Diabetes Mellitus and Associated Complications in the Digestive Tract
Abstract
:Introduction
Discussions
Oral cavity involvement
Periodontal disease
Xerostomia in diabetic patients
Increased susceptibility to oral infections in diabetic patients
Management of dental caries in diabetic patients
Taste disorders in diabetic patients
Esophageal involvement
Esophageal motility disorders and reflux disease
Gastroesophageal reflux disease (GERD) in diabetes
Gastric Involvement
Gastroparesis
Peptic ulcer disease
Gastric cancer
Intestinal and colonic involvement
Diabetic enteropathy
Inflammatory bowel diseases
Colorectal cancer
Other digestive manifestations
Anal incontinence
Hemorrhoidal disease
Conclusions
Compliance with Ethical Standards
Conflicts of Interest
References
- Cheng, H.T.; Xu, X.; Lim, P.S.; Hung, K.Y. Worldwide Epidemiology of Diabetes-Related End-Stage Renal Disease, 2000-2015. Diabetes Care. 2021, 44, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Forouhi, N.G.; Wareham, N.J. Epidemiology of diabetes. Medicine 2019, 47, 22–27. [Google Scholar] [CrossRef]
- Tomic, D.; Shaw, J.E.; Magliano, D.J. The burden and risks of emerging complications of diabetes mellitus. Nat Rev Endocrinol. 2022, 18, 525–539. [Google Scholar] [CrossRef]
- Ahmad, R.; Haque, M. Oral Health Messiers: Diabetes Mellitus Relevance. Diabetes Metab Syndr Obes. 2021, 14, 3001–3015. [Google Scholar] [CrossRef] [PubMed]
- Indurkar, M.S.; Maurya, A.S.; Indurkar, S. Oral Manifestations of Diabetes. Clin Diabetes 2016, 34, 54–57. [Google Scholar] [CrossRef]
- Curtis, M.A.; Diaz, P.I.; Van Dyke, T.E. The role of the microbiota in periodontal disease. Periodontol 2000. 2020, 83, 14–25. [Google Scholar] [CrossRef]
- Iba, T.; Levy, J.H. Inflammation and thrombosis: Roles of neutrophils, platelets and endothelial cells and their interactions in thrombus formation during sepsis. J Thromb Haemost. 2018, 16, 231–241. [Google Scholar] [CrossRef]
- Tavares, R.D.C.R.; Ortigara, G.B.; Tatsch, K.F.; Ferreira, C.M.; Boligon, J.; Moreira, C.H.C. Association between periodontitis and glycated hemoglobin levels in individuals living in rural Southern Brazil. Clin Oral Investig. 2021, 25, 6901–6907. [Google Scholar] [CrossRef]
- Romero-Castro, N.S.; Vázquez-Villamar, M.; Muñoz-Valle, J.F.; et al. Relationship between TNF-α, MMP-8, and MMP-9 levels in gingival crevicular fluid and the subgingival microbiota in periodontal disease. Odontology 2020, 108, 25–33. [Google Scholar] [CrossRef]
- Genco, R.J.; Graziani, F.; Hasturk, H. Effects of periodontal disease on glycemic control, complications, and incidence of diabetes mellitus. Periodontol 2000 2020, 83, 59–65. [Google Scholar] [CrossRef]
- Pacios, S.; Andriankaja, O.; Kang, J.; et al. Bacterial infection increases periodontal bone loss in diabetic rats through enhanced apoptosis. Am J Pathol. 2013, 183, 1928–1935. [Google Scholar] [CrossRef] [PubMed]
- Jain, A.; Chawla, M.; Kumar, A.; et al. Management of periodontal disease in patients with diabetes- good clinical practice guidelines: A joint statement by Indian Society of Periodontology and Research Society for the Study of Diabetes in India. J Indian Soc Periodontol. 2020, 24, 498–524. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, A.T.M.; Akhter, R.; Garde, S.; et al. The association of periodontal disease with the complications of diabetes mellitus. A systematic review. Diabetes Res Clin Pract. 2020, 165, 108244. [Google Scholar] [CrossRef]
- Chapple, I.L.; Genco, R.; working group 2 of the joint EFP/AAP workshop. Diabetes and periodontal diseases: Consensus report of the Joint EFP/AAP Workshop on Periodontitis and Systemic Diseases. J Periodontol. 2013, 84, S106–S112. [Google Scholar] [CrossRef] [PubMed]
- Roi, A.; Rusu, L.C.; Roi, C.I.; Luca, R.E.; Boia, S.; Munteanu, R.I. A New Approach for the Diagnosis of Systemic and Oral Diseases Based on Salivary Biomolecules. Dis Markers. 2019, 2019, 8761860. [Google Scholar] [CrossRef]
- Sánchez Garrido, I.; Ramírez, L.; Muñoz Corcuera, M.; et al. Xerostomia and Salivary Dysfunction in Patients With Diabetes Mellitus. A Cross-Sectional Study. J Oral Pathol Med 2024. Published online September 29. [Google Scholar] [CrossRef]
- Kapourani, A.; Kontogiannopoulos, K.N.; Manioudaki, A.E.; et al. A Review on Xerostomia and Its Various Management Strategies: The Role of Advanced Polymeric Materials in the Treatment Approaches. Polymers 2022, 14, 850. [Google Scholar] [CrossRef]
- Ozen, N.; Aydin Sayilan, A.; Mut, D.; et al. The effect of chewing gum on dry mouth, interdialytic weight gain, and intradialytic symptoms: A prospective, randomized controlled trial. Hemodial Int. 2021, 25, 94–103. [Google Scholar] [CrossRef]
- Muthumariappan, S.; Ng, W.C.; Adine, C.; et al. Localized Delivery of Pilocarpine to Hypofunctional Salivary Glands through Electrospun Nanofiber Mats: An Ex Vivo and In Vivo Study. Int J Mol Sci. 2019, 20, 541. [Google Scholar] [CrossRef]
- Buranasin, P.; Mizutani, K.; Iwasaki, K.; et al. High glucose-induced oxidative stress impairs proliferation and migration of human gingival fibroblasts. PLoS ONE. 2018, 13, e0201855. [Google Scholar] [CrossRef]
- Aldosari, M.; Aldosari, M.; Aldosari, M.A.; Agrawal, P. Diabetes mellitus and its association with dental caries, missing teeth and dental services utilization in the US adult population: Results from the 2015-2018 National Health and Nutrition Examination Survey. Diabet Med. 2022, 39, e14826. [Google Scholar] [CrossRef]
- Sampaio, N.; Mello, S.; Alves, C. Dental caries-associated risk factors and type 1 diabetes mellitus. Pediatr Endocrinol Diabetes Metab. 2011, 17, 152–157. [Google Scholar]
- Ferizi, L.; Dragidella, F.; Spahiu, L.; Begzati, A.; Kotori, V. The Influence of Type 1 Diabetes Mellitus on Dental Caries and Salivary Composition. Int J Dent. 2018, 2018, 5780916. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Hill, R.; Baysan, A. Systematic review on dental caries preventive and managing strategies among type 2 diabetic patients. Front Oral Health. 2022, 3, 998171. [Google Scholar] [CrossRef] [PubMed]
- Nyvad, B.; Fejerskov, O. Active root surface caries converted into inactive caries as a response to oral hygiene. Scand J Dent Res. 1986, 94, 281–284. [Google Scholar] [CrossRef] [PubMed]
- Fometescu, S.G.; Costache, M.; Coveney, A.; Oprescu, S.M.; Serban, D.; Savlovschi, C. Peritoneal fibrinolytic activity and adhesiogenesis. Chirurgia 2013, 108, 331–340 PMID: 23790781. [Google Scholar] [PubMed]
- Wasalathanthri, S.; Hettiarachchi, P.; Prathapan, S. Sweet taste sensitivity in pre-diabetics, diabetics and normoglycemic controls: A comparative cross sectional study. BMC Endocr Disord. 2014, 14, 67. [Google Scholar] [CrossRef]
- Lin, J.; Liu, G.; Duan, Z. The mechanism of esophagus dysmotility in diabetes and research progress of relating treatments. Expert Rev Gastroenterol Hepatol. 2021, 15, 919–927. [Google Scholar] [CrossRef]
- Portincasa, P.; Bonfrate, L.; Wang, D.Q.; Frühbeck, G.; Garruti, G.; Di Ciaula, A. Novel insights into the pathogenic impact of diabetes on the gastrointestinal tract. Eur J Clin Invest. 2022, 52, e13846. [Google Scholar] [CrossRef]
- Monreal-Robles, R.; Remes-Troche, J.M. Diabetes and the Esophagus. Curr Treat Options Gastroenterol. 2017, 15, 475–489. [Google Scholar] [CrossRef]
- Zhao, J.; Chen, P.; Gregersen, H. Morpho-mechanical intestinal remodeling in type 2 diabetic GK rats--is it related to advanced glycation end product formation? J Biomech. 2013, 46, 1128–1134. [Google Scholar] [CrossRef]
- Cock, C.; Besanko, L.; Kritas, S.; et al. Impaired bolus clearance in asymptomatic older adults during high-resolution impedance manometry. Neurogastroenterol Motil. 2016, 28, 1890–1901. [Google Scholar] [CrossRef]
- Roman, S.; Marjoux, S.; Thivolet, C.; Mion, F. Oesophageal function assessed by high-resolution manometry in patients with diabetes and inadequate glycaemic control. Diabet Med. 2014, 31, 1452–1459. [Google Scholar] [CrossRef] [PubMed]
- Faraj, J.; Melander, O.; Sundkvist, G.; et al. Oesophageal dysmotility, delayed gastric emptying and gastrointestinal symptoms in patients with diabetes mellitus. Diabet Med. 2007, 24, 1235–1239. [Google Scholar] [CrossRef]
- Iyer, P.G.; Borah, B.J.; Heien, H.C.; et al. Association of Barrett's esophagus with type II Diabetes Mellitus: Results from a large population-based case-control study. Clin Gastroenterol Hepatol. 2013, 11, 1108–1114.e5. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, S.; Patel, P.; Agrawal, A.; et al. Metformin use and the risk of esophageal cancer in Barrett esophagus. South Med, J. 2014, 107, 774–779. [Google Scholar] [CrossRef] [PubMed]
- Calle, E.E.; Kaaks, R. Overweight, obesity and cancer: Epidemiological evidence and proposed mechanisms. Nat Rev Cancer. 2004, 4, 579–591. [Google Scholar] [CrossRef]
- Yuan, J.; He, Q.; Nguyen, L.H.; et al. Regular use of proton pump inhibitors and risk of type 2 diabetes: Results from three prospective cohort studies. Gut. 2021, 70, 1070–1077. [Google Scholar] [CrossRef]
- Yang, H.; Juang, S.Y.; Liao, K.F. Proton pump inhibitors use and risk of chronic kidney disease in diabetic patients. Diabetes Res Clin Pract. 2019, 147, 67–75. [Google Scholar] [CrossRef]
- Constantin, V.D.; Silaghi, A.; Epistatu, D.; Dumitriu, A.S.; Paunica, S.; Bălan, D.G.; Socea, B. Diagnosis and management of colon cancer patients presenting in advanced stages of complications. J Mind Med Sci. 2023, 10, 51–65. [Google Scholar] [CrossRef]
- Rai, R.R.; Choubal, C.C.; Agarwal, M.; et al. A Prospective Multicentric Postmarketing Observational Study to Characterize the Patient Population with Reduced Gastrointestinal Motility among Indian Diabetic Patients Receiving Itopride: The Progress Study. Int J Appl Basic Med Res. 2019, 9, 148–153. [Google Scholar] [CrossRef]
- Raghunathan, S.; Tank, P.; Bhadada, S.; Patel, B. Evaluation of buspirone on streptozotocin induced type 1 diabetes and its associated complications. Biomed Res Int. 2014, 2014, 948427. [Google Scholar] [CrossRef]
- Homko, C.J.; Duffy, F.; Friedenberg, F.K.; Boden, G.; Parkman, H.P. Effect of dietary fat and food consistency on gastroparesis symptoms in patients with gastroparesis. Neurogastroenterol Motil. 2015, 27, 501–508. [Google Scholar] [CrossRef]
- Young, C.F.; Moussa, M.; Shubrook, J.H. Diabetic Gastroparesis: A Review. Diabetes Spectr. 2020, 33, 290–297. [Google Scholar] [CrossRef]
- Bonetto, S.; Gruden, G.; Beccuti, G.; Ferro, A.; Saracco, G.M.; Pellicano, R. Management of Dyspepsia and Gastroparesis in Patients with Diabetes. A Clinical Point of View in the Year 2021. J Clin Med. 2021, 10, 1313. [Google Scholar] [CrossRef]
- Puentes-Pardo, J.D.; Moreno-SanJuan, S.; Carazo, Á.; León, J. Heme Oxygenase-1 in Gastrointestinal Tract Health and Disease. Antioxidants 2020, 9, 1214. [Google Scholar] [CrossRef]
- Parkman, H.P.; Hasler, W.L.; Fisher, R.S.; American Gastroenterological Association. American Gastroenterological Association technical review on the diagnosis and treatment of gastroparesis. Gastroenterology. 2004, 127, 1592–1622. [Google Scholar] [CrossRef]
- Camilleri, M.; Parkman, H.P.; Shafi, M.A.; Abell, T.L.; Gerson, L.; American College of Gastroenterology. Clinical guideline: Management of gastroparesis. Am J Gastroenterol. 2013, 108, 18–38. [Google Scholar] [CrossRef]
- McCurdy, G.A.; Gooden, T.; Weis, F.; et al. Gastric peroral endoscopic pyloromyotomy (G-POEM) in patients with refractory gastroparesis: A review. Therap Adv Gastroenterol. 2023, 16, 17562848231151289. [Google Scholar] [CrossRef]
- McCallum, R.W.; Dusing, R.W.; Sarosiek, I.; Cocjin, J.; Forster, J.; Lin, Z. Mechanisms of symptomatic improvement after gastric electrical stimulation in gastroparetic patients. Neurogastroenterol Motil. 2010, 22, 161–167. [Google Scholar] [CrossRef]
- Balalau, C.; Voiculescu, S.; Motofei, I.; Scaunasu, R.V.; Negrei, C. Low dose tamoxifen as treatment of benign breast proliferative lesions. Farmacia 2015, 63, 371–375. [Google Scholar]
- Negovan, A.; Banescu, C.; Pantea, M.; Simona, B.; Mocan, S.; Iancu, M. Factors associated with gastro-duodenal ulcer in compensated type 2 diabetic patients: A Romanian single-center study. Arch Med Sci. 2021, 18, 45–51. [Google Scholar] [CrossRef]
- Mansori, K.; Moradi, Y.; Naderpour, S.; et al. Helicobacter pylori infection as a risk factor for diabetes: A meta-analysis of case-control studies. BMC Gastroenterol. 2020, 20, 77. [Google Scholar] [CrossRef]
- Kato, M.; Toda, A.; Yamamoto-Honda, R.; Arase, Y.; Sone, H. Association between Helicobacter pylori infection, eradication and diabetes mellitus. J Diabetes Investig. 2019, 10, 1341–1346. [Google Scholar] [CrossRef]
- Han, X.; Li, Y.; Wang, J.; et al. Helicobacter pylori infection is associated with type 2 diabetes among a middle- and old-age Chinese population. Diabetes Metab Res Rev. 2016, 32, 95–101. [Google Scholar] [CrossRef]
- Holub, J.L.; Silberg, D.G.; Michaels, L.C.; Williams, J.L.; Morris, C.D.; Eisen, G. Acid-related upper endoscopy findings in patients with diabetes versus non-diabetic patients. Dig Dis Sci. 2010, 55, 2853–2859. [Google Scholar] [CrossRef]
- Peng, Y.L.; Leu, H.B.; Luo, J.C.; et al. Diabetes is an independent risk factor for peptic ulcer bleeding: A nationwide population-based cohort study. J Gastroenterol Hepatol. 2013, 28, 1295–1299. [Google Scholar] [CrossRef]
- Constantin, V.D.; Silaghi, A.; Rebegea, L.F.; Paunica, S.; et al. Barrett's esophagus as a premalignant condition; medical and surgical therapeutic management. J Mind Med Sci. 2023, 10, 178–190. [Google Scholar] [CrossRef]
- Lee, W.C.; Goh, K.L.; Loke, M.F.; Vadivelu, J. Elucidation of the Metabolic Network of Helicobacter pylori J99 and Malaysian Clinical Strains by Phenotype Microarray. Helicobacter. 2017, 22, e12321. [Google Scholar] [CrossRef]
- Kayar, Y.; Pamukçu, Ö.; Eroğlu, H.; Kalkan Erol, K.; Ilhan, A.; Kocaman, O. Relationship between Helicobacter pylori Infections in Diabetic Patients and Inflammations, Metabolic Syndrome, and Complications. Int J Chronic Dis. 2015, 2015, 290128. [Google Scholar] [CrossRef]
- Owu, D.U.; Obembe, A.O.; Nwokocha, C.R.; Edoho, I.E.; Osim, E.E. Gastric ulceration in diabetes mellitus: Protective role of vitamin C. ISRN Gastroenterol. 2012, 2012, 362805. [Google Scholar] [CrossRef]
- Ciardullo, S.; Rea, F.; Savaré, L.; Morabito, G.; Perseghin, G.; Corrao, G. Prolonged Use of Proton Pump Inhibitors and Risk of Type 2 Diabetes: Results From a Large Population-Based Nested Case- Control Study. J Clin Endocrinol Metab. 2022, 107, e2671–e2679. [Google Scholar] [CrossRef]
- AbdelAziz, E.Y.; Tadros, M.G.; Menze, E.T. The effect of metformin on indomethacin-induced gastric ulcer: Involvement of nitric oxide/Rho kinase pathway. Eur J Pharmacol. 2021, 892, 173812. [Google Scholar] [CrossRef]
- Dumitrescu, R.; Mehedintu, C.; Briceag, I.; Purcărea, V.L.; Hudita, D. Metformin-clinical pharmacology in PCOs. J Med Life 2015, 8, 187–192. [Google Scholar]
- Nolêto, I.R.S.G.; Iles, B.; Alencar, M.S.; et al. Alendronate-induced gastric damage in normoglycemic and hyperglycemic rats is reversed by metformin. Eur J Pharmacol. 2019, 856, 172410. [Google Scholar] [CrossRef]
- Chiang, T.H.; Chang, W.J.; Chen, S.L.; et al. Mass eradication of Helicobacter pylori to reduce gastric cancer incidence and mortality: A long-term cohort study on Matsu Islands. Gut. 2021, 70, 243–250. [Google Scholar] [CrossRef]
- Mahmoud, S.A.; Elkhoely, A.; El-Sayed, E.K.; Ahmed, A.A.E. Enhanced upregulation of SIRT1 via pioglitazone and ligustrazine confers protection against ethanol-induced gastric ulcer in rats. Naunyn Schmiedebergs Arch Pharmacol. 2024, 397, 6177–6195. [Google Scholar] [CrossRef]
- Konturek, P.C.; Brzozowski, T.; Kania, J.; et al. Pioglitazone, a specific ligand of peroxisome proliferator-activated receptor-gamma, accelerates gastric ulcer healing in rat. Eur J Pharmacol. 2003, 472, 213–220. [Google Scholar] [CrossRef]
- Chen, Y.C.; Ho, C.C.; Yi, C.H.; Liu, X.Z.; Cheng, T.T.; Lam, C.F. Exendin-4, a glucagon-like peptide-1 analogue accelerates healing of chronic gastric ulcer in diabetic rats. PLoS ONE. 2017, 12, e0187434. [Google Scholar] [CrossRef]
- Silaghi, A.; Rebegea, L.F.; Balan, D.G.; Dumitriu, A.; Paunica, S.; Balalau, C.; Cojan, S.T.; Epistatu, D.; Constantin, V.D. Gastric cancer; actualities and perspectives of early diagnosis and targeted therapy. J Mind Med Sci. 2023, 10, 196–208. [Google Scholar] [CrossRef]
- Nussbaumer, R.; Meyer-Gerspach, A.C.; Peterli, R.; et al. First-Phase Insulin and Amylin after Bariatric Surgery: A Prospective Randomized Trial on Patients with Insulin Resistance or Diabetes after Gastric Bypass or Sleeve Gastrectomy. Obes Facts. 2020, 13, 584–595. [Google Scholar] [CrossRef]
- Chen, X.; Chen, Y.; Li, T.; et al. Diabetes mellitus promoted lymph node metastasis in gastric cancer: A 15-year single-institution experience. Chin Med J 2022, 135, 950–961. [Google Scholar] [CrossRef] [PubMed]
- Orliaguet, L.; Dalmas, E.; Drareni, K.; et al. Mechanisms of Macrophage Polarization in Insulin Signaling and Sensitivity. Front Endocrinol. 2020, 11, 62. [Google Scholar] [CrossRef] [PubMed]
- Saisana, M.; Griffin, S.M.; May, F.E.B. Insulin and the insulin receptor collaborate to promote human gastric cancer. Gastric Cancer. 2022, 25, 107–123. [Google Scholar] [CrossRef] [PubMed]
- Kashihara, H.; Shimada, M.; Yoshikawa, K.; et al. The Effect of Roux-en- Y Reconstruction on Type 2 Diabetes in the Early Postoperative Period. Anticancer Res. 2018, 38, 4901–4905. [Google Scholar] [CrossRef]
- Kim, J.W.; Cheong, J.H.; Hyung, W.J.; Choi, S.H.; Noh, S.H. Outcome after gastrectomy in gastric cancer patients with type 2 diabetes. World J Gastroenterol. 2012, 18, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Wei, Z.W.; Li, J.L.; Wu, Y.; et al. Impact of pre-existing type-2 diabetes on patient outcomes after radical resection for gastric cancer: A retrospective cohort study. Dig Dis Sci. 2014, 59, 1017–1024. [Google Scholar] [CrossRef]
- Peng, D.; Cheng, Y.X.; Zhang, W. Does Roux-en-Y Construction Really Bring Benefit of Type 2 Diabetes Mellitus Remission After Gastrectomy in Patients with Gastric Cancer? A Systematic Review and Meta-Analysis. Diabetes Ther. 2020, 11, 2863–2872. [Google Scholar] [CrossRef]
- Verdura, S.; Cuyàs, E.; Martin-Castillo, B.; Menendez, J.A. Metformin as an archetype immuno-metabolic adjuvant for cancer immunotherapy. Oncoimmunology. 2019, 8, e1633235. [Google Scholar] [CrossRef]
- Kim, S.H.; Kim, S.C.; Ku, J.L. Metformin increases chemo-sensitivity via gene downregulation encoding DNA replication proteins in 5-Fu resistant colorectal cancer cells. Oncotarget. 2017, 8, 56546–56557. [Google Scholar] [CrossRef]
- Shuai, Y.; Li, C.; Zhou, X. The effect of metformin on gastric cancer in patients with type 2 diabetes: A systematic review and meta-analysis. Clin Transl Oncol. 2020, 22, 1580–1590. [Google Scholar] [CrossRef]
- DeWaal, D.; Nogueira, V.; Terry, A.R.; et al. Hexokinase-2 depletion inhibits glycolysis and induces oxidative phosphorylation in hepatocellular carcinoma and sensitizes to metformin. Nat Commun. 2018, 9, 446. [Google Scholar] [CrossRef]
- Janzer, A.; German, N.J.; Gonzalez-Herrera, K.N.; Asara, J.M.; Haigis, M.C.; Struhl, K. Metformin and phenformin deplete tricarboxylic acid cycle and glycolytic intermediates during cell transformation and NTPs in cancer stem cells. Proc Natl Acad Sci U S A. 2014, 111, 10574–10579. [Google Scholar] [CrossRef]
- Qian, X.; Li, J.; Ding, J.; Wang, Z.; Duan, L.; Hu, G. Glibenclamide exerts an antitumor activity through reactive oxygen species-c-jun NH2-terminal kinase pathway in human gastric cancer cell line MGC-803. Biochem Pharmacol. 2008, 76, 1705–1715. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.Y.; Kim, M.S.; Lee, M.K.; et al. PPARγ induces growth inhibition and apoptosis through upregulation of insulin-like growth factor- binding protein-3 in gastric cancer cells. Braz J Med Biol Res. 2015, 48, 226–233. [Google Scholar] [CrossRef]
- Meldgaard, T.; Olesen, S.S.; Farmer, A.D.; et al. Diabetic Enteropathy: From Molecule to Mechanism-Based Treatment. J Diabetes Res. 2018, 2018, 3827301. [Google Scholar] [CrossRef] [PubMed]
- Abdalla, M.M.I. Enteric neuropathy in diabetes: Implications for gastrointestinal function. World J Gastroenterol. 2024, 30, 2852–2865. [Google Scholar] [CrossRef]
- Quianzon, C.C.; Cheikh, I. History of insulin. J Community Hosp Intern Med Perspect. 2012, 2, 10.3402/jchimp.v2i2.18701. [Google Scholar] [CrossRef] [PubMed]
- Meldgaard, T.; Keller, J.; Olesen, A.E.; et al. Pathophysiology and management of diabetic gastroenteropathy. Therap Adv Gastroenterol. 2019, 12, 1756284819852047. [Google Scholar] [CrossRef]
- Fedorak, R.N.; Field, M.; Chang, E.B. Treatment of diabetic diarrhea with clonidine. Ann Intern Med. 1985, 102, 197–199. [Google Scholar] [CrossRef]
- Concepción Zavaleta, M.J.; Gonzáles Yovera, J.G.; Moreno Marreros, D.M.; et al. Diabetic gastroenteropathy: An underdiagnosed complication. World J Diabetes. 2021, 12, 794–809. [Google Scholar] [CrossRef]
- Kurniawan, A.H.; Suwandi, B.H.; Kholili, U. Diabetic Gastroenteropathy: A Complication of Diabetes Mellitus. Acta Med Indones. 2019, 51, 263–271. [Google Scholar]
- Ebert, E.C. Gastrointestinal complications of diabetes mellitus. Dis Mon. 2005, 51, 620–663. [Google Scholar] [CrossRef] [PubMed]
- Prasad, V.G.; Abraham, P. Management of chronic constipation in patients with diabetes mellitus. Indian J Gastroenterol. 2017, 36, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.; Ji, L.; Miao, Y.; et al. Constipation in DM are associated with both poor glycemic control and diabetic complications: Current status and future directions. Biomed Pharmacother. 2023, 165, 115202. [Google Scholar] [CrossRef]
- Ford, A.C.; Suares, N.C. Effect of laxatives and pharmacological therapies in chronic idiopathic constipation: Systematic review and meta-analysis. Gut. 2011, 60, 209–218. [Google Scholar] [CrossRef]
- American Diabetes Association. Standards of Medical Care in Diabetes-2016 Abridged for Primary Care Providers. Clin Diabetes. 2016, 34, 3–21. [Google Scholar] [CrossRef] [PubMed]
- Andrews, C.N.; Woo, M.; Buresi, M.; et al. Prucalopride in diabetic and connective tissue disease-related gastroparesis: Randomized placebo- controlled crossover pilot trial. Neurogastroenterol Motil. 2021, 33, e13958. [Google Scholar] [CrossRef]
- Fuschillo, G.; Celentano, V.; Rottoli, M.; et al. Influence of diabetes mellitus on inflammatory bowel disease course and treatment outcomes. A systematic review with meta-analysis. Dig Liver Dis. 2023, 55, 580–586. [Google Scholar] [CrossRef]
- Lai, S.W.; Kuo, Y.H.; Liao, K.F. Association Between Inflammatory Bowel Disease and Diabetes Mellitus. Clin Gastroenterol Hepatol. 2020, 18, 1002–1003. [Google Scholar] [CrossRef]
- Tang, L.T.; Feng, L.; Cao, H.Y.; et al. Investigation of the causal relationship between inflammatory bowel disease and type 2 diabetes mellitus: A Mendelian randomization study. Front Genet. 2024, 15, 1325401. [Google Scholar] [CrossRef]
- Lim, S.; Sohn, M.; Florez, J.C.; Nauck, M.A.; Ahn, J. Effects of Initial Combinations of Gemigliptin Plus Metformin Compared with Glimepiride Plus Metformin on Gut Microbiota and Glucose Regulation in Obese Patients with Type 2 Diabetes: The, I.N.TESTINE Study. Nutrients. 2023, 15, 248. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.; Xu, Y.; Zheng, T.; Liu, T. Type 2 diabetes and inflammatory bowel disease: A bidirectional two-sample Mendelian randomization study. Sci Rep. 2024, 14, 5149. [Google Scholar] [CrossRef]
- Lewis, J.D.; Lichtenstein, G.R.; Deren, J.J.; et al. Rosiglitazone for active ulcerative colitis: A randomized placebo-controlled trial. Gastroenterology. 2008, 134, 688–695. [Google Scholar] [CrossRef] [PubMed]
- Lamb, C.A.; Kennedy, N.A.; Raine, T.; et al. British Society of Gastroenterology consensus guidelines on the management of inflammatory bowel disease in adults. Gut 2019, 68, s1–s106. [Google Scholar] [CrossRef]
- Liu, X.X.; Zhu, X.M.; Miao, Q.; Ye, H.Y.; Zhang, Z.Y.; Li, Y.M. Hyperglycemia induced by glucocorticoids in nondiabetic patients: A meta-analysis. Ann Nutr Metab. 2014, 65, 324–332. [Google Scholar] [CrossRef]
- Adrian Silaghi, Vlad Denis Constantin, Bogdan Socea, Petrișor Banu, Vladimir Sandu, Liliana Florina Andronache, Anca Silvia Dumitriu, Stana Paunica. Inflammatory bowel disease: Pathogenesis, diagnosis and current therapeutic approach. J Mind Med Sci. 2022, 9, 56–77. [CrossRef]
- Araújo, E.P.; De Souza, C.T.; Ueno, M.; et al. Infliximab restores glucose homeostasis in an animal model of diet-induced obesity and diabetes. Endocrinology. 2007, 148, 5991–5997. [Google Scholar] [CrossRef] [PubMed]
- Bower, J.A.J.; O'Flynn, L.; Kakad, R.; Aldulaimi, D. Effect of inflammatory bowel disease treatments on patients with diabetes mellitus. World J Diabetes. 2021, 12, 1248–1254. [Google Scholar] [CrossRef]
- Shuwa, H.A.; Dallatu, M.K.; Yeldu, M.H.; Ahmed, H.M.; Nasir, I.A. Effects of Adalimumab, an Anti-tumour Necrosis Factor-Alpha (TNF-α) Antibody, on Obese Diabetic Rats. Malays J Med Sci. 2018, 25, 51–62. [Google Scholar] [CrossRef]
- Desai, R.J.; Dejene, S.; Jin, Y.; Liu, J.; Kim, S.C. Comparative Risk of Diabetes Mellitus in Patients With Rheumatoid Arthritis Treated With Biologic or Targeted Synthetic Disease-Modifying Drugs: A Cohort Study. ACR Open Rheumatol. 2020, 2, 222–231. [Google Scholar] [CrossRef]
- Bjornsdottir, H.H.; Rawshani, A.; Rawshani, A.; et al. A national observation study of cancer incidence and mortality risks in type 2 diabetes compared to the background population over time. Sci Rep. 2020, 10, 17376. [Google Scholar] [CrossRef]
- Shahid, R.K.; Ahmed, S.; Le, D.; Yadav, S. Diabetes and Cancer: Risk, Challenges, Management and Outcomes. Cancers 2021, 13, 5735. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.C.; Chang, T.K.; Su, W.C.; Tsai, H.L.; Wang, J.Y. Narrative review of the influence of diabetes mellitus and hyperglycemia on colorectal cancer risk and oncological outcomes. Transl Oncol. 2021, 14, 101089. [Google Scholar] [CrossRef] [PubMed]
- Renehan, A.G.; Zwahlen, M.; Minder, C.; O'Dwyer, S.T.; Shalet, S.M.; Egger, M. Insulin-like growth factor (IGF)-I, IGF binding protein-3, and cancer risk: Systematic review and meta-regression analysis. Lancet. 2004, 363, 1346–1353. [Google Scholar] [CrossRef]
- Nome, T.; Hoff, A.M.; Bakken, A.C.; Rognum, T.O.; Nesbakken, A.; Skotheim, R.I. High frequency of fusion transcripts involving TCF7L2 in colorectal cancer: Novel fusion partner and splice variants. PLoS ONE 2014, 9, e91264. [Google Scholar] [CrossRef]
- Li, J.; Liu, H.; Zou, L.; et al. A functional variant in GREM1 confers risk for colorectal cancer by disrupting a hsa-miR-185-3p binding site. Oncotarget. 2017, 8, 61318–61326. [Google Scholar] [CrossRef]
- Tan, D.J.H.; Yaow, C.Y.L.; Mok, H.T.; et al. The influence of diabetes on postoperative complications following colorectal surgery. Tech Coloproctol. 2021, 25, 267–278. [Google Scholar] [CrossRef] [PubMed]
- Reudink, M.; Huisman, D.E.; van Rooijen, S.J.; et al. Association Between Intraoperative Blood Glucose and Anastomotic Leakage in Colorectal Surgery. J Gastrointest Surg. 2021, 25, 2619–2627. [Google Scholar] [CrossRef]
- Jones, C.E.; Graham, L.A.; Morris, M.S.; et al. Association Between Preoperative Hemoglobin A1c Levels, Postoperative Hyperglycemia, and Readmissions Following Gastrointestinal Surgery. JAMA Surg. 2017, 152, 1031–1038. [Google Scholar] [CrossRef]
- Khawaja, Z.H.; Gendia, A.; Adnan, N.; Ahmed, J. Prevention and Management of Postoperative Ileus: A Review of Current Practice. Cureus. 2022, 14, e22652. [Google Scholar] [CrossRef]
- Luque-Fernandez, M.A.; Gonçalves, K.; Salamanca-Fernández, E.; et al. Multimorbidity and short-term overall mortality among colorectal cancer patients in Spain: A population-based cohort study. Eur J Cancer. 2020, 129, 4–14. [Google Scholar] [CrossRef]
- Abdel-Rahman, O. Impact of diabetes comorbidity on the efficacy and safety of FOLFOX first-line chemotherapy among patients with metastatic colorectal cancer: A pooled analysis of two phase-III studies. Clin Transl Oncol. 2019, 21, 512–518. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Singh, H.; Singh, P.P.; Murad, M.H.; Limburg, P.J. Antidiabetic medications and the risk of colorectal cancer in patients with diabetes mellitus: A systematic review and meta-analysis. Cancer Epidemiol Biomarkers Prev. 2013, 22, 2258–2268. [Google Scholar] [CrossRef] [PubMed]
- Ng, C.W.; Jiang, A.A.; Toh, E.M.S.; et al. Metformin and colorectal cancer: A systematic review, meta-analysis and meta-regression. Int J Colorectal Dis. 2020, 35, 1501–1512. [Google Scholar] [CrossRef]
- De La Luz Nieto, M.; Wu, J.M.; Matthews, C.; Whitehead, W.E.; Markland, A.D. Factors associated with fecal incontinence in a nationally representative sample of diabetic women. Int Urogynecol, J. 2015, 26, 1483–1488. [Google Scholar] [CrossRef]
- Malloy, J.; Meloni, A.; Han, J. Efficacy and tolerability of exenatide once weekly versus sitagliptin in patients with type 2 diabetes mellitus: A retrospective analysis of pooled clinical trial data. Postgrad Med. 2013, 125, 58–67. [Google Scholar] [CrossRef]
- Ekici, U.; Kartal, A.; Ferhatoglu, M.F. Association Between Hemorrhoids and Lower Extremity Chronic Venous Insufficiency. Cureus. 2019, 11, e4502. [Google Scholar] [CrossRef] [PubMed]
- Tseng, C.H. Chronic Metformin Therapy is Associated with a Lower Risk of Hemorrhoid in Patients with Type 2 Diabetes Mellitus. Front Pharmacol. 2021, 11, 578831. [Google Scholar] [CrossRef]
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paunica, I.; Constantin, V.D.; Serban, D.; Paius, C.; Gaspar, B.; Epistatu, D.; Verlas, V.; Sfetea, R.; Andronache, L.F.; Balalau, C.; et al. Diabetes Mellitus and Associated Complications in the Digestive Tract. J. Mind Med. Sci. 2024, 11, 351-362. https://doi.org/10.22543/2392-7674.1567
Paunica I, Constantin VD, Serban D, Paius C, Gaspar B, Epistatu D, Verlas V, Sfetea R, Andronache LF, Balalau C, et al. Diabetes Mellitus and Associated Complications in the Digestive Tract. Journal of Mind and Medical Sciences. 2024; 11(2):351-362. https://doi.org/10.22543/2392-7674.1567
Chicago/Turabian StylePaunica, Ioana, Vlad Denis Constantin, Dragos Serban, Cristian Paius, Bogdan Gaspar, Dragos Epistatu, Valentin Verlas, Roxana Sfetea, Liliana Florina Andronache, Cristian Balalau, and et al. 2024. "Diabetes Mellitus and Associated Complications in the Digestive Tract" Journal of Mind and Medical Sciences 11, no. 2: 351-362. https://doi.org/10.22543/2392-7674.1567
APA StylePaunica, I., Constantin, V. D., Serban, D., Paius, C., Gaspar, B., Epistatu, D., Verlas, V., Sfetea, R., Andronache, L. F., Balalau, C., Bălan, D. G., Motofei, A. F., & Silaghi, A. (2024). Diabetes Mellitus and Associated Complications in the Digestive Tract. Journal of Mind and Medical Sciences, 11(2), 351-362. https://doi.org/10.22543/2392-7674.1567