Multiclass Segmentation of Breast Tissue and Suspicious Findings: A Simulation-Based Study for the Development of Self-Steering Tomosynthesis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Perlin-Based Phantom and Lesion Simulation
2.2. Imaging Acquisition and Risk Maps
2.3. Multiclass Segmentation
2.4. Dirichlet Calibration and Statistical Analyses
2.5. Identification of Suspicious Findings
3. Results
3.1. U-Net Segmentation and Dirichlet Calibration (DC)
3.2. ROC Analyses
3.3. Lesion Identification and FROC Statistics
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Conant, E.F.; Talley, M.M.; Parghi, C.R.; Sheh, B.C.; Liang, S.-Y.; Pohlman, S.; Rane, A.; Jung, Y.; Stevens, L.A.S.; Paulus, J.K.; et al. Mammographic Screening in Routine Practice: Multisite Study of Digital Breast Tomosynthesis and Digital Mammography Screenings. Radiology 2023, 307, e221571. [Google Scholar] [CrossRef]
- Zuckerman, S.P.; Sprague, B.L.; Weaver, D.L.; Herschorn, S.D.; Conant, E.F. Multicenter Evaluation of Breast Cancer Screening with Digital Breast Tomosynthesis in Combination with Synthetic versus Digital Mammography. Radiology 2020, 297, 545–553. [Google Scholar] [CrossRef]
- Sechopoulos, I. A Review of Breast Tomosynthesis. Part I. The Image Acquisition Process. Med. Phys. 2013, 40, 014301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferris, W.S.; Vent, T.L.; Maidment, T.D.; Acciavatti, R.J.; Wurtele, D.E.; Maidment, A.D.A. Geometric Calibration for a Next-Generation Digital Breast Tomosynthesis System. In Proceedings of the SPIE Medical Imaging 2017, Orlando, FL, USA, 11–16 February 2017; p. 101324C. [Google Scholar]
- Choi, C.J.; Vent, T.L.; Acciavatti, R.J.; Maidment, A.D.A. Geometric Calibration for a Next-Generation Digital Breast Tomosynthesis System Using Virtual Line Segments. In Proceedings of the SPIE Medical Imaging 2018, Houston, TX, USA, 14–15 February 2018; p. 12. [Google Scholar]
- Acciavatti, R.J.; Barufaldi, B.; Vent, T.L.; Wileyto, E.P.; Maidment, A.D.A. Personalization of X-Ray Tube Motion in Digital Breast Tomosynthesis Using Virtual Defrise Phantoms. In Progress in Biomedical Optics and Imaging; SPIE: Bellingham, WA, USA, 2019; Volume 10948. [Google Scholar]
- Vent, T.L.; Acciavatti, R.J.; Choi, C.J.; Barufaldi, B.; Krishnamoorthy, S.; Borges, L.R.; Kuo, J.; Ringer, P.; Ng, S.; Surti, S.; et al. Pre-Clinical Evaluation and Optimization of Image Quality for a next Generation Tomosynthesis Prototype. In SPIE Medical Imaging; SPIE: Bellingham, WA, USA, 2022; pp. 1030–1036. [Google Scholar]
- Abadi, E.; Segars, W.P.; Tsui, B.M.W.; Kinahan, P.E.; Bottenus, N.; Frangi, A.F.; Maidment, A.; Lo, J.; Samei, E. Virtual Clinical Trials in Medical Imaging: A Review. J. Med. Imaging 2020, 7, 042805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barufaldi, B.; Maidment, A.D.A.; Dustler, M.; Axelsson, R.; Tomic, H.; Zackrisson, S.; Tingberg, A.; Bakic, P.R. Virtual Clinical Trials in Medical Imaging System Evaluation and Optimisation. Radiat. Prot. Dosim. 2021, 195, 363–371. [Google Scholar] [CrossRef] [PubMed]
- Badano, A.; Badal, A.; Glick, S.; Graff, C.G.; Samuelson, F.; Sharma, D.; Zeng, R. In Silico Imaging Clinical Trials for Regulatory Evaluation: Initial Considerations for VICTRE, a Demonstration Study. SPIE Med. Imaging 2017, 2017, 1013220. [Google Scholar] [CrossRef]
- Barufaldi, B.; Abbey, C.K.; Lago, M.A.; Vent, T.L.; Acciavatti, R.J.; Bakic, P.R.; Maidment, A.D.A. Computational Breast Anatomy Simulation Using Multi-Scale Perlin Noise. IEEE Trans. Med. Imaging 2021, 40, 3436–3445. [Google Scholar] [CrossRef]
- da Nobrega, Y.N.; Carvalhal, G.; Teixeira, J.P.; de Camargo, B.P.; do Rego, T.G.; Almeida, Y.A.; Silva Filho, T.M.; Vent, T.L.; Acciavatti, R.J.; Maidment, A.D.; et al. Multiclass Segmentation of Suspicious Findings in Simulated Breast Tomosynthesis Images Using a U-Net. In Proceedings of the Sixteenth International Workshop on Breast Imaging, Leuven, Belgium, 22–25 May 2022; Volume 12286. [Google Scholar]
- Filho, T.S.; Song, H.; Perello-Nieto, M.; Santos-Rodriguez, R.; Kull, M.; Flach, P. Classifier Calibration: A Survey on How to Assess and Improve Predicted Class Probabilities. Mach. Learn. 2021. [Google Scholar] [CrossRef]
- Murphy, A.H.; Winkler, R.L. Reliability of Subjective Probability Forecasts of Precipitation and Temperature. Appl. Stat. 1977, 26, 41. [Google Scholar] [CrossRef]
- Naeini, M.P.; Cooper, G.F.; Hauskrecht, M. Obtaining Well Calibrated Probabilities Using Bayesian Binning. In Proceedings of the National Conference on Artificial Intelligence, Austin, TX, USA, 25–30 January 2015; Volume 4. [Google Scholar]
- Acciavatti, R.J.; Rodriguez-Ruiz, A.; Vent, T.L.; Bakic, P.R.; Reiser, I.; Sechopoulos, I.; Maidment, A.D. Analysis of Volume Overestimation Artifacts in the Breast Outline Segmentation in Tomosynthesis. In Medical Imaging 2018: Physics of Medical Imaging; SPIE: Bellingham, WA, USA, 2018; p. 10573. [Google Scholar]
- Rodríguez-Ruiz, A.; Agasthya, G.A.; Sechopoulos, I. The Compressed Breast during Mammography and Breast Tomosynthesis: In Vivo Shape Characterization and Modeling. Phys. Med. Biol. 2017, 62, 6920–6937. [Google Scholar] [CrossRef]
- Rodriguez-Ruiz, A.; Feng, S.S.J.; Van Zelst, J.; Vreemann, S.; Mann, J.R.; D’Orsi, C.J.; Sechopoulos, I. Improvements of an Objective Model of Compressed Breasts Undergoing Mammography: Generation and Characterization of Breast Shapes. Med. Phys. 2017, 44, 2161–2172. [Google Scholar] [CrossRef] [PubMed]
- Pokrajac, D.D.; Maidment, A.D.A.; Bakic, P.R. Optimized Generation of High Resolution Breast Anthropomorphic Software Phantoms. Med. Phys. 2012, 39, 2290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perlin, K. Image Synthesizer. Comput. Graph. 1985, 19, 287–296. [Google Scholar] [CrossRef]
- Perlin, K.; Hoffert, E.M. Hypertexture. In Proceedings of the 16th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 1989, Boston, MA, USA, 31 July–4 August 1989. [Google Scholar]
- Teixeira, J.P.V.; Silva Filho, T.M.; do Rego, T.G.; Malheiros, Y.B.; Dustler, M.; Bakic, P.R.; Vent, T.L.; Acciavatti, R.J.; Krishnamoorthy, S.; Surti, S.; et al. Novel Perlin-Based Phantoms Using 3D Models of Compressed Breast Shapes and Fractal Noise. In Medical Imaging 2022: Physics of Medical Imaging; Zhao, W., Yu, L., Eds.; SPIE: Bellingham, WA, USA, 2022; p. 127. [Google Scholar]
- Barufaldi, B.; Vent, T.L.; Bakic, P.R.; Maidment, A.D.A. Computer Simulations of Case Difficulty in Digital Breast Tomosynthesis Using Virtual Clinical Trials. Med. Phys. 2022, 49, 2220–2232. [Google Scholar] [CrossRef]
- Rafferty, E.A.; Park, J.M.; Philpotts, L.E.; Poplack, S.P.; Sumkin, J.H. Digital Mammography and Breast Tomosynthesis Compared with Digital Mammography Alone: Results of a Multicenter, Multireader Trial. Radiology 2013, 266, 104–113. [Google Scholar] [CrossRef] [Green Version]
- Barufaldi, B.; Vent, T.L.; Bakic, P.R.; Maidment, A.D.A. In Reply to Glick. Med. Phys. 2022, 49, 7371–7372. [Google Scholar] [CrossRef]
- Barufaldi, B.; Bakic, P.R.; Higginbotham, D.; Maidment, A.D.A. OpenVCT: A GPU-Accelerated Virtual Clinical Trial Pipeline for Mammography and Digital Breast Tomosynthesis. In Proceedings of the SPIE Medical Imaging 2018, Houston, TX, USA, 14–15 February 2018; Volume 1057358, p. 10573588. [Google Scholar]
- Siddon, R.L. Fast Calculation of the Exact Radiological Path for a Three-Dimensional CT Array. Med Phys. 1985, 12, 252–255. [Google Scholar] [CrossRef]
- Feng, S.S.J.; Sechopoulos, I. Clinical Digital Breast Tomosynthesis System: Dosimetric Characterization. Radiology 2012, 263, 35–42. [Google Scholar] [CrossRef]
- ICRU. ICRU Report 44—Tissue Substitutes in Radiation Dosimetry and Measurement; International Commission on Radiation Units and Measurements, Inc. (ICRU): Bethesda, MD, USA, 1988. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Chakraborty, D.P. Recent Advances in Observer Performance Methodology: Jackknife Free-Response ROC (JAFROC). Radiat. Prot. Dosim. 2005, 114, 26–31. [Google Scholar] [CrossRef]
- Wagner, T.; Lipinski, H.-G. IJBlob: An ImageJ Library for Connected Component Analysis and Shape Analysis. J. Open Res. Softw. 2013, 1, e6. [Google Scholar] [CrossRef] [Green Version]
- Lachiche, N.; Flach, P. Improving Accuracy and Cost of Two-Class and Multi-Class Probabilistic Classifiers Using ROC Curves. In Proceedings of the Proceedings, Twentieth International Conference on Machine Learning, Washington, DC, USA, 21–24 August 2003; Volume 1. [Google Scholar]
- Abraham, N.; Khan, N.M. Multimodal Segmentation with MGF-Net and the Focal Tversky Loss Function. In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Berlin/Heidelberg, Germany, 2020; Volume 11993. [Google Scholar]
- Abraham, N.; Khan, N.M. A Novel Focal Tversky Loss Function with Improved Attention U-Net for Lesion Segmentation. In Proceedings of the Proceedings—International Symposium on Biomedical Imaging, Venice, Italy, 8–11 April 2019. [Google Scholar]
- Gomes, J.; Barbosa, Y.; Do Rego, T.; Silva, T.; Vent, T.L.; Maidment, A.D.A.; Barufaldi, B. Deep Learning Method for Volumetric Segmentation of Dense Tissue in Tomosynthesis Using Computer Simulations. In Proceedings of the 63rd AAPM Annual Meeting, Virtual, 25–29 July 2021. [Google Scholar]
- Dustler, M.; Lång, K.; Petersson, H. Binary Implementation of Fractal Perlin Noise to Simulate Fibroglandular Breast Tissue. In Medical Imaging 2018: Physics of Medical Imaging; SPIE: Bellingham, WA, USA, 2018; Volume 1057357, p. 193. [Google Scholar] [CrossRef]
- Dustler, M.; Bakic, P.; Petersson, H.; Timberg, P.; Tingberg, A.; Zackrisson, S. Application of the Fractal Perlin Noise Algorithm for the Generation of Simulated Breast Tissue. In Medical Imaging 2015: Physics of Medical Imaging; SPIE: Bellingham, WA, USA, 2015. [Google Scholar]
- Marshall, N.W.; Bosmans, H. Performance Evaluation of Digital Breast Tomosynthesis Systems: Physical Methods and Experimental Data. Phys. Med. Biol. 2022, 67, 22TR03. [Google Scholar] [CrossRef] [PubMed]
- Burgess, A.E.; Jacobson, F.L.; Judy, P.F. Human Observer Detection Experiments with Mammograms and Power-Law Noise. Med. Phys. 2001, 28, 419–437. [Google Scholar] [CrossRef] [PubMed]
- Abbey, C.K.; Nosrateih, A.; Sohl-Dickstein, J.; Yang, K.; Boone, J.M. Non-Gaussian Statistical Properties of Breast Images. Med. Phys. 2012, 39, 7121–7130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gastounioti, A.; Pantalone, L.; Scott, C.G.; Cohen, E.A.; Wu, F.F.; Winham, S.J.; Jensen, M.R.; Maidment, A.D.A.; Vachon, C.M.; Conant, E.F.; et al. Fully Automated Volumetric Breast Density Estimation from Digital Breast Tomosynthesis. Radiology 2021, 301, 561–568. [Google Scholar] [CrossRef]
Radiation exposure (mode) | AEC |
Detector size (width × height, mm) | 239.36 × 304.64 |
Detector type (detector motion) | a-Se (stationary) |
Detector element size (width × height, mm) | 0.085 × 0.085 |
Source image distance (mm) | 738.01 |
Target/filter combination (X-ray tube motion) | W/Al (step-and-shoot) |
Reconstructed voxel size (width × height, mm) | 0.085 × 0.085 |
Imaging processing | None (raw) |
(A) | (B) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Class | Dice | Jac | AUC | TPR | TNR | PPV | NPV | Dice | Jac | AUC | TPR | TNR | PPV | NPV |
0 | 1.00 | 0.99 | - | - | - | - | - | 1.00 | 0.99 | - | - | - | - | - |
1 | 0.89 | 0.79 | 0.94 | 0.88 | 0.86 | 0.90 | 0.84 | 0.90 | 0.81 | 0.94 | 0.89 | 0.86 | 0.90 | 0.85 |
2 | 0.82 | 0.69 | 0.92 | 0.84 | 0.85 | 0.80 | 0.88 | 0.85 | 0.73 | 0.94 | 0.86 | 0.88 | 0.83 | 0.90 |
3 | 0.28 | 0.16 | 0.90 | 0.90 | 0.91 | 0.10 | 0.99 | 0.43 | 0.28 | 0.93 | 0.84 | 0.88 | 0.07 | 0.99 |
… | (A) | (B) | ||
---|---|---|---|---|
Positive | Negative | Positive | Negative | |
Predicted Positive | 85 | 236 | 69 | 24 |
Predicted Negative | 11 | NA | 27 | NA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barufaldi, B.; da Nobrega, Y.N.G.; Carvalhal, G.; Teixeira, J.P.V.; Silva Filho, T.M.; do Rego, T.G.; Malheiros, Y.; Acciavatti, R.J.; Maidment, A.D.A. Multiclass Segmentation of Breast Tissue and Suspicious Findings: A Simulation-Based Study for the Development of Self-Steering Tomosynthesis. Tomography 2023, 9, 1120-1132. https://doi.org/10.3390/tomography9030092
Barufaldi B, da Nobrega YNG, Carvalhal G, Teixeira JPV, Silva Filho TM, do Rego TG, Malheiros Y, Acciavatti RJ, Maidment ADA. Multiclass Segmentation of Breast Tissue and Suspicious Findings: A Simulation-Based Study for the Development of Self-Steering Tomosynthesis. Tomography. 2023; 9(3):1120-1132. https://doi.org/10.3390/tomography9030092
Chicago/Turabian StyleBarufaldi, Bruno, Yann N. G. da Nobrega, Giulia Carvalhal, Joao P. V. Teixeira, Telmo M. Silva Filho, Thais G. do Rego, Yuri Malheiros, Raymond J. Acciavatti, and Andrew D. A. Maidment. 2023. "Multiclass Segmentation of Breast Tissue and Suspicious Findings: A Simulation-Based Study for the Development of Self-Steering Tomosynthesis" Tomography 9, no. 3: 1120-1132. https://doi.org/10.3390/tomography9030092