Oncogenesis—Kaleidoscopic and Multi-Level Reality
Highlights
- The multiple faces of oncogenesis are the result of the inter-relational complexity of genetic, environmental and evolutionary constraints expressing the phenotype, similar to the interrelation of energy, mas and information.
- The kaleidoscopic and multi-level perspective of oncogenesis is a promising area for multiple therapeutic access gates of which only complexity science and trans-disciplinarity are capable.
Abstract
:Highlights
- √
- The multiple faces of oncogenesis are the result of the inter-relational complexity of genetic, environmental and evolutionary constraints expressing the phenotype, similar to the interrelation of energy, mas and information.
- √
- The kaleidoscopic and multi-level perspective of oncogenesis is a promising area for multiple therapeutic access gates of which only complexity science and trans-disciplinarity are capable.
Abstract
1. Introduction
1.1. Some preliminary notions
2. Discussions
2.1. Cancer—A Kaleidoscopic Reality
2.2. Classical Thermodynamics
2.3. Information Theory
2.4. Evolutionary Developmental Biology and Deterministic Chaos Theory
2.5. Quantum mechanics. The cancer cell as an “anti- cell”.
2.6. Entropy and Network Science
3. Conclusions
Conflicts of Interest disclosure
Compliance with ethical standards
References
- Deisboeck, T.S.; Berens, M.E.; Kansal, A.R.; Torquato, S. Stemmer-Rachamimov AO, Chiocca EA. Pattern of self-organization in tumour systems: Complex growth dynamics in a novel brain tumour spheroid model. Cell Prolif. 2001, 34, 115–34. [Google Scholar] [PubMed]
- Kitano, H. Towards a theory of biological robustness. Mol Syst Biol. 2007, 3, 137 PMID: 17882156. [Google Scholar] [CrossRef] [PubMed]
- Rockmore, R. Cancer complex nature. Santa Fe Institute Bulletin. 2005, 20, 20. Available online: https://sfi- edu.s3.amazonaws.com/sfi-edu/production/.../10/.../spring2005v20n1.pdf.
- Longo, G.; Montévil, M. From physics to biology by extending criticality and symmetry breakings. Prog Biophys Mol Biol, 2011, 106, 340–7. [Google Scholar] [CrossRef] [PubMed]
- Calotă, F. Defaying the hazard (In Romanian). Editura Academiei Române: București, 2017; pp. 39–461. ISBN 978-973-27-2823-9. [Google Scholar]
- Albert-László, Barabási. Linked. Noua ştiinţă a reţelelor (In Romanian). Editura Brumar: Timişoara, 2017; p. 111. ISBN 978067260885. [Google Scholar]
- Meijer, D.K.F. Information: What Do You Mean? Syntropy Journal. 2013, 3, 1–49 http://wwwlife energyscienceit/english/2013. [Google Scholar]
- Boltzmann, L. McGuinness, B., Ed.; The Second Law of Thermodynamics; Theoretical Physics and Philosophical Problems. Vienna Circle Collection; Springer: Dordrecht, The Netherlands, 1974; Volume 5, pp. 24–27. ISBN 978-94-010-2091-6. [Google Scholar] [CrossRef]
- Adami, C. Information theory in molecular biology. Physics of Life Reviews. 2004, 1, 3–22. Available online: www.elsevier.com/locate/plrev.
- Davies, P.C.; Demetrius, L.; Tuszynski, J.A. Implications of quantum metabolism and natural selection for the origin of cancer cells and tumor progression. AIP Adv. 2012, 2, 11101. [Google Scholar] [CrossRef]
- Frieden, B.R.; Gatenby, R. Information dynamics in living systems: Prokaryotes, eukaryotes, and cancer. PLoS ONE. 2011, 6, e22085. [Google Scholar] [CrossRef]
- Davies, P.C.; Rieper, E.; Tuszynski, J.A. Self-organization and entropy reduction in a living cell. Biosystems. 2013, 111, 1–10. [Google Scholar] [CrossRef]
- Chatterjee, A.; Mambo, E.; Sidransky, D. Mitochondrial DNA mutations in human cancer. Oncogene. 2006, 25, 4663–74. [Google Scholar] [CrossRef]
- Motofei, I.G. Biology of Cancer; From Cellular Cancerogenesis to Supracellular Evolution of Malignant Phenotype. Cancer Invest. 2018, 36, 309–317. [Google Scholar] [CrossRef]
- Waddington, C.H. The Strategy of the Genes; George Allen & Unwin Ltd.: London, UK, 1957; p. 16. [Google Scholar]
- Roy, B.; Venkatachalapathy, S.; Ratna, P.; Wang, Y.; Jokhun, D.S.; Nagarajan, M.; Shivashankar, G.V. Laterally confined growth of cells induces nuclear reprogramming in the absence of exogenous biochemical factors. Proc Natl Acad Sci USA 2018, 115, E4741–E4750. [Google Scholar] [CrossRef] [PubMed]
- Dawkins, R. The Selfish Gene: 30th Anniversary Edition-with a New Introduction by the Author; Oxford Landmark: Science, 2006; pp. 12–65. ISBN 13:978-0198788607, ISBN 10: 0198788606. [Google Scholar]
- Lugini, L.; Matarrese, P.; Tinari, A.; Lozupone, F.; Federici, C.; Iessi, E.; Gentile, M.; Luciani, F.; Parmiani, G.; Rivoltini, L.; Malorni, W.; Fais, S. Cannibalism of live lymphocytes by human metastatic but not primary melanoma cells. Cancer Res. 2006, 66, 3629–38. [Google Scholar] [CrossRef] [PubMed]
- Overholtzer, M.; Mailleux, A.A.; Mouneimne, G.; Normand, G.; Schnitt, S.J.; King, R.W.; Cibas, E.S.; Brugge, J.S. A nonapoptotic cell death process, entosis, that occurs by cell-in-cell invasion. Cell. 2007, 131, 966–79. [Google Scholar] [CrossRef]
- Micadei, K.; Peterson, J.P.S.; Souza, A.M.; Sarthour, R.S.; Oliveira, S.; Landi GBatalhão, T.; Serra, R.; Lutz, E. Reversing the thermodynamic arrow of time using quantum correlations. arXiv 2017. [Google Scholar]
- Potten, C.S.; Loeffler, M. Stem cells: Attributes, cycles, spirals, pitfalls and uncertainties. Lessons for and from the crypt. Development. 1990, 110, 1001–20 PMID: 2100251. [Google Scholar] [PubMed]
- Theise, N.D.; Krause, D.S. Toward a new paradigm of cell plasticity. Leukemia. 2002, 16, 542–8. [Google Scholar] [CrossRef] [PubMed]
- Teschendorff, A.E.; Severini, S. Increased entropy of signal transduction in the cancer metastasis phenotype. BMC Syst Biol. 2010, 4, 104. [Google Scholar] [CrossRef]
- Hudson, N.J.; Reverter, A.; Dalrymple, B.P. A differential wiring analysis of expression data correctly identifies the gene containing the causal mutation. PLoS Comput Biol. 2009, 5, e1000382. [Google Scholar] [CrossRef]
- West, J.; Bianconi, G.; Severini, S.; Teschendorff, A.E. Differential network entropy reveals cancer system hallmarks. Sci Rep. 2012, 2, 802. [Google Scholar] [CrossRef]
- Demetrius, L.; Manke, T. Robustness and network evolution-an entropic principle. Physica. 2005, A 346, 688. [Google Scholar] [CrossRef]
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell. 2011, 144, 646–74. [Google Scholar] [CrossRef] [PubMed]
- Bejan, A. Constructal theory of pattern formation. Hydrol Earth Syst Sci 2007, 11, 753–768. Available online: www.hydrol-earth-syst-sci.net/11/753/2007/.
- Mesina, C.; Stoean, L.C.; Stoean, R.; Sandita, V.A.; Gruia, C.L.; Foarfa, M.C.; Ciobanu, D. Immunohistochemical expression of CD8, CDX2, P53, D2-40 and KI 67 in colorectal adenocarcinoma, conventional and malignant colo-rectal polyps. Revista de Chimie. 2018, 69, 419–428. [Google Scholar]
© 2019 by the author. 2019 Firmilian Calotă, Cristian Meșină, Stelian Ștefăniță Mogoantă, Dragoș Calotă
Share and Cite
Calotă, F.; Meșină, C.; Mogoantă, S.Ș.; Calotă, D. Oncogenesis—Kaleidoscopic and Multi-Level Reality. J. Mind Med. Sci. 2019, 6, 31-40. https://doi.org/10.22543/7674.61.P3140
Calotă F, Meșină C, Mogoantă SȘ, Calotă D. Oncogenesis—Kaleidoscopic and Multi-Level Reality. Journal of Mind and Medical Sciences. 2019; 6(1):31-40. https://doi.org/10.22543/7674.61.P3140
Chicago/Turabian StyleCalotă, Firmilian, Cristian Meșină, Stelian Ștefăniță Mogoantă, and Dragoș Calotă. 2019. "Oncogenesis—Kaleidoscopic and Multi-Level Reality" Journal of Mind and Medical Sciences 6, no. 1: 31-40. https://doi.org/10.22543/7674.61.P3140
APA StyleCalotă, F., Meșină, C., Mogoantă, S. Ș., & Calotă, D. (2019). Oncogenesis—Kaleidoscopic and Multi-Level Reality. Journal of Mind and Medical Sciences, 6(1), 31-40. https://doi.org/10.22543/7674.61.P3140