Qatar’s National Expanded Metabolic Newborn Screening Program: Incidence and Outcomes
Abstract
1. Introduction
2. Materials and Methods
2.1. QNNSP Structure, Program Flow, and Pathway
2.2. Study Design and Ethical Approval
2.3. Study Participants and Data Collection
2.4. Incidence Calculation for Identified IEMs
2.5. Diagnostic Yield of Different Genetic Tests Performed
2.6. Statistical Analysis
3. Results
3.1. Screening of Eligible Study Participants
3.2. Demographics and Clinical Characteristics of Study Subjects
3.3. Calculated Incidence of Identified IEMs
3.4. Genetic Testing and Diagnostic Yield
3.5. Genes and Genetic Findings for Screened IEMs
4. Discussion
4.1. Incidence
4.1.1. IEM Incidence in Gulf Region
4.1.2. IEM Incidence in MENA Region
4.1.3. IME Incidence in Europe, USA, and China
4.2. Genetic Testing
4.3. Genetic Findings
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
NBS | Newborn Screening |
IEMs | Inborn Errors of Metabolism |
QNNSP | Qatar National Newborn Screening Program |
HCU | Classical Homocystinuria |
MS/MS | Mass Spectrometry |
ACMG | American College of Medical Genetics and Genomics |
VUSs | Variants of Uncertain Significance |
PGT-M | Preimplantation Genetic Testing for Monogenic Disorders |
PKU | Phenylketonuria |
MSUD | Maple Syrup Urine Disease |
TYR1 | Tyrosinemia Type I |
TYR2 | Tyrosinemia Type II |
TYR3 | Tyrosinemia Type III |
3-MCC | 3-Methylcrotonyl-CoA Carboxylase Deficiency |
MMA | Methylmalonic Acidemia |
GA-I | Glutaric Acidemia Type I |
PA | Propionic Acidemia |
HMG | 3-Hydroxy-3-Methylglutaryl-CoA Lyase Deficiency |
MCD | Malonyl-CoA Decarboxylase Deficiency |
IVA | Isovaleric Acidemia |
PCD | Primary Carnitine Deficiency |
MCAD | Medium-Chain Acyl-CoA Dehydrogenase Deficiency |
SCAD | Short-Chain Acyl-CoA Dehydrogenase Deficiency |
VLCAD | Very-Long-Chain Acyl-CoA Dehydrogenase Deficiency |
GA-II | Glutaric Acidemia Type II |
SBCAD | Short/Branched-Chain Acyl-CoA Dehydrogenase Deficiency |
ASA | Argininosuccinic Aciduria |
CTLN1 | Citrullinemia Type I |
GALT | Galactose-1-Phosphate Uridylyltransferase Deficiency |
GALK | Galactokinase Deficiency |
BTD | Biotinidase Deficiency |
References
- Lindner, M.; Abdoh, G.; Fang-Hoffmann, J.; Shabeck, N.; Al Sayrafi, M.; Al Janahi, M.; Ho, S.; Abdelrahman, M.O.; Ben-Omran, T.; Bener, A.; et al. Implementation of extended neonatal screening and a metabolic unit in the State of Qatar: Developing and optimizing strategies in cooperation with the Neonatal Screening Center in Heidelberg. J. Inherit. Metab. Dis. 2007, 30, 522–529. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention (CDC). CDC grand rounds: Newborn screening and improved outcomes. MMWR. Morb. Mortal. Wkly. Rep. 2012, 61, 390–393.
- El-Hattab, A.W.; Almannai, M.; Sutton, V.R. Newborn Screening: History, Current Status, and Future Directions. Pediatr. Clin. N. Am. 2018, 65, 389–405. [Google Scholar] [CrossRef]
- Almannai, M.; Marom, R.; Sutton, V.R. Newborn screening: A review of history, recent advancements, and future perspectives in the era of next generation sequencing. Curr. Opin. Pediatr. 2016, 28, 694–699. [Google Scholar] [CrossRef]
- Wilcken, B.; Wiley, V.; Hammond, J.; Carpenter, K. Screening Newborns for Inborn Errors of Metabolism by Tandem Mass Spectrometry. N. Engl. J. Med. 2003, 348, 2304–2312. [Google Scholar] [CrossRef] [PubMed]
- Millington, D.S.; Kodo, N.; Norwood, D.L.; Roe, C.R. Tandem Mass Spectrometry: A New Method for Acylcarnitine Profiling with Potential for Neonatal Screening for Inborn Errors of Metabolism. J. Inherit. Metab. Dis. 1990, 13, 321–324. [Google Scholar] [CrossRef] [PubMed]
- Bener, A.; Hussain, R.; Teebi, A.S. Consanguineous marriages and their effect on common diseases in the Qatari population. Cancer 2012, 16, 262–267. [Google Scholar]
- Bener, A.; Hussain, R. Consanguineous unions and child health in the State of Qatar. Paediatr. Perinat. Epidemiol. 2006, 20, 372–378. [Google Scholar] [CrossRef]
- Skrinska, V.; Khneisser, I.; Schielen, P.; Loeber, G. Introducing and Expanding Newborn Screening in the MENA Region. Int. J. Neonatal Screen. 2020, 6, 12. [Google Scholar] [CrossRef]
- Tenny, S.; Boktor, S.W. Incidence; StatPearls: Orlando, FL, USA, 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK430746/ (accessed on 10 April 2023).
- Alfadhel, M.; Al Othaim, A.; Al Saif, S.; Al Mutairi, F.; Alsayed, M.; Rahbeeni, Z.; Alzaidan, H.; Alowain, M.; Al-Hassnan, Z.; Saeedi, M.; et al. Expanded newborn screening program in Saudi Arabia: Incidence of screened disorders. J. Paediatr. Child Health 2017, 53, 585–591. [Google Scholar] [CrossRef]
- Al-Jasmi, F.A.; Al-Shamsi, A.; Hertecant, J.L.; Al-Hamad, S.M.; Souid, A.K. Inborn Errors of Metabolism in the United Arab Emirates: Disorders Detected by Newborn Screening (2011–2014). JIMD Rep. 2016, 28, 127–135. [Google Scholar]
- Al-Dewik, N.; Ali, A.; Mahmoud, Y.; Shahbeck, N.; Ali, R.; Mahmoud, L.; Al-Mureikhi, M.; Al-Mesaifri, F.; Musa, S.; El-Akouri, K.; et al. Natural History, With Clinical, Biochemical, and Molecular Characterization of Classical Homocystinuria in the Qatari Population. J. Inherit. Metab. Dis. 2019, 42, 818–830. [Google Scholar] [CrossRef] [PubMed]
- AlObaidy, H. Patterns of inborn errors of metabolism: A 12 year single-center hospital-based study in Libya. Qatar Med. J. 2013, 2013, 57–65. [Google Scholar] [CrossRef]
- Hassan, F.A.; El-Mougy, F.; Sharaf, S.A.; Mandour, I.; Morgan, M.F.; Selim, L.A.; Hassan, S.A.; Salem, F.; Oraby, A.; Girgis, M.Y.; et al. Inborn errors of metabolism detectable by tandem mass spectrometry in Egypt: The first newborn screening pilot study. J. Med. Screen. 2016, 23, 124–129. [Google Scholar] [CrossRef] [PubMed]
- Magdy, R.M.; Abd-Elkhalek, H.-S.; Bakheet, M.A.; Mohamed, M.M. Selective screening for inborn errors of metabolism by tandem mass spectrometry at Sohag University Hospital. Arch. De Pédiatrie 2022, 29, 36–43. [Google Scholar] [CrossRef]
- O’Brien, E.; Kerber, R.A.; Jorde, L.B.; Rogers, A.R. Founder effect: Assessment of variation in genetic contributions among founders. Hum. Biol. 1994, 66, 185–204. [Google Scholar]
- Dionisi-Vici, C.; Rizzo, C.; Burlina, A.B.; Caruso, U.; Sabetta, G.; Uziel, G.; Abeni, D. Inborn Errors of Metabolism in the Italian Pediatric Population: A National Retrospective Survey. J. Pediatr. 2002, 140, 321–327. [Google Scholar] [CrossRef]
- Tebani, A.; Abily-Donval, L.; Afonso, C.; Marret, S.; Bekri, S. Clinical Metabolomics: The New Metabolic Window for Inborn Errors of Metabolism Investigations in the Post-Genomic Era. Int. J. Mol. Sci. 2016, 17, 1167. [Google Scholar] [CrossRef] [PubMed]
- Deng, K.; Zhu, J.; Yu, E.; Xiang, L.; Yuan, X.; Yao, Y.; Li, X.; Liu, H. Incidence of Inborn Errors of Metabolism Detected by Tandem Mass Spectrometry in China: A Census of Over Seven Million Newborns Between 2016 and 2017. J. Med. Screen. 2020, 28, 223–229. [Google Scholar] [CrossRef]
- Niu, D.M.; Chien, Y.H.; Chiang, C.C.; Ho, H.C.; Hwu, W.L.; Kao, S.M.; Chiang, S.H.; Kao, C.H.; Liu, T.T.; Chiang, H.; et al. Nationwide Survey of Extended Newborn Screening by Tandem Mass Spectrometry in Taiwan. J. Inherit. Metab. Dis. 2010, 33 (Suppl. 2), S295–S305. [Google Scholar] [CrossRef]
- Waters, D.; Adeloye, D.; Woolham, D.; Wastnedge, E.; Patel, S.; Rudan, I. Global Birth Prevalence and Mortality from Inborn Errors of Metabolism: A Systematic Analysis of the Evidence. J. Glob. Health 2018, 8, 021102. [Google Scholar] [CrossRef] [PubMed]
- Mordaunt, D.; Cox, D.; Fuller, M. Metabolomics to Improve the Diagnostic Efficiency of Inborn Errors of Metabolism. Int. J. Mol. Sci. 2020, 21, 1195. [Google Scholar] [CrossRef] [PubMed]
- Salman, D.O.; Mahfouz, R.; Bitar, E.R.; Samaha, J.; Karam, P.E. Challenges of Genetic Diagnosis of Inborn Errors of Metabolism in a Major Tertiary Care Center in Lebanon. Front. Genet. 2022, 13, 1029947. [Google Scholar] [CrossRef]
- Mergnac, J.P.; Wiedemann, A.; Chery, C.; Ravel, J.M.; Namour, F.; Guéant, J.L.; Feillet, F.; Oussalah, A. Diagnostic yield of clinical exome sequencing as a first-tier genetic test for the diagnosis of genetic disorders in pediatric patients: Results from a referral center study. Hum. Genet. 2022, 141, 1269–1278. [Google Scholar] [CrossRef]
- Zschocke, J.; Kebbewar, M.; Gan-Schreier, H.; Fischer, C.; Fang-Hoffmann, J.; Wilrich, J.; Abdoh, G.; Ben-Omran, T.; Shahbek, N.; Lindner, M.; et al. Molecular neonatal screening for homocystinuria in the Qatari population. Hum. Mutat. 2009, 30, 1021–1022. [Google Scholar] [CrossRef]
- Gerrard, A.; Dawson, C. Homocystinuria Diagnosis and Management: It Is Not All Classical. J. Clin. Pathol. 2022, 75, 744–750. [Google Scholar] [CrossRef]
- Ben-Omran, T.; Al Ghanim, K.; Yavarna, T.; El Akoum, M.; Samara, M.; Chandra, P.; Al-Dewik, N. Effects of consanguinity in a cohort of subjects with certain genetic disorders in Qatar. Mol. Genet. Genom. Med. 2020, 8, e1051. [Google Scholar] [CrossRef] [PubMed]
- Morris, A.A.; Kožich, V.; Santra, S.; Andria, G.; Ben-Omran, T.I.; Chakrapani, A.B.; Crushell, E.; Henderson, M.J.; Hochuli, M.; Huemer, M.; et al. Guidelines for the Diagnosis and Management of Cystathionine Beta-synthase Deficiency. J. Inherit. Metab. Dis. 2016, 40, 49–74. [Google Scholar] [CrossRef]
- Console, L.; Scalise, M.; Tonazzi, A.; Giangregorio, N.; Indiveri, C. Characterization of Exosomal SLC22A5 (OCTN2) carnitine transporter. Sci. Rep. 2018, 8, 3758. [Google Scholar] [CrossRef]
- Ben-Omran, T.I.; Wong, H.; Blaser, S.; Feigenbaum, A. Late-onset Cobalamin-C Disorder: A Challenging Diagnosis. Am. J. Med. Genet. Part A 2007, 143A, 979–984. [Google Scholar] [CrossRef]
- Lerner-Ellis, J.P.; Tirone, J.C.; Pawelek, P.D.; Doré, C.; Atkinson, J.L.; Watkins, D.; Morel, C.F.; Fujiwara, T.M.; Moras, E.; Hosack, A.R.; et al. Identification of the Gene Responsible for Methylmalonic Aciduria and Homocystinuria, cblC Type. Nat. Genet. 2005, 38, 93–100. [Google Scholar] [CrossRef] [PubMed]
Aminoacidopathies | Organic Acidemias | Fatty Acid Oxidation Disorders | Urea Cycle Disorders | Galactosemia | Biotinidase Deficiency | p-Value | ||
---|---|---|---|---|---|---|---|---|
n = 83 (%) | n = 67 (%) | n = 75 (%) | n = 17 (%) | n = 31 (%) | n = 45 (%) | |||
Gender | Female | 35 (42%) | 33 (49%) | 35 (47%) | 10 (59%) | 19 (61%) | 24 (53%) | 0.48 |
Male | 48 (58%) | 34 (51%) | 40 (53%) | 7 (41%) | 12 (39%) | 21 (47%) | ||
Ethnicity | Non-Qatari | 27 (33%) | 46 (69%) | 41 (55%) | 11 (65%) | 23 (74%) | 38 (84%) | <0.001 |
Qatari | 56 (67%) | 21 (31%) | 34 (45%) | 6 (35%) | 8(26%) | 7 (16%) | ||
Consanguinity | Yes | 62 (75%) | 43 (64%) | 45 (60%) | 7 (41%) | 17 (55%) | 17 (38%) | 0.003 |
No | 8 (10%) | 13 (19%) | 16 (21%) | 4 (24%) | 6 (19%) | 19 (42%) | ||
Not Reported | 13 (16%) | 11 (16%) | 14 (19%) | 6 (35%) | 8 (26%) | 9 (20%) | ||
IEM Family | Positive | 49 (59%) | 18 (27%) | 30 (40%) | 1 (6%) | 10 (32%) | 3 (7%) | <0.001 |
History | Negative | 25 (30%) | 40 (60%) | 36 (48%) | 11 (65%) | 16 (52%) | 32 (71%) | |
Not Reported | 9 (11%) | 9 (13%) | 9 (12%) | 5 (29%) | 5(16%) | 10 (22%) | ||
Genetic Testing | Targeted Variant Testing | 38 (46%) | 8 (12%) | 12 (16%) | 0 (0%) | 1 (3%) | 1 (2%) | <0.001 |
Single Gene Testing | 11 (13%) | 22 (33%) | 16 (21%) | 1 (6%) | 4 (13%) | 5 (11%) | ||
Multi-gene Panel Testing | 4 (5%) | 5 (7%) | 2 (3%) | 2 (12%) | 1 (3%) | 1 (2%) | ||
WES | 2 (2%) | 6 (9%) | 9 (12%) | 1 (6%) | 3 (10%) | 1 (2%) | ||
None | 28 (34%) | 25 (37%) | 34 (45%) | 13 (76%) | 21 (68%) | 36 (80%) | ||
Not Reported | 0 (0%) | 1 (1%) | 2 (3%) | 0 (0%) | 1 (3%) | 1 (2%) |
Category | No | Disease | No. of Cases | Cumulative Incidence Ratio | Incidence per 100,000 (95% CI) |
---|---|---|---|---|---|
Aminoacidopathies | 1 | HCU | 52 | 1:6754 | 14.8 (11.1–19.4) |
2 | PKU | 18 | 1:19,513 | 5.1 (3.0–8.1) | |
3 | MSUD | 5 | 1:70,247 | 1.4 (0.5–3.3) | |
4 | TYR1 | 4 | 1:87,808 | 1.1 (0.3–2.9) | |
5 | TYR2 | 3 | 1:117,078 | 0.9 (0.2–2.5) | |
6 | TYR3 | 1 | 1:351,233 | 0.3 (0.0–1.6) | |
Organic Acidemias | 7 | 3-MCC | 21 | 1:16,725 | 6.0 (3.7–9.1) |
8 | MMA | 18 | 1:19,513 | 5.1 (3.0–8.1) | |
9 | GA-I | 11 | 1:31,930 | 3.1 (1.6–5.6) | |
10 | PA | 4 | 1:87,808 | 1.1 (0.3–2.9) | |
11 | HMG | 4 | 1:87,808 | 1.1 (0.3–2.9) | |
12 | MCD | 4 | 1:87,808 | 1.1 (0.3–2.9) | |
13 | IVA | 3 | 1:117,078 | 0.9 (0.2–2.5) | |
14 | SBCAD | 2 | 1:175,617 | 0.6 (0.1–2.1) | |
Fatty Acid Oxidation Disorders | 15 | PCD | 28 | 1:12,544 | 8.0 (5.3–11.5) |
16 | MCAD | 25 | 1:14,049 | 7.1 (4.6–10.5) | |
17 | SCAD | 13 | 1:27,018 | 3.7 (2.0–6.3) | |
18 | VLCAD | 5 | 1:70,247 | 1.4 (0.5–3.3) | |
19 | GA-II | 4 | 1:87,808 | 1.1 (0.3–2.9) | |
Urea Cycle Disorders | 20 | Citrin Deficiency | 9 | 1:39,026 | 2.6 (1.2–4.9) |
21 | ASA | 6 | 1:58,539 | 1.7 (0.6–3.7) | |
22 | CTLN1 | 2 | 1:175,617 | 0.6 (0.1–2.1) | |
Galactosemias | 23 | Galactosemia due to GALT Deficiency | 29 | 1:12,111 | 8.3 (5.5–11.9) |
24 | Galactosemia due to GALK Deficiency | 2 | 1:175,617 | 0.6 (0.1–2.1) | |
Biotinidase Deficiency | 25 | Partial BTD | 34 | 1:10,330 | 9.7 (6.7–13.5) |
26 | Profound BTD | 11 | 1:31,930 | 3.1 (1.6–5.6) | |
BTD Combined | 45 | 1:7805 | 12.8 (9.3–17.1) | ||
Total | 318 | 1:1105 | 90.5 (80.9–101.1) |
Disease | Gene | cDNA Change | Amino Acid Change | Zygosity | Variant Classification ACMG | Phenotype Correlation | Qatari | Non-Qatari |
---|---|---|---|---|---|---|---|---|
HCU | CBS | c.1006C > T | p.Arg336Cys | Homo | PV | Solved | 37 | 2 |
c.1330G > A | p.Asp444Asn | Homo | PV | Solved | 0 | 1 | ||
c.409A > T | p.Lys137 * | Homo | PV | Solved | 0 | 1 | ||
c.188C > T | p.Ser63Phe | Homo | LPV | Solved | 0 | 1 | ||
c.785C > T | p.Thr262Met | Homo | PV | Solved | 0 | 1 | ||
PKU | PAH | c.1208C > T | p.Ala403Val | CH | PV | Solved | 0 | 1 |
Exon 3 Deletion | _ | PV | ||||||
c.898G > T | p.Ala300Ser | Homo | PV | Solved | 1 | 0 | ||
c.169_171del | p.Asp57del | Homo | PV | Solved | 0 | 1 | ||
c.1199 G > C | p.Arg400Thr | Homo | PV | Solved | 1 | 0 | ||
c.1066 − 11G > A | _ | Homo | PV | Solved | 0 | 1 | ||
c.293T > C | p.Leu98Ser | Homo | PV | Solved | 1 | 0 | ||
c.1184C > G | p.Ala395Gly | Homo | PV | Solved | 1 | 0 | ||
ASA | ASL | c.375G > T | p.Met125Ile | Homo | LPV | Solved | 1 | 0 |
c.299T > C | p.Ile100Thr | Homo | PV | Solved | 1 | 0 | ||
BTD | BTD | c.1367A > G | p.Tyr456Cys | Homo | PV | Solved | 0 | 1 |
c.89C > T | p.Leu30Pro | Homo | VUS | Solved | 1 | 0 | ||
c.1432G > C | p.Ala478Pro | CH | LPV | Solved | 0 | 1 | ||
c.968A > G | p.His323Arg | |||||||
c.497G > A | p.Cys166Tyr | CH | PV | Solved | 2 | 0 | ||
c.1270G > C | p.Asp424His | |||||||
c.968A > G | p.His323Arg | CH | LPV | Solved | 1 | 0 | ||
c.1368A > C | p.Gln456His | |||||||
c.1330G > C | p.Asp444His | Homo | VUS | Solved | 0 | 1 | ||
c.1259G > C | p.Cys420Ser | Homo | LPV | Solved | 0 | 1 | ||
PCD | SLC22A5 | c.83G > T | p.Ser28Ile | Homo | PV | Solved | 11 | 1 |
c.371 A > G | p.Tyr124Cys | Homo | VUS | Uncertain | 0 | 1 | ||
c.391G > A | p.Glu131Lys | CH | VUS | Uncertain | 2 | 0 | ||
C.83G > T | p.Ser28Ile | PV | ||||||
CTLN1 | ASS1 | c.598 − 2A > G | IVS9 − 2A > G | Homo | PV | Solved | 0 | 1 |
GA-I | GCDH | c.1133C > T | p.Ala378Val | Homo | VUS | Solved | 0 | 1 |
c.706 T > C | p.Phe236Lys | Homo | PV | Solved | 2 | 0 | ||
c.671T > G | p.Val224Gly | * | VUS | Unsolved | 0 | 1 | ||
c.742C > T | p.Pro248Ser | Homo | PV | Solved | 0 | 2 | ||
c.505 + 1G > A | _ | CH | PV | Solved | 0 | 1 | ||
c.1147C > T | p.Arg383Cys | LPV | ||||||
c.756C > T | p.Gly252 | Homo | VUS | Solved | 1 | 0 | ||
GALK | GALK1 | c.853_874del22 | p.1285RfsX4 | Homo | PV | Solved | 0 | 1 |
GALT | GALT | c.563A > G | p.Gln188Arg | Homo | PV | Solved | 0 | 1 |
c.772C > T | p.Arg258Cys | Homo | PV | Solved | 1 | 0 | ||
c.247G > A | p.Gly83Arg | Homo | VUS | Uncertain | 1 | 0 | ||
c.299C > G | p.Pro100Arg | CH | LPV | Solved | 0 | 1 | ||
c.940A > G | p.Asn314Asp | PV | ||||||
c.563A > G | p.Gln188Arg | CH | PV | Solved | 1 | 0 | ||
c.-119_-116del | _ | |||||||
c.940A > G | p.Asn314Asp | |||||||
c.1049C > T | p.T350I | CH | VUS | Solved | 1 | 0 | ||
c.-119_-116del | p.? | PV | ||||||
VUS in Exon 2 | - | CH | VUS | Uncertain | 0 | 1 | ||
c.378 − 27G > C, c.508 − 24G > A, c.507 + 62G > A | ||||||||
c.940A > G | p.Asn314Asp | |||||||
HMG | HMGCL | c.206_207delCT | p.Ser69CysfsX11 | Homo | PV | Solved | 0 | 2 |
c.914_915delTT | p.Phe305TyrfsX10 | Homo | PV | Solved | 1 | 0 | ||
GA-II | ETFB | c.491G > A | p.Arg164Gln | Homo | LPV | Solved | 0 | 2 |
MCAD | ACADM | c.362C > T | p.Thr121Ile | Homo | PV | Solved | 6 | 0 |
c.329A > G | p.Glu110Gly | CH | LPV | Solved | 3 | 0 | ||
c.362C > T | p.Thr121Ile | PV | ||||||
c.984delG | p.M328IfsX5 | CH | PV | Solved | 0 | 1 | ||
c.653C > G | p.A218G | VUS | ||||||
c.572G > A | p.W191X | Homo | PV | Solved | 1 | 0 | ||
c.799G > A | p.G267R | Homo | PV | Solved | 0 | 1 | ||
c.671G > A | p.Trp224 * | Homo | LPV | Solved | 1 | 0 | ||
c.374C > T | p.Thr125IIe | Homo | PV | Solved | 1 | 0 | ||
3-MCC | MCCC2 | _ | partial gene del including exon 13 | Homo | PV | Solved | 2 | 0 |
c.538C > T | p.Arg180Ter | Homo | PV | Solved | 3 | 0 | ||
c.1150_1216del67 | _ | Homo | PV | Solved | 1 | 0 | ||
MMA | MMUT | c.1462G > A | p.Gly488Arg | CH | VUS | Solved | 0 | 1 |
PV | ||||||||
c.571G > A | p.A191T | Homo | LPV | Solved | 2 | 0 | ||
c.1463G > T | p.Gly488Val | Homo | VUS | Solved | 1 | 0 | ||
MMAA | c.489delT | p.Phe163LeufsX15 | Homo | PV | Solved | 0 | 1 | |
MMAB | c.571C > T | p.R191W | Homo | PV | Solved | 1 | 0 | |
MMACHC | c.394C > T | p.Arg132 * | Homo | PV | Solved | 0 | 6 | |
c.616del | p.Arg206Glyfs *4 | Homo | LPV | Solved | 1 | 0 | ||
c.271dup | p.Arg91Lysfs *14 | Homo | PV | Solved | 0 | 1 | ||
c.331C > T | p.Arg111 * | Homo | PV | Solved | 0 | 1 | ||
MCD | MLYCD | c.1213dup | p.Tyr405Leufs *74 | Homo | LPV | Solved | 0 | 2 |
c.1A > C | p.Met1? | Homo | LPV | Solved | 0 | 1 | ||
PA | PCCA | c.2062delT | p.C688VfsX2 | Homo | LPV | Solved | 0 | 1 |
c.425 G > A | p.Gly142Asp | Homo | PV | Solved | 1 | 0 | ||
SCAD | ACADS | c.136 C > T | p.Arg46Trp | Homo | LPV | Solved | 0 | 1 |
c.796 − 3C > G | IVS6 − 3C > G | Homo | VUS | Uncertain | 1 | 0 | ||
SBCAD | ACADSB | c.303 + 3A > G | _ | Homo | PV | Solved | 2 | 0 |
TYR1 | FAH | c.1A > G | p.M1 | Homo | PV | Solved | 1 | 0 |
TYR2 | TAT | c.169C > T | p.R57X | Homo | PV | Solved | 0 | 1 |
c.839A > C | p.K280T | Homo | VUS | Solved | 1 | 0 | ||
c.1297C > T | p.R433W | Homo | LPV | Solved | 0 | 1 | ||
TYR3 | HPD | c.85G > A | p.A29T | Homo | VUS | Solved | 1 | 0 |
VLCAD | ACADVL | c.1835_1860delinsG | p.A612Gfs *60 | Homo | LPV | Solved | 0 | 1 |
c.65 C > A | p.S22 * | Homo | PV | Solved | 1 | 0 | ||
c.1246_1248del | p.A416del | CH | VUS | Solved | 0 | 1 | ||
c.1829 C > T | p.A610V |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the International Society for Neonatal Screening. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jamaleddin, T.; El-Akouri, K.; Abiib, S.; Mitri, R.; Ramaswamy, M.; Musa, S.; Ali, R.; Shahbeck, N.; Al Rifai, H.; Abdoh, G.; et al. Qatar’s National Expanded Metabolic Newborn Screening Program: Incidence and Outcomes. Int. J. Neonatal Screen. 2025, 11, 50. https://doi.org/10.3390/ijns11030050
Jamaleddin T, El-Akouri K, Abiib S, Mitri R, Ramaswamy M, Musa S, Ali R, Shahbeck N, Al Rifai H, Abdoh G, et al. Qatar’s National Expanded Metabolic Newborn Screening Program: Incidence and Outcomes. International Journal of Neonatal Screening. 2025; 11(3):50. https://doi.org/10.3390/ijns11030050
Chicago/Turabian StyleJamaleddin, Tala, Karen El-Akouri, Sumaya Abiib, Rola Mitri, Mamatha Ramaswamy, Sara Musa, Rehab Ali, Noora Shahbeck, Hilal Al Rifai, Ghassan Abdoh, and et al. 2025. "Qatar’s National Expanded Metabolic Newborn Screening Program: Incidence and Outcomes" International Journal of Neonatal Screening 11, no. 3: 50. https://doi.org/10.3390/ijns11030050
APA StyleJamaleddin, T., El-Akouri, K., Abiib, S., Mitri, R., Ramaswamy, M., Musa, S., Ali, R., Shahbeck, N., Al Rifai, H., Abdoh, G., Ben-Omran, T., Al-Dirbashi, O. Y., & Al-Shafai, M. (2025). Qatar’s National Expanded Metabolic Newborn Screening Program: Incidence and Outcomes. International Journal of Neonatal Screening, 11(3), 50. https://doi.org/10.3390/ijns11030050