearing Screening (n) | Hearing Diagnosis [n (%)] | |
|---|---|---|---|---|
| Hearing Loss | Normal Hearing | |||
| Homozygous mutation | 543 | Passed: 350 | 6 (1.71%) | 344 (98.29%) |
| Failed: 193 | 32 (16.58%) | 161 (83.42%) | ||
| Compound heterozygous mutation | 109 | Passed: 75 | 2 (2.67%) | 73 (97.33%) |
| Failed: 34 | 5 (14.71%) | 29 (85.29%) | ||
| Group | Number of Ears with Hearing Loss | Mild | Moderate | Severe | Profound |
|---|---|---|---|---|---|
| Homozygous Mutations | 68 | 47 | 12 | 2 | 7 |
| Compound Heterozygous Mutations | 12 | 8 | 3 | 1 | 0 |
| Genotype | Hearing Screening (n) | HL (n) | Ears with HL(n) | ||||
|---|---|---|---|---|---|---|---|
| Passed | Failed | Mild | Moderate | Severe | Profound | ||
| c.109G>A/c.109G>A | 348 | 189 | 35 | 45 | 12 | 1 | 4 |
| c.235delC/c.235delC | 2 | 4 | 3 | 2 | 0 | 1 | 3 |
| c.109G>A/c.235delC | 61 | 22 | 4 | 6 | 0 | 0 | 0 |
| c.109G>A/c.176_191del16 | 3 | 0 | 0 | 0 | 0 | 0 | 0 |
| c.109G>A/c.176_191del16/c.538C>T | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| c.109G>A/c.299_300delAT | 8 | 7 | 0 | 0 | 0 | 0 | 0 |
| c.109G>A/c.427C>T | 0 | 1 | 1 | 2 | 0 | 0 | 0 |
| c.109G>A/c.512insAACG | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
| c.235delC/c.176_191del16 | 0 | 1 | 1 | 0 | 2 | 0 | 0 |
| c.235delC/c.299_300delAT | 0 | 2 | 1 | 0 | 1 | 1 | 0 |
| c.235delC/c.35delG | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the International Society for Neonatal Screening. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Wu, B.; Liu, W. Genotype Characteristics and Hearing Phenotype Analysis of Newborns with Biallelic GJB2 Mutations: A 652-Case–Cohort Study. Int. J. Neonatal Screen. 2025, 11, 110. https://doi.org/10.3390/ijns11040110
Li J, Wu B, Liu W. Genotype Characteristics and Hearing Phenotype Analysis of Newborns with Biallelic GJB2 Mutations: A 652-Case–Cohort Study. International Journal of Neonatal Screening. 2025; 11(4):110. https://doi.org/10.3390/ijns11040110
Chicago/Turabian StyleLi, Jianjun, Bo Wu, and Wenlan Liu. 2025. "Genotype Characteristics and Hearing Phenotype Analysis of Newborns with Biallelic GJB2 Mutations: A 652-Case–Cohort Study" International Journal of Neonatal Screening 11, no. 4: 110. https://doi.org/10.3390/ijns11040110
APA StyleLi, J., Wu, B., & Liu, W. (2025). Genotype Characteristics and Hearing Phenotype Analysis of Newborns with Biallelic GJB2 Mutations: A 652-Case–Cohort Study. International Journal of Neonatal Screening, 11(4), 110. https://doi.org/10.3390/ijns11040110

