Modular Neural Networks for Osteoporosis Detection in Mandibular Cone-Beam Computed Tomography Scans
Abstract
:1. Introduction
2. Materials and Methods
2.1. CBCT Examinations
2.2. Dual-Energy X-ray Absorptiometry
2.3. Methodology of Medical Measurements on CBCT Images and Radiological Data Acquisition
2.3.1. Trabecular and Cortical Bone Volume
2.3.2. Cortical Bone Thickness
2.3.3. Determination of the Computed Tomography Cortical Index (CTCI)
- C1: the outer edge of the cortical bone is flat and well demarcated;
- C2: the cortical bone layer is characterized by semilunar defects or one to two resorption lacunae;
2.3.4. Determination of the Computed Tomography Cortical Index (CTCI) from Panoramic Reconstructed Image
2.4. The Overall Methodology of Technical Implementation of the Deep Neural Network
Algorithm 1: Modification of the initial convolution layer |
from torchvision.models import resnet101 model_transfer = resnet101(pretrained=True) # (conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False) model_transfer.conv1 = nn.Conv2d(1, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False) classifier = nn.Sequential(nn.Linear(2048, 512), nn.ReLU(), nn.Dropout(0.2), nn.Linear(512, 2), nn.Softmax() ) model_transfer.fc = classifier 16:24 cel = torch.nn.CrossEntropyLoss() optimizer = optim.SGD(model.parameters(), lr=0.001) |
Algorithm 2: Modification of the classification layer |
from torchvision.models import resnet101 model_transfer = resnet101(pretrained=True) # (conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False) model_transfer.conv1 = nn.Conv2d(1, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False) classifier = nn.Sequential(nn.Linear(2048, 512), nn.ReLU(), nn.Dropout(0.2), nn.Linear(512, 14)) model_transfer.fc = classifier cel = torch.nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=0.001) |
Algorithm 3: Identifying Boundary Points |
def GetDIFF(im): im = np.rot90(im, k=3) ind1 = list() ind2 = list() # |== Find all potential points ==| for i, colmn in enumerate(im): if sum(colmn)!=0: region = deepcopy(colmn) ind1.append([np.argmax(colmn),i]) # [i, im.shape[1]-np.argmax(colmn)]) region[:np.argmax(colmn)]=1 ind2.append([np.argmin(region),i]) |
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hilton, C.B.; Milinovich, A.; Felix, C.; Vakharia, N.; Crone, T.; Donovan, C.; Proctor, A.; Nazha, A. Personalized Predictions of Patient Outcomes during and after Hospitalization Using Artificial Intelligence. NPJ Digit. Med. 2020, 3, 51. [Google Scholar] [CrossRef] [PubMed]
- Dlamini, Z.; Francies, F.Z.; Hull, R.; Marima, R. Artificial Intelligence (AI) and Big Data in Cancer and Precision Oncology. Comput. Struct. Biotechnol. J. 2020, 18, 2300–2311. [Google Scholar] [CrossRef]
- Consensus Development Conference: Diagnosis, Prophylaxis, and Treatment of Osteoporosis. Am. J. Med. 1993, 94, 646–650. [CrossRef] [PubMed]
- Working Together for Health: The World Health Report 2006; Organisation mondiale de la santé (Ed.) The World Health Report; World Health Organization: Geneva, Switzerland, 2006; ISBN 978-92-4-156317-8. [Google Scholar]
- Bhatnagar, A.; Kekatpure, A.L. Postmenopausal Osteoporosis: A Literature Review. Cureus 2022, 14, e29367. [Google Scholar] [CrossRef] [PubMed]
- Jürisson, M.; Raag, M.; Kallikorm, R.; Lember, M.; Uusküla, A. The Impact of Comorbidities on Hip Fracture Mortality: A Retrospective Population-Based Cohort Study. Arch. Osteoporos. 2017, 12, 76. [Google Scholar] [CrossRef] [PubMed]
- Tosteson, A.N.A.; Gabriel, S.E.; Grove, M.R.; Moncur, M.M.; Kneeland, T.S.; Melton Iii, L.J. Impact of Hip and Vertebral Fractures on Quality-Adjusted Life Years. Osteoporos. Int. 2001, 12, 1042–1049. [Google Scholar] [CrossRef]
- Taguchi, A.; Tanaka, R.; Kakimoto, N.; Morimoto, Y.; Arai, Y.; Hayashi, T.; Kurabayashi, T.; Katsumata, A.; Asaumi, J.; Japanese Society for Oral and Maxillofacial Radiology. Clinical Guidelines for the Application of Panoramic Radiographs in Screening for Osteoporosis. Oral Radiol. 2021, 37, 189–208. [Google Scholar] [CrossRef]
- The Editor IOF World Congress on Osteoporosis & 10th European Congress on Clinical and Economic Aspects of Osteoporosis and Osteoarthritis: Poster Presentation Abstracts. Osteoporos. Int. 2010, 21, 25–388. [CrossRef]
- Issrani, R.; Prabhu, N.; Sghaireen, M.G.; Ganji, K.K.; Alqahtani, A.M.A.; ALJamaan, T.S.; Alanazi, A.M.; Alanazi, S.H.; Alam, M.K.; Munisekhar, M.S. Cone-Beam Computed Tomography: A New Tool on the Horizon for Forensic Dentistry. Int. J. Environ. Res. Public. Health 2022, 19, 5352. [Google Scholar] [CrossRef]
- Slaidina, A.; Nikitina, E.; Abeltins, A.; Soboleva, U.; Lejnieks, A. Gray Values of the Cervical Vertebrae Detected by Cone Beam Computed Tomography for the Identification of Osteoporosis and Osteopenia in Postmenopausal Women. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2022, 133, 100–109. [Google Scholar] [CrossRef]
- Slaidina, A.; Springe, B.; Abeltins, A.; Uribe, S.E.; Lejnieks, A. The Effect of General Bone Mineral Density on the Quantity and Quality of the Edentulous Mandible: A Cross-Sectional Clinical Study. Dent. J. 2023, 11, 17. [Google Scholar] [CrossRef] [PubMed]
- Calciolari, E.; Donos, N.; Park, J.C.; Petrie, A.; Mardas, N. Panoramic Measures for Oral Bone Mass in Detecting Osteoporosis: A Systematic Review and Meta-Analysis. J. Dent. Res. 2015, 94, 17S–27S. [Google Scholar] [CrossRef] [PubMed]
- Franciotti, R.; Moharrami, M.; Quaranta, A.; Bizzoca, M.E.; Piattelli, A.; Aprile, G.; Perrotti, V. Use of Fractal Analysis in Dental Images for Osteoporosis Detection: A Systematic Review and Meta-Analysis. Osteoporos. Int. 2021, 32, 1041–1052. [Google Scholar] [CrossRef] [PubMed]
- Cavalcante, D.D.S.; Silva, P.G.D.B.; Carvalho, F.S.R.; Quidute, A.R.P.; Kurita, L.M.; Cid, A.M.P.L.; Ribeiro, T.R.; Gurgel, M.L.; Kurita, B.M.; Costa, F.W.G. Is Jaw Fractal Dimension a Reliable Biomarker for Osteoporosis Screening? A Systematic Review and Meta-Analysis of Diagnostic Test Accuracy Studies. Dentomaxillofacial Radiol. 2022, 51, 20210365. [Google Scholar] [CrossRef]
- Xu, W.; Fu, Y.-L.; Zhu, D. ResNet and Its Application to Medical Image Processing: Research Progress and Challenges. Comput. Methods Programs Biomed. 2023, 240, 107660. [Google Scholar] [CrossRef]
- Kanis, J.A.; Kanis, J.A. Assessment of Fracture Risk and Its Application to Screening for Postmenopausal Osteoporosis: Synopsis of a WHO Report. Osteoporos. Int. 1994, 4, 368–381. [Google Scholar] [CrossRef]
- Koh, K.-J.; Kim, K.-A. Utility of the Computed Tomography Indices on Cone Beam Computed Tomography Images in the Diagnosis of Osteoporosis in Women. Imaging Sci. Dent. 2011, 41, 101–106. [Google Scholar] [CrossRef]
- Klemetti, E.; Kolmakov, S.; Kröger, H. Pantomography in Assessment of the Osteoporosis Risk Group. Scand. J. Dent. Res. 1994, 102, 68–72. [Google Scholar] [CrossRef]
- Shen, D.; Wu, G.; Suk, H.-I. Deep Learning in Medical Image Analysis. Annu. Rev. Biomed. Eng. 2017, 19, 221–248. [Google Scholar] [CrossRef]
- Iandola, F.N.; Han, S.; Moskewicz, M.W.; Ashraf, K.; Dally, W.J.; Keutzer, K. SqueezeNet: AlexNet-Level Accuracy with 50x Fewer Parameters and <0.5MB Model Size. arXiv 2016, arXiv:1602.07360. [Google Scholar] [CrossRef]
- Miotto, R.; Wang, F.; Wang, S.; Jiang, X.; Dudley, J.T. Deep Learning for Healthcare: Review, Opportunities and Challenges. Brief. Bioinform. 2018, 19, 1236–1246. [Google Scholar] [CrossRef] [PubMed]
- Nakamoto, T.; Taguchi, A.; Kakimoto, N. Osteoporosis Screening Support System from Panoramic Radiographs Using Deep Learning by Convolutional Neural Network. Dentomaxillofacial Radiol. 2022, 51, 20220135. [Google Scholar] [CrossRef] [PubMed]
- Guerra, E.N.S.; Almeida, F.T.; Bezerra, F.V.; Figueiredo, P.T.D.S.; Silva, M.A.G.; De Luca Canto, G.; Pachêco-Pereira, C.; Leite, A.F. Capability of CBCT to Identify Patients with Low Bone Mineral Density: A Systematic Review. Dentomaxillofacial Radiol. 2017, 46, 20160475. [Google Scholar] [CrossRef] [PubMed]
- De Castro, J.G.K.; Carvalho, B.F.; De Melo, N.S.; De Souza Figueiredo, P.T.; Moreira-Mesquita, C.R.; De Faria Vasconcelos, K.; Jacobs, R.; Leite, A.F. A New Cone-Beam Computed Tomography–Driven Index for Osteoporosis Prediction. Clin. Oral Investig. 2020, 24, 3193–3202. [Google Scholar] [CrossRef]
Software/Platform | Version |
---|---|
3D Slicer | 5.2.1 |
Python | 3.8 |
PyTorch | 1.4 |
OnDemand 3DTM | 1.0.10.7462 |
Windows | 11 Pro |
Ubuntu | 20.04 LTS |
Type | Manufacturer | Model |
---|---|---|
Central Processing Unit (CPU) | AMD | Rome 7742 |
Graphical Processing Unit (GPU) | Nvidia | A100 |
Random Access Memory (RAM) | Kingston | 64 GB |
Solid State Drive (SSD) | Samsung | 970EVO (200 GB) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Namatevs, I.; Nikulins, A.; Edelmers, E.; Neimane, L.; Slaidina, A.; Radzins, O.; Sudars, K. Modular Neural Networks for Osteoporosis Detection in Mandibular Cone-Beam Computed Tomography Scans. Tomography 2023, 9, 1772-1786. https://doi.org/10.3390/tomography9050141
Namatevs I, Nikulins A, Edelmers E, Neimane L, Slaidina A, Radzins O, Sudars K. Modular Neural Networks for Osteoporosis Detection in Mandibular Cone-Beam Computed Tomography Scans. Tomography. 2023; 9(5):1772-1786. https://doi.org/10.3390/tomography9050141
Chicago/Turabian StyleNamatevs, Ivars, Arturs Nikulins, Edgars Edelmers, Laura Neimane, Anda Slaidina, Oskars Radzins, and Kaspars Sudars. 2023. "Modular Neural Networks for Osteoporosis Detection in Mandibular Cone-Beam Computed Tomography Scans" Tomography 9, no. 5: 1772-1786. https://doi.org/10.3390/tomography9050141
APA StyleNamatevs, I., Nikulins, A., Edelmers, E., Neimane, L., Slaidina, A., Radzins, O., & Sudars, K. (2023). Modular Neural Networks for Osteoporosis Detection in Mandibular Cone-Beam Computed Tomography Scans. Tomography, 9(5), 1772-1786. https://doi.org/10.3390/tomography9050141