Pancreatic Cancer; From Effective Prevention and Early Diagnosis to Personalized Therapy
Abstract
:Introduction
Discussions
Epidemiology
Pathophysiology
Diagnosis
Treatment
Conclusions
Compliance with ethical standards
Conflict of interest disclosure
References
- De Dosso, S.; Siebenhüner, A.R.; Winder, T.; et al. Treatment landscape of metastatic pancreatic cancer. Cancer Treat Rev. 2021, 96, 102180. [Google Scholar] [CrossRef] [PubMed]
- Maisonneuve, P. Epidemiology and burden of pancreatic cancer. Presse Med. 2019, 48, e113–e123. [Google Scholar] [CrossRef]
- McGuigan, A.; Kelly, P.; Turkington, R.C.; Jones, C.; Coleman, H.G.; McCain, R.S. Pancreatic cancer: A review of clinical diagnosis, epidemiology, treatment and outcomes. World J Gastroenterol. 2018, 24, 4846–4861. [Google Scholar] [CrossRef]
- Conroy, T.; Desseigne, F.; Ychou, M.; et al. FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N Engl J Med. 2011, 364, 1817–1825. [Google Scholar] [CrossRef] [PubMed]
- Ghaneh, P.; Palmer, D.; Cicconi, S.; et al. Immediate surgery compared with short-course neoadjuvant gemcitabine plus capecitabine, FOLFIRINOX, or chemoradiotherapy in patients with borderline resectable pancreatic cancer (ESPAC5): a four-arm, multicentre, randomised, phase 2 trial. Lancet Gastroenterol Hepatol. 2023, 8, 157–168. [Google Scholar] [CrossRef] [PubMed]
- Bengtsson, A.; Andersson, R.; Ansari, D. The actual 5-year survivors of pancreatic ductal adenocarcinoma based on real-world data. Sci Rep. 2020, 10, 16425. [Google Scholar] [CrossRef]
- Hu, J.X.; Zhao, C.F.; Chen, W.B.; et al. Pancreatic cancer: A review of epidemiology, trend, and risk factors. World J Gastroenterol. 2021, 27, 4298–4321. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer Statistics, 2021. CA Cancer J Clin. 2021, 71, 7–33. [Google Scholar] [CrossRef]
- Ferlay, J.; Partensky, C.; Bray, F. More deaths from pancreatic cancer than breast cancer in the EU by 2017. Acta Oncol. 2016, 55, 1158–1160. [Google Scholar] [CrossRef]
- Sung, H.; Ferlay, J.; Siegel, R.L.; et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed]
- Jia, X.; Du, P.; Wu, K.; et al. Pancreatic Cancer Mortality in China: Characteristics and Prediction. Pancreas. 2018, 47, 233–237. [Google Scholar] [CrossRef]
- Chen, W.; Zheng, R.; Baade, P.D.; et al. Cancer statistics in China, 2015. CA Cancer J Clin. 2016, 66, 115–132. [Google Scholar] [CrossRef] [PubMed]
- Matsuda, Y. Age-related morphological changes in the pancreas and their association with pancreatic carcinogenesis. Pathol Int. 2019, 69, 450–462. [Google Scholar] [CrossRef] [PubMed]
- Silverman, D.T.; Hoover, R.N.; Brown, L.M.; et al. Why do Black Americans have a higher risk of pancreatic cancer than White Americans? Epidemiology. 2003, 14, 45–54. [Google Scholar] [CrossRef]
- Permuth-Wey, J.; Egan, K.M. Family history is a significant risk factor for pancreatic cancer: results from a systematic review and meta-analysis. Fam Cancer. 2009, 8, 109–117. [Google Scholar] [CrossRef] [PubMed]
- Llach, J.; Carballal, S.; Moreira, L. Familial Pancreatic Cancer: Current Perspectives. Cancer Manag Res. 2020, 12, 743–758. [Google Scholar] [CrossRef]
- Møller, P.; Seppälä, T.T.; Bernstein, I.; et al. Cancer risk and survival in path_MMR carriers by gene and gender up to 75 years of age: a report from the Prospective Lynch Syndrome Database. Gut. 2018, 67, 1306–1316. [Google Scholar] [CrossRef]
- Roberts, N.J.; Norris, A.L.; Petersen, G.M.; et al. Whole Genome Sequencing Defines the Genetic Heterogeneity of Familial Pancreatic Cancer. Cancer Discov. 2016, 6, 166–175. [Google Scholar] [CrossRef]
- Shams-White, M.M.; Brockton, N.T.; Mitrou, P.; et al. Operationalizing the 2018 World Cancer Research Fund/American Institute for Cancer Research (WCRF/AICR) Cancer Prevention Recommendations: A Standardized Scoring System. Nutrients. 2019, 11, 1572. [Google Scholar] [CrossRef]
- Navarrete-Muñoz, E.M.; Wark, P.A.; Romaguera, D.; et al. Sweet-beverage consumption and risk of pancreatic cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC). Am J Clin Nutr. 2016, 104, 760–768. [Google Scholar] [CrossRef] [PubMed]
- Lukic, M.; Nilsson, L.M.; Skeie, G.; Lindahl, B.; Braaten, T. Coffee consumption and risk of rare cancers in Scandinavian countries. Eur J Epidemiol. 2018, 33, 287–302. [Google Scholar] [CrossRef]
- Cai, J.; Chen, H.; Lu, M.; et al. Advances in the epidemiology of pancreatic cancer: Trends, risk factors, screening, and prognosis. Cancer Lett. 2021, 520, 1–11. [Google Scholar] [CrossRef]
- Naudin, S.; Li, K.; Jaouen, T.; et al. Lifetime and baseline alcohol intakes and risk of pancreatic cancer in the European Prospective Investigation into Cancer and Nutrition study. Int J Cancer. 2018, 143, 801–812. [Google Scholar] [CrossRef]
- Lugo, A.; Peveri, G.; Bosetti, C.; et al. Strong excess risk of pancreatic cancer for low frequency and duration of cigarette smoking: A comprehensive review and meta-analysis. Eur J Cancer. 2018, 104, 117–126. [Google Scholar] [CrossRef]
- Jiao, L.; Chen, L.; White, D.L.; et al. Low-fat Dietary Pattern and Pancreatic Cancer Risk in the Women's Health Initiative Dietary Modification Randomized Controlled Trial. J Natl Cancer Inst. 2018, 110, 49–56. [Google Scholar] [CrossRef]
- Li, S.; Tian, B. Acute pancreatitis in patients with pancreatic cancer: Timing of surgery and survival duration. Medicine (Baltimore). 2017, 96, e5908. [Google Scholar] [CrossRef] [PubMed]
- Rijkers, A.P.; Bakker, O.J.; Ahmed Ali, U.; et al. Risk of Pancreatic Cancer After a Primary Episode of Acute Pancreatitis. Pancreas. 2017, 46, 1018–1022. [Google Scholar] [CrossRef] [PubMed]
- Hao, L.; Zeng, X.P.; Xin, L.; et al. Incidence of and risk factors for pancreatic cancer in chronic pancreatitis: A cohort of 1656 patients. Dig Liver Dis. 2017, 49, 1249–1256. [Google Scholar] [CrossRef]
- Cazacu, I.M.; Farkas, N.; Garami, A.; et al. Pancreatitis-Associated Genes and Pancreatic Cancer Risk: A Systematic Review and Meta-analysis. Pancreas. 2018, 47, 1078–86. [Google Scholar] [CrossRef]
- Cascetta, P.; Cavaliere, A.; Piro, G.; et al. Pancreatic Cancer and Obesity: Molecular Mechanisms of Cell Transformation and Chemoresistance. Int J Mol Sci. 2018, 19, 3331. [Google Scholar] [CrossRef]
- Shinoda, S.; Nakamura, N.; Roach, B.; et al. Obesity and Pancreatic Cancer: Recent Progress in Epidemiology, Mechanisms and Bariatric Surgery. Biomedicines. 2022, 10, 1284. [Google Scholar] [CrossRef]
- Zohar, L.; Rottenberg, Y.; Twig, G.; et al. Adolescent overweight and obesity and the risk for pancreatic cancer among men and women: a nationwide study of 1.79 million Israeli adolescents. Cancer. 2019, 125, 118–126. [Google Scholar] [CrossRef] [PubMed]
- Halbrook, C.J.; Lyssiotis, C.A.; Pasca di Magliano, M.; Maitra, A. Pancreatic cancer: Advances and challenges. Cell. 2023, 186, 1729–1754. [Google Scholar] [CrossRef] [PubMed]
- Matthaei, H.; Schulick, R.D.; Hruban, R.H.; Maitra, A. Cystic precursors to invasive pancreatic cancer. Nat Rev Gastroenterol Hepatol. 2011, 8, 141–150. [Google Scholar] [CrossRef]
- Fujikura, K.; Hosoda, W.; Felsenstein, M.; et al. Multiregion whole-exome sequencing of intraductal papillary mucinous neoplasms reveals frequent somatic KLF4 mutations predominantly in low-grade regions. Gut. 2021, 70, 928–939. [Google Scholar] [CrossRef]
- Bailey, P.; Chang, D.K.; Nones, K.; et al. Genomic analyses identify molecular subtypes of pancreatic cancer. Nature. 2016, 531, 47–52. [Google Scholar] [CrossRef]
- Cancer Genome Atlas Research Network. Electronic address: andrew_aguirre@dfci.harvard.edu; Cancer Genome Atlas Research Network. Integrated Genomic Characterization of Pancreatic Ductal Adenocarcinoma. Cancer Cell. 2017, 32, 185–203.e13. [Google Scholar] [CrossRef]
- Kopp, J.L.; Dubois, C.L.; Schaeffer, D.F.; et al. Loss of Pten and Activation of Kras Synergistically Induce Formation of Intraductal Papillary Mucinous Neoplasia From Pancreatic Ductal Cells in Mice. Gastroenterology. 2018, 154, 1509–1523.e5. [Google Scholar] [CrossRef]
- Hessmann, E.; Buchholz, S.M.; Demir, I.E.; et al. Microenvironmental Determinants of Pancreatic Cancer. Physiol Rev. 2020, 100, 1707–1751. [Google Scholar] [CrossRef]
- Schnittert, J.; Bansal, R.; Prakash, J. Targeting Pancreatic Stellate Cells in Cancer. Trends Cancer. 2019, 5, 128–42. [Google Scholar] [CrossRef] [PubMed]
- Shintani, Y.; Hollingsworth, M.A.; Wheelock, M.J.; Johnson, K.R. Collagen I promotes metastasis in pancreatic cancer by activating c-Jun NH(2)-terminal kinase 1 and up-regulating N-cadherin expression. Cancer Res. 2006, 66, 11745–11753. [Google Scholar] [CrossRef] [PubMed]
- Stopa, K.B.; Kusiak, A.A.; Szopa, M.D.; Ferdek, P.E.; Jakubowska, M.A. Pancreatic Cancer and Its Microenvironment-Recent Advances and Current Controversies. Int J Mol Sci. 2020, 21, 3218. [Google Scholar] [CrossRef]
- Álvarez-Garcia, V.; Tawil, Y.; Wise, H.M.; Leslie, N.R. Mechanisms of PTEN loss in cancer: It's all about diversity. Semin Cancer Biol. 2019, 59, 66–79. [Google Scholar] [CrossRef] [PubMed]
- Drifka, C.R.; Tod, J.; Loeffler, A.G.; et al. Periductal stromal collagen topology of pancreatic ductal adenocarcinoma differs from that of normal and chronic pancreatitis. Mod Pathol. 2015, 28, 1470–1480. [Google Scholar] [CrossRef]
- Sato, N.; Kohi, S.; Hirata, K.; Goggins, M. Role of hyaluronan in pancreatic cancer biology and therapy: Once again in the spotlight. Cancer Sci. 2016, 107, 569–575. [Google Scholar] [CrossRef]
- Tahkola, K.; Ahtiainen, M.; Mecklin, J.P.; et al. Stromal hyaluronan accumulation is associated with low immune response and poor prognosis in pancreatic cancer. Sci Rep. 2021, 11, 12216. [Google Scholar] [CrossRef]
- Kuang, D.M.; Wu, Y.; Chen, N.; Cheng, J.; Zhuang, S.M.; Zheng, L. Tumor-derived hyaluronan induces formation of immunosuppressive macrophages through transient early activation of monocytes. Blood. 2007, 110, 587–595. [Google Scholar] [CrossRef]
- Kim, P.K.; Halbrook, C.J.; Kerk, S.A.; et al. Hyaluronic acid fuels pancreatic cancer cell growth. Elife. 2021, 10, e62645. [Google Scholar] [CrossRef]
- Georgescu, S.R.; Tampa, M.; Paunica, S.; et al. Distribution of post-finasteride syndrome in men with androgenic alopecia. J Invest Dermatol. 2015, 135, S40–S40, 45th Annual Meeting of the European-Society-for-Dermatological-Research. Meeting Abstract 228. [Google Scholar]
- Sherman, M.H.; Beatty, G.L. Tumor Microenvironment in Pancreatic Cancer Pathogenesis and Therapeutic Resistance. Annu Rev Pathol. 2023, 18, 123–148. [Google Scholar] [CrossRef] [PubMed]
- Morita, T.; Kodama, Y.; Shiokawa, M.; et al. CXCR4 in Tumor Epithelial Cells Mediates Desmoplastic Reaction in Pancreatic Ductal Adenocarcinoma. Cancer Res. 2020, 80, 4058–4070. [Google Scholar] [CrossRef] [PubMed]
- Martin, J.D.; Seano, G.; Jain, R.K. Normalizing Function of Tumor Vessels: Progress, Opportunities, and Challenges. Annu Rev Physiol. 2019, 81, 505–534. [Google Scholar] [CrossRef] [PubMed]
- Katsuta, E.; Qi, Q.; Peng, X.; Hochwald, S.N.; Yan, L.; Takabe, K. Pancreatic adenocarcinomas with mature blood vessels have better overall survival. Sci Rep. 2019, 9, 1310. [Google Scholar] [CrossRef]
- Jin, X.; Dai, L.; Ma, Y.; Wang, J.; Liu, Z. Implications of HIF-1α in the tumorigenesis and progression of pancreatic cancer. Cancer Cell Int. 2020, 20, 273. [Google Scholar] [CrossRef]
- Hegde, S.; Krisnawan, V.E.; Herzog, B.H.; et al. Dendritic Cell Paucity Leads to Dysfunctional Immune Surveillance in Pancreatic Cancer. Cancer Cell. 2020, 37, 289–307.e9. [Google Scholar] [CrossRef]
- Balachandran, V.P.; Łuksza, M.; Zhao, J.N.; et al. Identification of unique neoantigen qualities in long-term survivors of pancreatic cancer. Nature. 2017, 551, 512–516. [Google Scholar] [CrossRef]
- Hu, F.; Guo, F.; Zhu, Y.; et al. IL-17 in pancreatic disease: pathogenesis and pharmacotherapy. Am J Cancer Res. 2020, 10, 3551–3564. [Google Scholar]
- Li, J.; Betzler, C.; Lohneis, P.; et al. The IL-17A/IL-17RA Axis Is Not Related to Overall Survival and Cancer Stem Cell Modulation in Pancreatic Cancer. Int J Mol Sci. 2020, 21, 2215. [Google Scholar] [CrossRef]
- Delvecchio, F.R.; Goulart, M.R.; Fincham, R.E.A.; Bombadieri, M.; Kocher, H.M. B cells in pancreatic cancer stroma. World J Gastroenterol. 2022, 28, 1088–1101. [Google Scholar] [CrossRef]
- Pylayeva-Gupta, Y.; Das, S.; Handler, J.S.; et al. IL35-Producing B Cells Promote the Development of Pancreatic Neoplasia. Cancer Discov. 2016, 6, 247–255. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.E.; Spata, M.; Bayne, L.J.; et al. Hif1a Deletion Reveals Pro-Neoplastic Function of B Cells in Pancreatic Neoplasia. Cancer Discov. 2016, 6, 256–269. [Google Scholar] [CrossRef] [PubMed]
- Kanno, A.; Masamune, A.; Hanada, K.; et al. Multicenter study of early pancreatic cancer in Japan. Pancreatology. 2018, 18, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Xu, R.; Wang, C. Early screening and diagnosis strategies of pancreatic cancer: a comprehensive review. Cancer Commun (Lond). 2021, 41, 1257–1274. [Google Scholar] [CrossRef]
- Yamashita, Y.; Shimokawa, T.; Napoléon, B.; et al. Value of contrast-enhanced harmonic endoscopic ultrasonography with enhancement pattern for diagnosis of pancreatic cancer: A meta-analysis. Dig Endosc. 2019, 31, 125–133. [Google Scholar] [CrossRef] [PubMed]
- O'Neill, R.S.; Stoita, A. Biomarkers in the diagnosis of pancreatic cancer: Are we closer to finding the golden ticket? World J Gastroenterol. 2021, 27, 4045–4087. [Google Scholar] [CrossRef]
- Doğan, Ü.B.; Gümürdülü, Y.; Gölge, N.; Kara, B. Relationship of CA 19-9 with choledocholithiasis and cholangitis. Turk J Gastroenterol. 2011, 22, 171–177. [Google Scholar] [CrossRef]
- Kaur, S.; Smith, L.M.; Patel, A.; et al. A Combination of MUC5AC and CA19-9 Improves the Diagnosis of Pancreatic Cancer: A Multicenter Study. Am J Gastroenterol. 2017, 112, 172–183. [Google Scholar] [CrossRef]
- Meng, Q.; Shi, S.; Liang, C.; et al. Diagnostic Accuracy of a CA125-Based Biomarker Panel in Patients with Pancreatic Cancer: A Systematic Review and Meta-Analysis. J Cancer. 2017, 8, 3615–3622. [Google Scholar] [CrossRef]
- Gu, Y.L.; Lan, C.; Pei, H.; Yang, S.N.; Liu, Y.F.; Xiao, L.L. Applicative Value of Serum CA19-9, CEA, CA125 and CA242 in Diagnosis and Prognosis for Patients with Pancreatic Cancer Treated by Concurrent Chemoradiotherapy. Asian Pac J Cancer Prev. 2015, 16, 6569–6573. [Google Scholar] [CrossRef]
- Ringel, J.; Löhr, M. The MUC gene family: their role in diagnosis and early detection of pancreatic cancer. Mol Cancer. 2003, 2, 9. [Google Scholar] [CrossRef] [PubMed]
- Pekarek, L.; Fraile-Martinez, O.; Garcia-Montero, C.; et al. Clinical Applications of Classical and Novel Biological Markers of Pancreatic Cancer. Cancers (Basel). 2022, 14, 1866. [Google Scholar] [CrossRef]
- Krishn, S.R.; Ganguly, K.; Kaur, S.; Batra, S.K. Ramifications of secreted mucin MUC5AC in malignant journey: a holistic view. Carcinogenesis. 2018, 39, 633–651. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Y.; Zhao, T.; et al. Evaluation of serum MUC5AC in combination with CA19-9 for the diagnosis of pancreatic cancer. World J Surg Oncol. 2020, 18, 31. [Google Scholar] [CrossRef] [PubMed]
- Ren, L.; Yi, J.; Li, W.; et al. Apolipoproteins and cancer. Cancer Med. 2019, 8, 7032–7043. [Google Scholar] [CrossRef] [PubMed]
- Sato, Y.; Kobayashi, T.; Nishiumi, S.; et al. Prospective Study Using Plasma Apolipoprotein A2-Isoforms to Screen for High-Risk Status of Pancreatic Cancer. Cancers (Basel). 2020, 12, 2625. [Google Scholar] [CrossRef]
- Honda, K.; Katzke, V.A.; Hüsing, A.; et al. CA19-9 and apolipoprotein-A2 isoforms as detection markers for pancreatic cancer: a prospective evaluation. Int J Cancer. 2019, 144, 1877–1887. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, C.; Wang, R.; et al. Isomer-specific profiling of N-glycans derived from human serum for potential biomarker discovery in pancreatic cancer. J Proteomics. 2018, 181, 160–169. [Google Scholar] [CrossRef]
- Savlovschi, C.; Brănescu, C.; Serban, D.; et al. Amyand's hernia--a clinical case. Chirurgia (Bucur). 2010, 105, 409–414. [Google Scholar]
- Pang, T.C.Y.; Po, J.W.; Becker, T.M.; et al. Circulating tumour cells in pancreatic cancer: A systematic review and meta-analysis of clinicopathological implications. Pancreatology. 2021, 21, 103–114. [Google Scholar] [CrossRef]
- Jaworski, J.J.; Morgan, R.D.; Sivakumar, S. Circulating Cell-Free Tumour DNA for Early Detection of Pancreatic Cancer. Cancers (Basel). 2020, 12, 3704. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J.D.; Javed, A.A.; Thoburn, C.; et al. Combined circulating tumor DNA and protein biomarker-based liquid biopsy for the earlier detection of pancreatic cancers. Proc Natl Acad Sci U S A. 2017, 114, 10202–10207. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Croce, C.M. The role of MicroRNAs in human cancer. Signal Transduct Target Ther. 2016, 1, 15004. [Google Scholar] [CrossRef] [PubMed]
- Roldo, C.; Missiaglia, E.; Hagan, J.P.; et al. MicroRNA expression abnormalities in pancreatic endocrine and acinar tumors are associated with distinctive pathologic features and clinical behavior. J Clin Oncol. 2006, 24, 4677–4684. [Google Scholar] [CrossRef]
- Faur, M.; Moisin, A.; Sabau, A.D.; Sabau, D. The surgical management of pancreatic pseudocysts – outcomes on a group of seven patients. J Mind Med Sci. 2022, 9, 168–174. [Google Scholar] [CrossRef]
- Liu, R.; Chen, X.; Du, Y.; et al. Serum microRNA expression profile as a biomarker in the diagnosis and prognosis of pancreatic cancer. Clin Chem. 2012, 58, 610–618. [Google Scholar] [CrossRef]
- Yuan, W.; Tang, W.; Xie, Y.; et al. New combined microRNA and protein plasmatic biomarker panel for pancreatic cancer. Oncotarget. 2016, 7, 80033–80045. [Google Scholar] [CrossRef]
- Gilbert, J.W.; Wolpin, B.; Clancy, T.; et al. Borderline resectable pancreatic cancer: conceptual evolution and current approach to image-based classification. Ann Oncol. 2017, 28, 2067–2076. [Google Scholar] [CrossRef]
- Terlizzi, M.; Buscail, E.; Boussari, O.; et al. Neoadjuvant treatment for borderline resectable pancreatic adenocarcinoma is associated with higher R0 rate compared to upfront surgery. Acta Oncol. 2021, 60, 1114–1121. [Google Scholar] [CrossRef]
- Casolino, R.; Braconi, C.; Malleo, G.; et al. Reshaping preoperative treatment of pancreatic cancer in the era of precision medicine. Ann Oncol. 2021, 32, 183–196. [Google Scholar] [CrossRef]
- Strobel, O.; Lorenz, P.; Hinz, U.; et al. Actual Five-year Survival After Upfront Resection for Pancreatic Ductal Adenocarcinoma: Who Beats the Odds? Ann Surg. 2022, 275, 962–71. [Google Scholar] [CrossRef] [PubMed]
- Ironside, N.; Barreto, S.G.; Loveday, B.; Shrikhande, S.V.; Windsor, J.A.; Pandanaboyana, S. Meta-analysis of an artery-first approach versus standard pancreatoduodenectomy on perioperative outcomes and survival. Br J Surg. 2018, 105, 628–636. [Google Scholar] [CrossRef] [PubMed]
- Schneider, M.; Strobel, O.; Hackert, T.; Büchler, M.W. Pancreatic resection for cancer-the Heidelberg technique. Langenbecks Arch Surg. 2019, 404, 1017–1022. [Google Scholar] [CrossRef] [PubMed]
- Schneider, M.; Hackert, T.; Strobel, O.; Büchler, M.W. Technical advances in surgery for pancreatic cancer. Br J Surg. 2021, 108, 777–785. [Google Scholar] [CrossRef]
- Hackert, T.; Strobel, O.; Michalski, C.W.; et al. The TRIANGLE operation radical surgery after neoadjuvant treatment for advanced pancreatic cancer: a single arm observational study. HPB (Oxford). 2017, 19, 1001–1007. [Google Scholar] [CrossRef]
- Stauffer, J.A.; Coppola, A.; Villacreses, D.; et al. Laparoscopic versus open pancreaticoduodenectomy for pancreatic adenocarcinoma: long-term results at a single institution. Surg Endosc. 2017, 31, 2233–2241. [Google Scholar] [CrossRef]
- Eisenberg, J.D.; Rosato, E.L.; Lavu, H.; Yeo, C.J.; Winter, J.M. Delayed Gastric Emptying After Pancreaticoduodenectomy: an Analysis of Risk Factors and Cost. J Gastrointest Surg. 2015, 19, 1572–1580. [Google Scholar] [CrossRef]
- Hanna, M.M.; Gadde, R.; Allen, C.J.; et al. Delayed gastric emptying after pancreaticoduodenectomy. J Surg Res. 2016, 202, 380–388. [Google Scholar] [CrossRef]
- Croome, K.P.; Farnell, M.B.; Que, F.G.; et al. Pancreaticoduodenectomy with major vascular resection: a comparison of laparoscopic versus open approaches. J Gastrointest Surg. 2015, 19, 189–194. [Google Scholar] [CrossRef]
- Croome, K.P.; Farnell, M.B.; Que, F.G.; et al. Total laparoscopic pancreaticoduodenectomy for pancreatic ductal adenocarcinoma: oncologic advantages over open approaches? Ann Surg. 2014, 260, 633–640. [Google Scholar] [CrossRef]
- Zhang, B.; Zhou, F.; Hong, J.; et al. The role of FOLFIRINOX in metastatic pancreatic cancer: a meta-analysis. World J Surg Oncol. 2021, 19, 182. [Google Scholar] [CrossRef] [PubMed]
- Wang-Gillam, A.; Li, C.P.; Bodoky, G.; et al. Nanoliposomal irinotecan with fluorouracil and folinic acid in metastatic pancreatic cancer after previous gemcitabine-based therapy (NAPOLI-1): a global, randomised, open-label, phase 3 trial. Lancet. 2016, 387, 545–557. [Google Scholar] [CrossRef]
- Ahmad, S.A.; Duong, M.; Sohal, D.P.S.; et al. Surgical Outcome Results From SWOG S1505: A Randomized Clinical Trial of mFOLFIRINOX Versus Gemcitabine/Nab-paclitaxel for Perioperative Treatment of Resectable Pancreatic Ductal Adenocarcinoma. Ann Surg. 2020, 272, 481–486. [Google Scholar] [CrossRef] [PubMed]
- Versteijne, E.; Suker, M.; Groothuis, K.; et al. Preoperative Chemoradiotherapy Versus Immediate Surgery for Resectable and Borderline Resectable Pancreatic Cancer: Results of the Dutch Randomized Phase III PREOPANC Trial. J Clin Oncol. 2020, 38, 1763–1773. [Google Scholar] [CrossRef]
- Ducreux, M.; Cuhna, A.S.; Caramella, C.; et al. Cancer of the pancreas: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2015, 26, v56–v68. [Google Scholar] [CrossRef] [PubMed]
- Gugenheim, J.; Crovetto, A.; Petrucciani, N. Neoadjuvant therapy for pancreatic cancer. Updates Surg. 2022, 74, 35–42. [Google Scholar] [CrossRef]
- Timmer, F.E.F.; Geboers, B.; Nieuwenhuizen, S.; et al. Pancreatic Cancer and Immunotherapy: A Clinical Overview. Cancers (Basel). 2021, 13, 4138. [Google Scholar] [CrossRef]
- Hammel, P.; Huguet, F.; van Laethem, J.L.; et al. Effect of Chemoradiotherapy vs Chemotherapy on Survival in Patients With Locally Advanced Pancreatic Cancer Controlled After 4 Months of Gemcitabine With or Without Erlotinib: The LAP07 Randomized Clinical Trial. JAMA. 2016, 315, 1844–1853. [Google Scholar] [CrossRef]
- Hong, D.S.; Fakih, M.G.; Strickler, J.H.; et al. KRASG12C Inhibition with Sotorasib in Advanced Solid Tumors. N Engl J Med. 2020, 383, 1207–1217. [Google Scholar] [CrossRef]
- Dai, M.; Chen, S.; Teng, X.; Chen, K.; Cheng, W. KRAS as a Key Oncogene in the Clinical Precision Diagnosis and Treatment of Pancreatic Cancer. J Cancer. 2022, 13, 3209–3220. [Google Scholar] [CrossRef]
- Van Cutsem, E.; Hidalgo, M.; Canon, J.L.; et al. Phase I/II trial of pimasertib plus gemcitabine in patients with metastatic pancreatic cancer. Int J Cancer. 2018, 143, 2053–2064. [Google Scholar] [CrossRef] [PubMed]
- Melisi, D.; Garcia-Carbonero, R.; Macarulla, T.; et al. Galunisertib plus gemcitabine vs. gemcitabine for first-line treatment of patients with unresectable pancreatic cancer. Br J Cancer. 2018, 119, 1208–1214. [Google Scholar] [CrossRef] [PubMed]
- Melisi, D.; Oh, D.Y.; Hollebecque, A.; et al. Safety and activity of the TGFβ receptor I kinase inhibitor galunisertib plus the anti-PD-L1 antibody durvalumab in metastatic pancreatic cancer. J Immunother Cancer. 2021, 9, e002068. [Google Scholar] [CrossRef]
- Li, Y.; Xiang, S.; Pan, W.; Wang, J.; Zhan, H.; Liu, S. Targeting tumor immunosuppressive microenvironment for pancreatic cancer immunotherapy: Current research and future perspective. Front Oncol. 2023, 13, 1166860. [Google Scholar] [CrossRef]
- Gunderson, A.J.; Kaneda, M.M.; Tsujikawa, T.; et al. Bruton Tyrosine Kinase-Dependent Immune Cell Cross-talk Drives Pancreas Cancer. Cancer Discov. 2016, 6, 270–285. [Google Scholar] [CrossRef]
- McCracken, M.N.; Cha, A.C.; Weissman, I.L. Molecular Pathways: Activating T Cells after Cancer Cell Phagocytosis from Blockade of CD47 "Don't Eat Me" Signals. Clin Cancer Res. 2015, 21, 3597–3601. [Google Scholar] [CrossRef] [PubMed]
- Karakhanova, S.; Mosl, B.; Harig, S.; et al. Influence of interferon-alpha combined with chemo (radio) therapy on immunological parameters in pancreatic adenocarcinoma. Int J Mol Sci. 2014, 15, 4104–4125. [Google Scholar] [CrossRef]
- Marcon, F.; Zuo, J.; Pearce, H.; et al. NK cells in pancreatic cancer demonstrate impaired cytotoxicity and a regulatory IL-10 phenotype. Oncoimmunology. 2020, 9, 1845424. [Google Scholar] [CrossRef]
© 2024 by the authors. 2024 Adrian Silaghi, Dragos Serban, Bogdan Gaspar, Valentin Verlas, Dragos Epistatu, Cristian Paius, Roxana Sfetea, Liliana Andronache, Ioana Paunica, Irina Ruxandra Strambu, Daniela Gabriela Bălan, Alexandru Florin Motofei, Vlad Denis Constantin
Share and Cite
Silaghi, A.; Serban, D.; Gaspar, B.; Verlas, V.; Epistatu, D.; Paius, C.; Sfetea, R.; Andronache, L.; Paunica, I.; Strambu, I.R.; et al. Pancreatic Cancer; From Effective Prevention and Early Diagnosis to Personalized Therapy. J. Mind Med. Sci. 2024, 11, 299-309. https://doi.org/10.22543/2392-7674.1564
Silaghi A, Serban D, Gaspar B, Verlas V, Epistatu D, Paius C, Sfetea R, Andronache L, Paunica I, Strambu IR, et al. Pancreatic Cancer; From Effective Prevention and Early Diagnosis to Personalized Therapy. Journal of Mind and Medical Sciences. 2024; 11(2):299-309. https://doi.org/10.22543/2392-7674.1564
Chicago/Turabian StyleSilaghi, Adrian, Dragos Serban, Bogdan Gaspar, Valentin Verlas, Dragos Epistatu, Cristian Paius, Roxana Sfetea, Liliana Andronache, Ioana Paunica, Irina Ruxandra Strambu, and et al. 2024. "Pancreatic Cancer; From Effective Prevention and Early Diagnosis to Personalized Therapy" Journal of Mind and Medical Sciences 11, no. 2: 299-309. https://doi.org/10.22543/2392-7674.1564
APA StyleSilaghi, A., Serban, D., Gaspar, B., Verlas, V., Epistatu, D., Paius, C., Sfetea, R., Andronache, L., Paunica, I., Strambu, I. R., Bălan, D. G., Motofei, A. F., & Constantin, V. D. (2024). Pancreatic Cancer; From Effective Prevention and Early Diagnosis to Personalized Therapy. Journal of Mind and Medical Sciences, 11(2), 299-309. https://doi.org/10.22543/2392-7674.1564