Artificial Intelligence and Liver Transplantation; Literature Review
Abstract
:Introduction
Discussions
The role of AI in pre-transplant phase
AI and graft assessment
AI and donor-recipient matching
AI and recipient comorbidities
AI and postoperative sepsis
AI and transplant oncology
AI and volumetry
Post-transplant
AI and improving the expenses
AI and ethics
Benefits of AI
Limitations of AI
Conclusions
Compliance with Ethical Standards
Conflicts of Interest
References
- Nagai, S.; Nallabasannagari, A.R.; Moonka, D.; et al. Use of neural network models to predict liver transplantation waitlist mortality. Liver Transpl. 2022, 28, 1133–1143. [Google Scholar] [CrossRef]
- Bhat, M.; Rabindranath, M.; Chara, B.S.; Simonetto, D.A. Artificial intelligence, machine learning, and deep learning in liver transplantation. J Hepatol. 2023, 78, 1216–1233. [Google Scholar] [CrossRef]
- Finlayson, S.G.; Subbaswamy, A.; Singh, K.; et al. The Clinician and Dataset Shift in Artificial Intelligence. N Engl J Med. 2021, 385, 283–286. [Google Scholar] [CrossRef] [PubMed]
- Kazami, Y.; Kaneko, J.; Keshwani, D.; et al. Two-step artificial intelligence algorithm for liver segmentation automates anatomic virtual hepatectomy. J Hepatobiliary Pancreat Sci. 2023, 30, 1205–1217. [Google Scholar] [CrossRef]
- Pontes Balanza, B.; Castillo Tuñón, J.M.; Mateos García, D.; et al. Development of a liver graft assessment expert machine-learning system: When the artificial intelligence helps liver transplant surgeons. Front Surg. 2023, 10, 1048451. [Google Scholar] [CrossRef] [PubMed]
- Moccia, S.; Mattos, L.S.; Patrini, I.; et al. Computer-assisted liver graft steatosis assessment via learning-based texture analysis. Int J Comput Assist Radiol Surg. 2018, 13, 1357–1367. [Google Scholar] [CrossRef] [PubMed]
- MacConmara, M.; Hanish, S.I.; Hwang, C.S.; et al. Making Every Liver Count: Increased Transplant Yield of Donor Livers Through Normothermic Machine Perfusion. Ann Surg. 2020, 272, 397–401. [Google Scholar] [CrossRef]
- Veerankutty, F.H.; Jayan, G.; Yadav, M.K.; et al. Artificial Intelligence in hepatology, liver surgery and transplantation: Emerging applications and frontiers of research. World J Hepatol. 2021, 13, 1977–1990. [Google Scholar] [CrossRef]
- Bertsimas, D.; Kung, J.; Trichakis, N.; Wang, Y.; Hirose, R.; Vagefi, P.A. Development and validation of an optimized prediction of mortality for candidates awaiting liver transplantation. Am J Transplant. 2019, 19, 1109–1118. [Google Scholar] [CrossRef]
- Dutkowski, P.; Oberkofler, C.E.; Slankamenac, K.; et al. Are there better guidelines for allocation in liver transplantation? A novel score targeting justice and utility in the model for end-stage liver disease era. Ann Surg. 2011, 254, 745–753. [Google Scholar] [CrossRef]
- Rana, A.; Hardy, M.A.; Halazun, K.J.; et al. Survival outcomes following liver transplantation (SOFT) score: A novel method to predict patient survival following liver transplantation. Am J Transplant. 2008, 8, 2537–2546. [Google Scholar] [CrossRef] [PubMed]
- Briceño, J.; Calleja, R.; Hervás, C. Artificial intelligence and liver transplantation: Looking for the best donor-recipient pairing. Hepatobiliary Pancreat Dis Int. 2022, 21, 347–353. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Delgado, M.; Cernadas, E.; Barro, S.; Amorim, D. Do we need hundreds of classifiers to solve real world classification problems? Journal of Machine Learning Research. 2014, 15, 3133–3181. [Google Scholar]
- Ayllón, M.D.; Ciria, R.; Cruz-Ramírez, M.; et al. Validation of artificial neural networks as a methodology for donor-recipient matching for liver transplantation. Liver Transpl. 2018, 24, 192–203. [Google Scholar] [CrossRef] [PubMed]
- Guijo-Rubio, D.; Briceño, J.; Gutiérrez, P.A.; Ayllón, M.D.; Ciria, R.; Hervás-Martínez, C. Statistical methods versus machine learning techniques for donor-recipient matching in liver transplantation. PLoS ONE. 2021, 16, e0252068. [Google Scholar] [CrossRef]
- Sapir-Pichhadze, R.; Kaplan, B. Seeing the Forest for the Trees: Random Forest Models for Predicting Survival in Kidney Transplant Recipients. Transplantation. 2020, 104, 905–906. [Google Scholar] [CrossRef]
- Cooper, J.P.; Perkins, J.D.; Warner, P.R.; et al. Acute Graft-Versus-Host Disease After Orthotopic Liver Transplantation: Predicting This Rare Complication Using Machine Learning. Liver Transpl. 2022, 28, 407–421. [Google Scholar] [CrossRef]
- Ivanics, T.; Salinas-Miranda, E.; Abreu, P.; et al. A Pre-TACE Radiomics Model to Predict, H.C.C Progression and Recurrence in Liver Transplantation: A Pilot Study on a Novel Biomarker. Transplantation. 2021, 105, 2435–2444. [Google Scholar] [CrossRef]
- Kamaleswaran, R.; Sataphaty, S.K.; Mas, V.R.; Eason, J.D.; Maluf, D.G. Artificial Intelligence May Predict Early Sepsis After Liver Transplantation. Front Physiol. 2021, 12, 692667. [Google Scholar] [CrossRef]
- Zalba Etayo, B.; Marín Araiz, L.; Montes Aranguren, M.; et al. Graft Survival in Liver Transplantation: An Artificial Neuronal Network Assisted Analysis of the Importance of Comorbidities. Exp Clin Transplant. 2023, 21, 338–344. [Google Scholar] [CrossRef]
- Haidar, G.; Green, M.; American Society of Transplantation Infectious Diseases Community of Practice. Intra-abdominal infections in solid organ transplant recipients: Guidelines from the American Society of Transplantation Infectious Diseases Community of Practice. Clin Transplant. 2019, 33, e13595. [Google Scholar] [CrossRef] [PubMed]
- Nemati, S.; Holder, A.; Razmi, F.; Stanley, M.D.; Clifford, G.D.; Buchman, T.G. An Interpretable Machine Learning Model for Accurate Prediction of Sepsis in the ICU. Crit Care Med. 2018, 46, 547–553. [Google Scholar] [CrossRef]
- Dueland, S.; Foss, A.; Solheim, J.M.; Hagness, M.; Line, P.D. Survival following liver transplantation for liver-only colorectal metastases compared with hepatocellular carcinoma. Br J Surg. 2018, 105, 736–742. [Google Scholar] [CrossRef] [PubMed]
- Dueland, S.; Syversveen, T.; Solheim, J.M.; et al. Survival Following Liver Transplantation for Patients With Nonresectable Liver-only Colorectal Metastases. Ann Surg. 2020, 271, 212–218. [Google Scholar] [CrossRef] [PubMed]
- Toniutto, P.; Fumolo, E.; Fornasiere, E.; Bitetto, D. Liver Transplantation in Patients with Hepatocellular Carcinoma beyond the Milan Criteria: A Comprehensive Review. J Clin Med. 2021, 10, 3932. [Google Scholar] [CrossRef]
- Halazun, K.J.; Najjar, M.; et al. Recurrence After Liver Transplantation for Hepatocellular Carcinoma: A New MORAL to the Story. Ann Surg. 2017, 265, 557–564. [Google Scholar] [CrossRef]
- Notarpaolo, A.; Layese, R.; Magistri, P.; et al. Validation of the AFP model as a predictor of HCC recurrence in patients with viral hepatitis-related cirrhosis who had received a liver transplant for HCC. J Hepatol. 2017, 66, 552–559. [Google Scholar] [CrossRef]
- Mazzaferro, V.; Sposito, C.; Zhou, J.; et al. Metroticket 2.0 Model for Analysis of Competing Risks of Death After Liver Transplantation for Hepatocellular Carcinoma. Gastroenterology. 2018, 154, 128–139. [Google Scholar] [CrossRef]
- Ivanics, T.; Nelson, W.; Patel, M.S.; et al. The Toronto Postliver Transplantation Hepatocellular Carcinoma Recurrence Calculator: A Machine Learning Approach. Liver Transpl. 2022, 28, 593–602. [Google Scholar] [CrossRef]
- Sparrelid, E.; Olthof, P.B.; Dasari, B.V.M.; et al. Current evidence on posthepatectomy liver failure: Comprehensive review. BJS Open. 2022, 6, zrac142. [Google Scholar] [CrossRef]
- Lee, S.; Elton, D.C.; Yang, A.H.; et al. Fully Automated and Explainable Liver Segmental Volume Ratio and Spleen Segmentation at CT for Diagnosing Cirrhosis. Radiol Artif Intell. 2022, 4, e210268. [Google Scholar] [CrossRef] [PubMed]
- Fu-Gui, L.; Lu-Nan, Y.; Bo, L.; et al. Estimation of standard liver volume in Chinese adult living donors. Transplant Proc. 2009, 41, 4052–4056. [Google Scholar] [CrossRef]
- Wingfield, L.R.; Ceresa, C.; Thorogood, S.; Fleuriot, J.; Knight, S. Using Artificial Intelligence for Predicting Survival of Individual Grafts in Liver Transplantation: A Systematic Review. Liver Transpl. 2020, 26, 922–934. [Google Scholar] [CrossRef] [PubMed]
- Tongyoo, A.; Pomfret, E.A.; Pomposelli, J.J. Accurate estimation of living donor right hemi-liver volume from portal vein diameter measurement and standard liver volume calculation. Am J Transplant. 2012, 12, 1229–1239. [Google Scholar] [CrossRef]
- Yang, X.; Yang, J.D.; Hwang, H.P.; et al. Segmentation of liver and vessels from CT images and classification of liver segments for preoperative liver surgical planning in living donor liver transplantation. Comput Methods Programs Biomed. 2018, 158, 41–52. [Google Scholar] [CrossRef]
- Goja, S.; Yadav, S.K.; Yadav, A.; Piplani, T.; et al. Accuracy of preoperative CT liver volumetry in living donor hepatectomy and its clinical implications. Hepatobiliary Surg Nutr. 2018, 7, 167–174. [Google Scholar] [CrossRef] [PubMed]
- Dorado-Moreno, M.; Pérez-Ortiz, M.; Gutiérrez, P.A.; Ciria, R.; Briceño, J.; Hervás-Martínez, C. Dynamically weighted evolutionary ordinal neural network for solving an imbalanced liver transplantation problem. Artif Intell Med. 2017, 77, 1–11. [Google Scholar] [CrossRef]
- Zaver, H.B.; Mzaik, O.; Thomas, J.; et al. Utility of an Artificial Intelligence Enabled Electrocardiogram for Risk Assessment in Liver Transplant Candidates. Dig Dis Sci. 2023, 68, 2379–2388. [Google Scholar] [CrossRef]
- Lau, L.; Kankanige, Y.; Rubinstein, B.; et al. Machine-Learning Algorithms Predict Graft Failure After Liver Transplantation. Transplantation 2017, 101, e125–e132. [Google Scholar] [CrossRef]
- Santopaolo, F.; Lenci, I.; Milana, M.; et al. Liver transplantation for hepatocellular carcinoma: Where do we stand? World J Gastroenterol. 2019, 25, 2591–2602. [Google Scholar] [CrossRef]
- Sucher, R.; Sucher, E. Artificial intelligence is poised to revolutionize human liver allocation and decrease medical costs associated with liver transplantation. Hepatobiliary Surg Nutr. 2020, 9, 679–681. [Google Scholar] [CrossRef] [PubMed]
- Briceño, J.; Cruz-Ramírez, M.; Prieto, M.; et al. Use of artificial intelligence as an innovative donor-recipient matching model for liver transplantation: Results from a multicenter Spanish study. J Hepatol. 2014, 61, 1020–1028. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Jin, B.; Liang, Z.; et al. Liver bioprinting within a novel support medium with functionalized spheroids, hepatic vein structures, and enhanced post-transplantation vascularization. Biomaterials. 2024, 311, 122681. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Lai, D.; Jiang, X.; Zhang, K. FERI: A Multitask-based Fairness Achieving Algorithm with Applications to Fair Organ Transplantation. AMIA Jt Summits Transl Sci Proc. 2024, 2024, 593–602. [Google Scholar]
- Ducas, A.; Martinino, A.; Evans, L.A.; Manueli Laos, E.G.; Giovinazzo, F.; On Behalf Of The Smageics Group. Use of Fluorescence Imaging in Liver Transplant Surgery. J Clin Med. 2024, 13, 2610. [Google Scholar] [CrossRef]
- Meng, Z.; Li, X.; Lu, S.; et al. A comprehensive analysis of m6A/m7G/m5C/m1A-related gene expression and immune infiltration in liver ischemia-reperfusion injury by integrating bioinformatics and machine learning algorithms. Eur J Med Res. 2024, 29, 326. [Google Scholar] [CrossRef]
- Machry, M.; Ferreira, L.F.; Lucchese, A.M.; Kalil, A.N.; Feier, F.H. Liver volumetric and anatomic assessment in living donor liver transplantation: The role of modern imaging and artificial intelligence. World J Transplant. 2023, 13, 290–298. [Google Scholar] [CrossRef]
- To, J.; Ghosh, S.; Zhao, X.; et al. Deep learning-based pathway-centric approach to characterize recurrent hepatocellular carcinoma after liver transplantation. Hum Genomics. 2024, 18, 58. [Google Scholar] [CrossRef]
- Michalopoulos, G.K.; Bhushan, B. Liver regeneration: Biological and pathological mechanisms and implications. Nat Rev Gastroenterol Hepatol. 2021, 18, 40–55. [Google Scholar] [CrossRef]
- Drezga-Kleiminger, M.; Demaree-Cotton, J.; Koplin, J.; Savulescu, J.; Wilkinson, D. Should AI allocate livers for transplant? Public attitudes and ethical considerations. BMC Med Ethics. 2023, 24, 102. [Google Scholar] [CrossRef]
- Narayan, R.R.; Abadilla, N.; Yang, L.; et al. Artificial intelligence for prediction of donor liver allograft steatosis and early post-transplantation graft failure. HPB 2022, 24, 764–771. [Google Scholar] [CrossRef] [PubMed]
- Halazun, K.J.; Samstein, B. Living Donor Liver Transplant: Send in the Robots. Liver Transpl. 2020, 26, 1393–1394. [Google Scholar] [CrossRef] [PubMed]
- Calleja Lozano, R.; Hervás Martínez, C.; Briceño Delgado, F.J. Crossroads in Liver Transplantation: Is Artificial Intelligence the Key to Donor- Recipient Matching? Medicina 2022, 58, 1743. [Google Scholar] [CrossRef] [PubMed]
- Ivanics, T.; Patel, M.S.; Erdman, L.; Sapisochin, G. Artificial intelligence in transplantation (machine-learning classifiers and transplant oncology). Curr Opin Organ Transplant. 2020, 25, 426–434. [Google Scholar] [CrossRef]
- Kalshabay, Y.; Zholdybay, Z.; Di Martino, M.; et al. CT volume analysis in living donor liver transplantation: Accuracy of three different approaches. Insights Imaging. 2023, 14, 82. [Google Scholar] [CrossRef]
- Perakslis, E.; McCourt, B.; Knechtle, S. Reimagining the United States organ procurement and transplant network. Front Transplant. 2023, 2, 1178505. [Google Scholar] [CrossRef]
- Sjule, H.M.; Vinter, C.N.; Dueland, S.; Line, P.D.; Burger, E.A.; Bjørnelv, G.M.W. The Spillover Effects of Extending Liver Transplantation to Patients with Colorectal Liver Metastases: A Discrete Event Simulation Analysis. Med Decis Making. 2024, 44, 529–542. [Google Scholar] [CrossRef]
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Serban, M.; Balescu, I.; Petrea, S.; Gaspar, B.; Pop, L.; Varlas, V.; Stoian, M.; Diaconu, C.; Balalau, C.; Bacalbasa, N. Artificial Intelligence and Liver Transplantation; Literature Review. J. Mind Med. Sci. 2024, 11, 374-380. https://doi.org/10.22543/2392-7674.1532
Serban M, Balescu I, Petrea S, Gaspar B, Pop L, Varlas V, Stoian M, Diaconu C, Balalau C, Bacalbasa N. Artificial Intelligence and Liver Transplantation; Literature Review. Journal of Mind and Medical Sciences. 2024; 11(2):374-380. https://doi.org/10.22543/2392-7674.1532
Chicago/Turabian StyleSerban, Maria, Irina Balescu, Sorin Petrea, Bodan Gaspar, Lucian Pop, Valentin Varlas, Marilena Stoian, Camelia Diaconu, Cristian Balalau, and Nicolae Bacalbasa. 2024. "Artificial Intelligence and Liver Transplantation; Literature Review" Journal of Mind and Medical Sciences 11, no. 2: 374-380. https://doi.org/10.22543/2392-7674.1532
APA StyleSerban, M., Balescu, I., Petrea, S., Gaspar, B., Pop, L., Varlas, V., Stoian, M., Diaconu, C., Balalau, C., & Bacalbasa, N. (2024). Artificial Intelligence and Liver Transplantation; Literature Review. Journal of Mind and Medical Sciences, 11(2), 374-380. https://doi.org/10.22543/2392-7674.1532