Biological Therapy in the Treatment of Melanoma
Highlights
- Biological therapeutic options for melanoma have considerably increased life expectancy of the patients.
- Current therapeutic approaches are related to the tumors associated immunosuppression, as well as messengers related to cell growth.
Abstract
:Highlights
- Biological therapeutic options for melanoma have considerably increased life expectancy of the patients.
- Current therapeutic approaches are related to the tumors associated immunosuppression, as well as messengers related to cell growth.
Abstract
Introduction
Discussions
I Cytokines
II Vaccination
III Adoptive immunotherapy
IV Immune Checkpoint inhibitors and immune modulator molecules
V Therapy based on Raf/MAPK/ERK signaling pathway inhibition
Conclusions
Conflicts of Interest
References
- Ferlay, J.; Colombet, M.; Soerjomataram, I.; Dyba, T.; Randi, G.; Bettio, M.; Gavin, A.; Visser, O.; Bray, F. Cancer incidence and mortality patterns in Europe: Estimates for 40 countries and 25 major cancers in 2018. Eur J Cancer 2018, pii, S0959-8049(18)30955-9. [Google Scholar] [CrossRef] [PubMed]
- Ko, J.S. The Immunology of Melanoma. Clin Lab Med. 2017, 37, 449–471. [Google Scholar] [CrossRef] [PubMed]
- Bayer, A.L.; Pugliese, A.; Malek, T.R. The IL-2/IL-2R system: From basic science to therapeutic applications to enhance immune regulation. Immunol Res. 2013, 57, 197–209. [Google Scholar] [CrossRef] [PubMed]
- Skrombolas, D.; Frelinger, J.G. Challenges and developing solutions for increasing the benefits of IL-2 treatment in tumor therapy. Expert Rev Clin Immunol. 2014, 10, 207–217. [Google Scholar] [CrossRef] [PubMed]
- Jiang, T.; Zhou, C.; Ren, S. Role of IL-2 in cancer immunotherapy. Oncoimmunology. 2016, 5, e1163462. [Google Scholar] [CrossRef] [PubMed]
- Boyman, O.; Kolios, A.G.A.; Raeber, M.E. Modulation of T cell responses by IL-2 and IL-2 complexes. Clin Exp Rheumatol. 2015, 33 (4 Suppl 92), S54–S57. [Google Scholar] [PubMed]
- Rosenberg, S.A.; Yang, J.C.; White, D.E.; Steinberg, S.M. Durability of Complete Responses in Patients with Metastatic Cancer Treated with High-Dose Interleukin-2 Identification of the Antigens Mediating Response. Ann Surg. 1998, 228, 307–319. [Google Scholar] [CrossRef] [PubMed]
- Zaharescu, I.; Moldovan, A.D.; Tanase, C. Natural killer (NK) cells and their involvement in different types of cancer. Current status of clinical research. Journal of Mind and Medical Sciences. 2017, 4, 31–37. [Google Scholar] [CrossRef]
- Schwartz, R.N.; Stover, L.; Dutcher, J.P. Managing Toxicities of High-Dose Interleukin-2. Oncology (Willinston Park). 2002, 16 (11 Suppl 13), 11–20. [Google Scholar] [PubMed]
- Sanlorenzo, M.; Vujic, I.; Posch, C.; Dajee, A.; Yen, A.; Kim, S.; Ashworth, M.; Rosenblum, M.D.; Algazi, A.; Osella-Abate, S.; Quaglino, P.; Daud, A.; Ortiz-Urda, S. Melanoma immunotherapy. Cancer Biol Ther. 2014, 15, 665–674. [Google Scholar] [CrossRef] [PubMed]
- Medrano, R.F.V.; Hunger, A.; Mendonça, S.A.; Barbuto, J.A.M.; Strauss, B.E. Immunomodulatory and antitumor effects of type I interferons and their application in cancer therapy. Oncotarget. 2017, 8, 71249–71284. [Google Scholar] [CrossRef] [PubMed]
- Gardner, A.; Ruffell, B. Dendritic Cells and Cancer Immunity. Trends Immunol. 2016, 37, 855–865. [Google Scholar] [CrossRef] [PubMed]
- Grenier, J.M.; Yeung, S.T.; Khanna, K.M. Combination Immunotherapy: Taking Cancer Vaccines to the Next Level. Front Immunol. 2018, 9, 610. [Google Scholar] [CrossRef] [PubMed]
- Schwartzentruber, D.J.; Lawson, D.H.; Richards, J.M.; Conry, R.M.; Miller, D.M.; Treisman, J.; Gailani, F.; Riley, L.; Conlon, K.; Pockaj, B.; Kendra, K.L.; White, R.L.; Gonzalez, R.; Kuzel, T.M.; Curti, B.; Leming, P.D.; Whitman, E.D.; Balkissoon, J.; Reintgen, D.S.; Kaufman, H.; Marincola, F.M.; Merino, M.J.; Rosenberg, S.A.; Choyke, P.; Vena, D.; Hwu, P. Peptide Vaccine and Interleukin-2 in Patients with Advanced Melanoma. N Engl J Med. 2011, 364, 2119–2127. [Google Scholar] [CrossRef] [PubMed]
- Ott, P.A.; Hu, Z.; Keskin, D.B.; Shukla, S.A.; Sun, J.; Bozym, D.J.; Zhang, W.; Luoma, A.; Giobbie-Hurder, A.; Peter, L.; Chen, C.; Olive, O.; Carter, T.A.; Li, S.; Lieb, D.J.; Eisenhaure, T.; Gjini, E.; Stevens, J.; Lane, W.J.; Javeri, I.; Nellaiappan, K.; Salazar, A.M.; Daley, H.; Seaman, M.; Buchbinder, E.I.; Yoon, C.H.; Harden, M.; Lennon, N.; Gabriel, S.; Rodig, S.J.; Barouch, D.H.; Aster, J.C.; Getz, G.; Wucherpfennig, K.; Neuberg, D.; Ritz, J.; Lander, E.S.; Fritsch, E.F.; Hacohen, N.; Wu, C.J. An immunogenic personal neoantigen vaccine for patients with melanoma. Nature. 2017, 547, 217–221. [Google Scholar] [CrossRef] [PubMed]
- Perica, K.; Varela, J.C.; Oelke, M.; Schneck, J. Adoptive T Cell Immunotherapy for Cancer. Rambam Maimonides Med J. 2015, 6, e0004. [Google Scholar] [CrossRef] [PubMed]
- Weber, J.S. At the bedside: Adoptive cell therapy for melanoma-clinical development. J Leukoc Biol. 2014, 95, 875–882. [Google Scholar] [CrossRef] [PubMed]
- Merhavi-Shoham, E.; Itzhaki, O.; Markel, G.; Schachter, J.; Besser, M.J. Adoptive Cell Therapy for Metastatic Melanoma. Cancer J. 2017, 23, 48–53. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Ye, Z.-L.; Yuan, Z.-G.; Luo, Z.-Q.; Jin, H.-J.; Qian, Q.-J. New Strategies for the Treatment of Solid Tumors with CAR-T Cells. Int J Biol Sci. 2016, 12, 718–729. [Google Scholar] [CrossRef] [PubMed]
- Karlsson, A.K.; Saleh, S.N. Checkpoint inhibitors for malignant melanoma: A systematic review and meta- analysis. Clin Cosmet Investig Dermatol. 2017, 10, 325–339. [Google Scholar] [CrossRef] [PubMed]
- Seidel, J.A.; Otsuka, A.; Kabashima, K. Anti-PD-1 and Anti-CTLA-4 Therapies in Cancer: Mechanisms of Action, Efficacy, and Limitations. Front Oncol. 2018, 8, 86. [Google Scholar] [CrossRef] [PubMed]
- Larkin, J.; Chiarion-Sileni, V.; Gonzalez, R.; Grob, J.J.; Cowey, C.L.; Lao, C.D.; Schadendorf, D.; Dummer, R.; Smylie, M.; Rutkowski, P.; Ferrucci, P.F.; Hill, A.; Wagstaff, J.; Carlino, M.S.; Haanen, J.B.; Maio, M.; Marquez-Rodas, I.; McArthur, G.A.; Ascierto, P.A.; Long, G.V.; Callahan, M.K.; Postow, M.A.; Grossmann, K.; Sznol, M.; Dreno, B.; Bastholt, L.; Yang, A.; Rollin, L.M.; Horak, C.; Hodi, F.S.; Wolchok, J.D. Combined Nivolumab and Ipilimumab or Monotherapy in Untreated Melanoma. N Engl J Med. 2015, 373, 23–34. [Google Scholar] [CrossRef] [PubMed]
- Beatty, G.L.; Li, Y.; Long, K.B. Cancer immunotherapy: Activating innate and adaptive immunity through CD40 agonists. Expert Rev Anticancer Ther. 2017, 17, 175–186. [Google Scholar] [CrossRef] [PubMed]
- Alius, C.; Oprescu, S.; Balalau, C.; Nica, A.E. Indocyanine green enhanced surgery; principle, clinical applications and future research directions. J Clin Invest Surg. 2018, 3, 1–8. [Google Scholar] [CrossRef]
- Bommareddy, P.K.; Patel, A.; Hossain, S.; Kaufman, H.L. Talimogene Laherparepvec (T-VEC) and Other Oncolytic Viruses for the Treatment of Melanoma. Am J Clin Dermatol. 2017, 18, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Johnson, D.B.; Puzanov, I.; Kelley, M.C. Talimogene laherparepvec (T-VEC) for the treatment of advanced melanoma. Immunotherapy. 2015, 7, 611–619. [Google Scholar] [CrossRef] [PubMed]
- Sirbu, C.A.; Dragoi, C.M.; Nicolae, A.C.; Plesca, C.F. History of interferon treatments in multiple sclerosis – 60 years of progress. Farmacia 2017, 65, 14–18. [Google Scholar]
- Bhattacharya, P.; Budnick, I.; Singh, M.; Thiruppathi, M.; Alharshawi, K.; Elshabrawy, H.; Holterman, M.J.; Prabhakar, B.S. Dual Role of GM-CSF as a Pro-Inflammatory and a Regulatory Cytokine: Implications for Immune Therapy. J Interferon Cytokine Res. 2015, 35, 585–599. [Google Scholar] [CrossRef] [PubMed]
- Katagiri, T. A potential novel option for cancer immunotherapy - TLR7 stimulation inhibits malignant melanoma bone invasion. Oncotarget. 2018, 9, 31792. [Google Scholar] [CrossRef] [PubMed]
- Motofei, I.G.; Rowland, D.L.; Baconi, D.L.; Georgescu, S.R.; Paunica, S.; Constantin, V.D.; Balalau, D.; Paunica, I.; Balalau, C.; Baston, C.; Sinescu, I. Therapeutic considerations related to finasteride administration in male androgenic alopecia and benign prostatic hyperplasia. Farmacia 2017, 65, 660–666. [Google Scholar]
- Aspeslagh, S.; Postel-Vinay, S.; Rusakiewicz, S.; Soria, J.-C.; Zitvogel, L.; Marabelle, A. Rationale for anti- OX40 cancer immunotherapy. Eur J Cancer. 2016, 52, 50–66. [Google Scholar] [CrossRef] [PubMed]
- Croft, M.; So, T.; Duan, W.; Soroosh, P. The significance of OX40 and OX40L to T-cell biology and immune disease. Immunol Rev. 2009, 229, 173–191. [Google Scholar] [CrossRef] [PubMed]
- Curti, B.D.; Kovacsovics-Bankowski, M.; Morris, N.; Walker, E.; Chisholm, L.; Floyd, K.; Walker, J.; Gonzalez, I.; Meeuwsen, T.; Fox, B.A.; Moudgil, T.; Miller, W.; Haley, D.; Coffey, T.; Fisher, B.; Delanty-Miller, L.; Rymarchyk, N.; Kelly, T.; Crocenzi, T.; Bernstein, E.; Sanborn, R.; Urba, W.J.; Weinberg, A.D. OX40 Is a Potent Immune-Stimulating Target in Late-Stage Cancer Patients. Cancer Res. 2013, 73, 7189–7198.PMID. [Google Scholar] [CrossRef] [PubMed]
- Peyssonnaux, C.; Eychène, A. The Raf/MEK/ERK pathway: New concepts of activation. Biol Cell. 2001, 93, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Ritterhouse, L.L.; Barletta, J.A. BRAF V600E mutation-specific antibody: A review. Semin Diagn Pathol. 2015, 32, 400–408. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.; McKee, A.E.; Ning, Y.-M.; Hazarika, M.; Theoret, M.; Johnson, J.R.; Xu, Q.C.; Tang, S.; Sridhara, R.; Jiang, X.; He, K.; Roscoe, D.; McGuinn, W.D.; Helms, W.S.; Russell, A.M.; Miksinski, S.P.; Zirkelbach, J.F.; Earp, J.; Liu, Q.; Ibrahim, A.; Justice, R.; Pazdur, R. FDA approval summary: Vemurafenib for treatment of unresectable or metastatic melanoma with the BRAFV600E mutation. Clin Cancer Res. 2014, 20, 4994–5000. [Google Scholar] [CrossRef] [PubMed]
- Long, G.V.; Stroyakovskiy, D.; Gogas, H.; Levchenko, E.; de Braud, F.; Larkin, J.; Garbe, C.; Jouary, T.; Hauschild, A.; Grob, J.J.; Chiarion-Sileni, V.; Lebbe, C.; Mandalà, M.; Millward, M.; Arance, A.; Bondarenko, I.; Haanen, J.B.; Hansson, J.; Utikal, J.; Ferraresi, V.; Kovalenko, N.; Mohr, P.; Probachai, V.; Schadendorf, D.; Nathan, P.; Robert, C.; Ribas, A.; DeMarini, D.J.; Irani, J.G.; Swann, S.; Legos, J.J.; Jin, F.; Mookerjee, B.; Flaherty, K. Dabrafenib and trametinib versus dabrafenib and placebo for Val600 BRAF-mutant melanoma: A multicentre, double- blind, phase 3 randomised controlled trial. Lancet. 2015, 386, 444–451. [Google Scholar] [CrossRef] [PubMed]
© 2018 by the authors. 2018 Simona-Roxana Georgescu, Mihaela-Roxana Ioghen, Maria-Isabela Sarbu, Alexandra-Florentina Ion, Ela Ghita, Cristina-Iulia Mitran, Madalina-Irina Mitran, Vasile Benea, Mircea Tampa
Share and Cite
Georgescu, S.R.; Ioghen, M.-R.; Sarbu, M.-I.; Ion, A.-F.; Ghita, E.; Mitran, C.-I.; Mitran, M.-I.; Benea, V.; Tampa, M. Biological Therapy in the Treatment of Melanoma. J. Mind Med. Sci. 2018, 5, 169-175. https://doi.org/10.22543/7674.52.P169175
Georgescu SR, Ioghen M-R, Sarbu M-I, Ion A-F, Ghita E, Mitran C-I, Mitran M-I, Benea V, Tampa M. Biological Therapy in the Treatment of Melanoma. Journal of Mind and Medical Sciences. 2018; 5(2):169-175. https://doi.org/10.22543/7674.52.P169175
Chicago/Turabian StyleGeorgescu, Simona Roxana, Mihaela-Roxana Ioghen, Maria-Isabela Sarbu, Alexandra-Florentina Ion, Ela Ghita, Cristina-Iulia Mitran, Madalina-Irina Mitran, Vasile Benea, and Mircea Tampa. 2018. "Biological Therapy in the Treatment of Melanoma" Journal of Mind and Medical Sciences 5, no. 2: 169-175. https://doi.org/10.22543/7674.52.P169175
APA StyleGeorgescu, S. R., Ioghen, M.-R., Sarbu, M.-I., Ion, A.-F., Ghita, E., Mitran, C.-I., Mitran, M.-I., Benea, V., & Tampa, M. (2018). Biological Therapy in the Treatment of Melanoma. Journal of Mind and Medical Sciences, 5(2), 169-175. https://doi.org/10.22543/7674.52.P169175