Characterization of Cognitive Function in Survivors of Diffuse Gliomas Using Morphometric Correlation Networks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Population
2.2. T1-Weighted MR Image Acquisition and Post-Processing
2.3. Cognitive and Functional Outcomes
2.4. Region of Interest Analysis
2.5. Morphometric Correlation Network Construction
2.6. MCN Statistical Analysis
3. Results
3.1. Patient Data
3.2. Morphometric Correlation Networks in Cognitively Impaired and Non-Impaired Patients
3.3. Morphometric Correlation Network Associations with Neuropsychological Assessments across All Survivors of Diffuse Gliomas
4. Discussion
4.1. Morphometric Correlation Networks Reveal Large-Scale Cortical Alteration
4.2. Cortical Thickness Alterations Associated with Cognitive and Functional Outcomes
4.3. Limitation and Further Consideration
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Buckner, J.C.; Shaw, E.G.; Pugh, S.L.; Chakravarti, A.; Gilbert, M.R.; Barger, G.R.; Coons, S.; Ricci, P.; Bullard, D.; Brown, P.D.; et al. Radiation plus Procarbazine, CCNU, and Vincristine in Low-Grade Glioma. N. Engl. J. Med. 2016, 374, 1344–1355. [Google Scholar] [CrossRef] [PubMed]
- Gehrke, A.K.; Baisley, M.C.; Sonck, A.L.; Wronski, S.L.; Feuerstein, M. Neurocognitive deficits following primary brain tumor treatment: Systematic review of a decade of comparative studies. J. Neurooncol. 2013, 115, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Aaronson, N.K.; Taphoorn, M.J.; Heimans, J.J.; Postma, T.J.; Gundy, C.M.; Beute, G.N.; Slotman, B.J.; Klein, M. Compromised health-related quality of life in patients with low-grade glioma. J. Clin. Oncol. 2011, 29, 4430–4435. [Google Scholar] [CrossRef] [PubMed]
- Mackworth, N.; Fobair, P.; Prados, M.D. Quality of life self-reports from 200 brain tumor patients: Comparisons with Karnofsky performance scores. J. Neurooncol. 1992, 14, 243–253. [Google Scholar] [CrossRef] [PubMed]
- Feuerstein, M.; Hansen, J.A.; Calvio, L.C.; Johnson, L.; Ronquillo, J.G. Work productivity in brain tumor survivors. J. Occup. Env. Med. 2007, 49, 803–811. [Google Scholar] [CrossRef]
- Dwan, T.M.; Ownsworth, T.; Chambers, S.; Walker, D.G.; Shum, D.H. Neuropsychological assessment of individuals with brain tumor: Comparison of approaches used in the classification of impairment. Front. Oncol. 2015, 5, 56. [Google Scholar] [CrossRef] [Green Version]
- Noll, K.R.; Fardell, J.E. Commentary: “Neuropsychological Assessment of Individuals with Brain Tumor: Comparison of Approaches Used in the Classification of Impairment”. Front. Oncol. 2015, 5, 188. [Google Scholar] [CrossRef] [Green Version]
- Wagner, L.I.; Sweet, J.; Butt, Z.; Lai, J.S.; Cella, D. Measuring Patient Self-Reported Cognitive Function: Development of the Functional Assessment of Cancer Therapy–Cognitive Function Instrument. J. Support. Oncol. 2009, 7, W32–W39. [Google Scholar]
- Maesawa, S.; Bagarinao, E.; Fujii, M.; Futamura, M.; Motomura, K.; Watanabe, H.; Mori, D.; Sobue, G.; Wakabayashi, T. Evaluation of resting state networks in patients with gliomas: Connectivity changes in the unaffected side and its relation to cognitive function. PLoS ONE 2015, 10, e0118072. [Google Scholar] [CrossRef] [Green Version]
- Harris, R.J.; Bookheimer, S.Y.; Cloughesy, T.F.; Kim, H.J.; Pope, W.B.; Lai, A.; Nghiemphu, P.L.; Liau, L.M.; Ellingson, B.M. Altered functional connectivity of the default mode network in diffuse gliomas measured with pseudo-resting state fMRI. J. Neurooncol. 2014, 116, 373–379. [Google Scholar] [CrossRef]
- Mallela, A.N.; Peck, K.K.; Petrovich-Brennan, N.M.; Zhang, Z.; Lou, W.; Holodny, A.I. Altered Resting-State Functional Connectivity in the Hand Motor Network in Glioma Patients. Brain Connect. 2016, 6, 587–595. [Google Scholar] [CrossRef] [PubMed]
- Vassal, M.; Charroud, C.; Deverdun, J.; Le Bars, E.; Molino, F.; Bonnetblanc, F.; Boyer, A.; Dutta, A.; Herbet, G.; Moritz-Gasser, S.; et al. Recovery of functional connectivity of the sensorimotor network after surgery for diffuse low-grade gliomas involving the supplementary motor area. J. Neurosurg. 2017, 126, 1181–1190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, J.J.; Kwon, H.; Lee, J.M. Complementary Characteristics of Correlation Patterns in Morphometric Correlation Networks of Cortical Thickness, Surface Area, and Gray Matter Volume. Sci. Rep. 2016, 6, 26682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yates, D. Neurodegenerative networking. Nat. Rev. Neurosci. 2012, 13, 288. [Google Scholar] [CrossRef] [PubMed]
- Watts, D.J.; Strogatz, S.H. Collective dynamics of ‘small-world’ networks. Nature 1998, 393, 440–442. [Google Scholar] [CrossRef]
- Rubinov, M.; Sporns, O. Complex network measures of brain connectivity: Uses and interpretations. Neuroimage 2010, 52, 1059–1069. [Google Scholar] [CrossRef]
- Bouwen, B.L.J.; Pieterman, K.J.; Smits, M.; Dirven, C.M.F.; Gao, Z.; Vincent, A. The Impacts of Tumor and Tumor Associated Epilepsy on Subcortical Brain Structures and Long Distance Connectivity in Patients with Low Grade Glioma. Front. Neurol. 2018, 9, 1004. [Google Scholar] [CrossRef]
- Raj, A.; Powell, F. Models of Network Spread and Network Degeneration in Brain Disorders. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2018, 3, 788–797. [Google Scholar] [CrossRef]
- Manuello, J.; Nani, A.; Premi, E.; Borroni, B.; Costa, T.; Tatu, K.; Liloia, D.; Duca, S.; Cauda, F. The Pathoconnectivity Profile of Alzheimer’s Disease: A Morphometric Coalteration Network Analysis. Front. Neurol. 2017, 8, 739. [Google Scholar] [CrossRef]
- Seeley, W.W.; Crawford, R.K.; Zhou, J.; Miller, B.L.; Greicius, M.D. Neurodegenerative diseases target large-scale human brain networks. Neuron 2009, 62, 42–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernhardt, B.C.; Chen, Z.; He, Y.; Evans, A.C.; Bernasconi, N. Graph-theoretical analysis reveals disrupted small-world organization of cortical thickness correlation networks in temporal lobe epilepsy. Cereb. Cortex 2011, 21, 2147–2157. [Google Scholar] [CrossRef] [PubMed]
- Dale, A.M.; Fischl, B.; Sereno, M.I. Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage 1999, 9, 179–194. [Google Scholar] [CrossRef] [PubMed]
- Fischl, B.; Dale, A.M. Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc. Natl. Acad. Sci. USA 2000, 97, 11050–11055. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fischl, B.; Sereno, M.I.; Dale, A.M. Cortical surface-based analysis. II: Inflation, flattening, and a surface-based coordinate system. Neuroimage 1999, 9, 195–207. [Google Scholar] [CrossRef] [Green Version]
- Salat, D.H.; Buckner, R.L.; Snyder, A.Z.; Greve, D.N.; Desikan, R.S.; Busa, E.; Morris, J.C.; Dale, A.M.; Fischl, B. Thinning of the cerebral cortex in aging. Cereb. Cortex 2004, 14, 721–730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lemaitre, H.; Goldman, A.L.; Sambataro, F.; Verchinski, B.A.; Meyer-Lindenberg, A.; Weinberger, D.R.; Mattay, V.S. Normal age-related brain morphometric changes: Nonuniformity across cortical thickness, surface area and gray matter volume? Neurobiol. Aging 2012, 33, 617.e1–617.e9. [Google Scholar] [CrossRef] [Green Version]
- Sowell, E.R.; Peterson, B.S.; Kan, E.; Woods, R.P.; Yoshii, J.; Bansal, R.; Xu, D.; Zhu, H.; Thompson, P.M.; Toga, A.W. Sex differences in cortical thickness mapped in 176 healthy individuals between 7 and 87 years of age. Cereb. Cortex 2007, 17, 1550–1560. [Google Scholar] [CrossRef] [Green Version]
- Benedict, R.H.; Schretlen, D.; Groninger, L.; Brandt, J. Hopkins Verbal Learning Test—Revised; Psychological Assessment Resources, Inc.: Lutz, FL, USA, 2001. [Google Scholar]
- Benedict, R.H.; Schretlen, D.; Groninger, L.; Dobraski, M.; Shpritz, B. Brief. Visuospatial Memory Test—Revised; Psychological Assessment Resources, Inc.: Odessa, FL, USA, 1997. [Google Scholar]
- Heaton, R.K.; Taylor, M.J.; Grant, I. Revised Comprehensive Norms for an Expanded Halstead Reitan Battery: Demographically Adjusted Neuropsychological Norms for African American and Caucasian Adults; Psychological Assessment Resources, Inc.: Lutz, FL, USA, 2004. [Google Scholar]
- Reitan, R.M.; Wolfson, D. The Halstead-Reitan Neuropsychological Test Battery: Theory and Interpretattion; Neuropsychology Press: Tucson, AZ, USA, 1985. [Google Scholar]
- Conners, C.K.; Staff, M. Conners’ Continuous Performance Test. II (CPT II V. 5); Multi-Health Systems, Inc.: North Tonawanda, NY, USA, 2000. [Google Scholar]
- Golden, C.J.; Freshwater, S.M. The Stroop Color and Word Test: A Manual for Clinical and Experimental Uses; Stoelting: Chicago, IL, USA, 2002. [Google Scholar]
- Strauss, E.; Sherman, E.M.; Spreen, O. A Compendium of Neuropsychological Tests: Administration, Norms, and Commentary, 3rd ed.; Oxford University Press: New York, NY, USA, 2006. [Google Scholar]
- Kaplan, E.; Goodglass, H.; Weintraub, S. The Boston Naming Test, 2nd ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2001. [Google Scholar]
- Meyers, J.E.; Meyers, K.R. Rey Complex Figure Test and Recognition Trial; Psychological Assessment Resources: Odessa, FL, USA, 1995. [Google Scholar]
- Ingraham, L.J.; Aiken, C.B. An empirical approach to determining criteria for abnormality in test batteries with multiple measures. Neuropsychology 1996, 10, 120–124. [Google Scholar] [CrossRef]
- Wefel, J.S.; Vardy, J.; Ahles, T.; Schagen, S.B. International Cognition and Cancer Task Force recommendations to harmonise studies of cognitive function in patients with cancer. Lancet Oncol. 2011, 12, 703–708. [Google Scholar] [CrossRef]
- System, F.M. FACIT Questionnaires: FACT-Cog Scoring and Interpretation Materials. Available online: https://www.facit.org/FACITOrg/Questionnaires (accessed on 20 March 2019).
- Reilly, M.C.; Zbrozek, A.S.; Dukes, E.M. The validity and reproducibility of a work productivity and activity impairment instrument. Pharmacoeconomics 1993, 4, 353–365. [Google Scholar] [CrossRef]
- He, Y.; Chen, Z.; Evans, A. Structural Insights into Aberrant Topological Patterns of Large-Scale Cortical Networks in Alzheimer’s Disease. J. Neurosci. 2008, 28, 4756. [Google Scholar] [CrossRef]
- Sporns, O. Graph theory methods: Applications in brain networks. Dialogues Clin. Neurosci. 2018, 20, 111–121. [Google Scholar] [CrossRef] [PubMed]
- Sporns, O. The human connectome: A complex network. Ann. N. Y. Acad. Sci. 2011, 1224, 109–125. [Google Scholar] [CrossRef] [PubMed]
- Bullmore, E.T.; Suckling, J.; Overmeyer, S.; Rabe-Hesketh, S.; Taylor, E.; Brammer, M.J. Global, voxel, and cluster tests, by theory and permutation, for a difference between two groups of structural MR images of the brain. IEEE Trans. Med. Imaging 1999, 18, 32–42. [Google Scholar] [CrossRef] [PubMed]
- Dyk, K.V.; Crespi, C.M.; Petersen, L.; Ganz, P.A. Identifying Cancer-Related Cognitive Impairment Using the FACT-Cog Perceived Cognitive Impairment. JNCI Cancer Spectr. 2019, 4, pkz099. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Liu, Y.; Hu, X.; Hu, G.; Yang, K.; Xiao, C.; Hu, J.; Li, Z.; Zou, Y.; Chen, J.; et al. Alterations of white matter integrity associated with cognitive deficits in patients with glioma. Brain Behav. 2020, 10, e01639. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Elazab, A.; Liang, J.; Jia, F.; Zheng, H.; Wang, W.; Wang, L.; Hu, Q. Cortical and Subcortical Structural Plasticity Associated with the Glioma Volumes in Patients with Cerebral Gliomas Revealed by Surface-Based Morphometry. Front. Neurol. 2017, 8, 266. [Google Scholar] [CrossRef]
- Magill, S.T.; Han, S.J.; Li, J.; Berger, M.S. Resection of primary motor cortex tumors: Feasibility and surgical outcomes. J. Neurosurg. 2018, 129, 961–972. [Google Scholar] [CrossRef]
- Lin, J.; Lv, X.; Niu, M.; Liu, L.; Chen, J.; Xie, F.; Zhong, M.; Qiu, S.; Li, L.; Huang, R. Radiation-induced abnormal cortical thickness in patients with nasopharyngeal carcinoma after radiotherapy. Neuroimage Clin. 2017, 14, 610–621. [Google Scholar] [CrossRef]
- Niki, C.; Kumada, T.; Maruyama, T.; Tamura, M.; Kawamata, T.; Muragaki, Y. Primary Cognitive Factors Impaired after Glioma Surgery and Associated Brain Regions. Behav. Neurol. 2020, 2020, 7941689. [Google Scholar] [CrossRef] [Green Version]
- Yoshii, Y.; Tominaga, D.; Sugimoto, K.; Tsuchida, Y.; Hyodo, A.; Yonaha, H.; Kushi, S. Cognitive function of patients with brain tumor in pre- and postoperative stage. Surg. Neurol. 2008, 69, 51–61; discussion 61. [Google Scholar] [CrossRef]
- Bullmore, E.T.; Woodruff, P.W.; Wright, I.C.; Rabe-Hesketh, S.; Howard, R.J.; Shuriquie, N.; Murray, R.M. Does dysplasia cause anatomical dysconnectivity in schizophrenia? Schizophr. Res. 1998, 30, 127–135. [Google Scholar] [CrossRef]
- Long, X.; Jiang, C.; Zhang, L. Morphological Biomarker Differentiating MCI Converters from Nonconverters: Longitudinal Evidence Based on Hemispheric Asymmetry. Behav. Neurol. 2018, 2018, 3954101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, S.; Yuan, X.; Pu, F.; Li, D.; Fan, Y.; Wu, L.; Chao, W.; Chen, N.; He, Y.; Han, Y. Abnormal changes of multidimensional surface features using multivariate pattern classification in amnestic mild cognitive impairment patients. J. Neurosci. 2014, 34, 10541–10553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wildgruber, D.; Ackermann, H.; Kreifelts, B.; Ethofer, T. Cerebral processing of linguistic and emotional prosody: fMRI studies. Prog. Brain Res. 2006, 156, 249–268. [Google Scholar] [CrossRef] [PubMed]
- von Cramon, D.Y.; Hebel, N.; Schuri, U. Verbal memory and learning in unilateral posterior cerebral infarction. A report on 30 cases. Brain 1988, 111 Pt 5, 1061–1077. [Google Scholar] [CrossRef]
- Li, Q.; Dong, J.W.; Del Ferraro, G.; Petrovich Brennan, N.; Peck, K.K.; Tabar, V.; Makse, H.A.; Holodny, A.I. Functional Translocation of Broca’s Area in a Low-Grade Left Frontal Glioma: Graph Theory Reveals the Novel, Adaptive Network Connectivity. Front. Neurol. 2019, 10, 702. [Google Scholar] [CrossRef]
- Teixidor, P.; Gatignol, P.; Leroy, M.; Masuet-Aumatell, C.; Capelle, L.; Duffau, H. Assessment of verbal working memory before and after surgery for low-grade glioma. J. Neurooncol. 2007, 81, 305–313. [Google Scholar] [CrossRef]
- Noll, K.R.; Weinberg, J.S.; Ziu, M.; Wefel, J.S. Verbal Learning Processes in Patients with Glioma of the Left and Right Temporal Lobes. Arch. Clin. Neuropsychol. 2016, 31, 37–46. [Google Scholar] [CrossRef]
- Noll, K.R.; Ziu, M.; Weinberg, J.S.; Wefel, J.S. Neurocognitive functioning in patients with glioma of the left and right temporal lobes. J. Neurooncol. 2016, 128, 323–331. [Google Scholar] [CrossRef]
- Sherman, E.M.; Wiebe, S.; Fay-McClymont, T.B.; Tellez-Zenteno, J.; Metcalfe, A.; Hernandez-Ronquillo, L.; Hader, W.J.; Jette, N. Neuropsychological outcomes after epilepsy surgery: Systematic review and pooled estimates. Epilepsia 2011, 52, 857–869. [Google Scholar] [CrossRef] [PubMed]
- Cho, N.S.; Peck, K.K.; Zhang, Z.; Holodny, A.I. Paradoxical Activation in the Cerebellum During Language fMRI in Patients with Brain Tumors: Possible Explanations Based on Neurovascular Uncoupling and Functional Reorganization. Cerebellum 2018, 17, 286–293. [Google Scholar] [CrossRef]
- Chang, E.F.; Rieger, J.W.; Johnson, K.; Berger, M.S.; Barbaro, N.M.; Knight, R.T. Categorical speech representation in human superior temporal gyrus. Nat. Neurosci. 2010, 13, 1428–1432. [Google Scholar] [CrossRef]
- Bradley, K.A.; Stern, E.R.; Alonso, C.M.; Xie, H.; Kim-Schulze, S.; Gabbay, V. Relationships between neural activation during a reward task and peripheral cytokine levels in youth with diverse psychiatric symptoms. Brain Behav. Immun. 2019, 80, 374–383. [Google Scholar] [CrossRef] [PubMed]
- Cauda, F.; D’Agata, F.; Sacco, K.; Duca, S.; Geminiani, G.; Vercelli, A. Functional connectivity of the insula in the resting brain. Neuroimage 2011, 55, 8–23. [Google Scholar] [CrossRef]
- Almairac, F.; Deverdun, J.; Cochereau, J.; Coget, A.; Lemaitre, A.L.; Moritz-Gasser, S.; Duffau, H.; Herbet, G. Homotopic redistribution of functional connectivity in insula-centered diffuse low-grade glioma. Neuroimage Clin. 2021, 29, 102571. [Google Scholar] [CrossRef] [PubMed]
- Seibert, T.M.; Karunamuni, R.; Kaifi, S.; Burkeen, J.; Connor, M.; Krishnan, A.P.; White, N.S.; Farid, N.; Bartsch, H.; Murzin, V.; et al. Cerebral Cortex Regions Selectively Vulnerable to Radiation Dose-Dependent Atrophy. Int. J. Radiat. Oncol. Biol. Phys. 2017, 97, 910–918. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Li, M.; Pan, Y.; Lan, W.; Zheng, R.Q.; Wu, F.X.; Wang, J.X. Complex Brain Network Analysis and Its Applications to Brain Disorders: A Survey. Complexity 2017, 2017, 8362741. [Google Scholar] [CrossRef]
- Anthonissen, J.M. The Rush in a Directed Graph; Stichting Mathematisch Centrum, Mathematische Besliskunde: Amsterdam, The Netherlands, 1971. [Google Scholar]
- Freeman, L.C. A Set of Measures of Centrality Based on Betweenness. Sociometry 1977, 40, 35–41. [Google Scholar] [CrossRef]
- Humphries, M.D.; Gurney, K.; Prescott, T.J. The brainstem reticular formation is a small-world, not scale-free, network. Proc. Biol. Sci. 2006, 273, 503–511. [Google Scholar] [CrossRef] [Green Version]
ID | Age | Sex | Tumor Location | Tumor Grade | IDH1/2 Status | Rad | Chemo | Years Since Surgery | Years Since Last Treatment | Cognitively Impaired |
---|---|---|---|---|---|---|---|---|---|---|
1 | 38 | M | R FC | WHO II | Mutant | Y | Y | 6.43 | 4.75 | N |
2 | 38 | M | L FC | WHO III | Mutant | Y | Y | 1.95 | 1.73 | N |
3 | 42 | M | R PC | WHO III | Mutant | Y | Y | 6.00 | 4.42 | N |
4 | 39 | M | L FC | WHO III | Mutant | Y | Y | 5.07 | 3.81 | Y |
5 | 50 | F | L FC | WHO III | Unknown | Y | Y | 8.88 | 6.68 | N |
6 | 46 | F | R FC | WHO IV | Mutant | Y | Y | 7.18 | 5.98 | N |
7 | 31 | M | R FPC | WHO II | Mutant | Y | Y | 3.13 | 1.69 | Y |
8 | 32 | M | R TC | WHO III | Mutant | Y | Y | 5.00 | 3.84 | Y |
9 | 41 | M | R FC | WHO III | Mutant | Y | Y | 7.42 | 5.94 | N |
10 | 45 | M | L FC | WHO III | Mutant | Y | Y | 3.89 | 2.77 | N |
11 | 62 | M | R FC | WHO III | Mutant | Y | Y | 5.15 | 4.98 | Y |
12 | 57 | M | L FC | WHO IV | Mutant | Y | Y | 9.00 | 7.45 | Y |
13 | 42 | F | L OC | WHO IV | Wild Type | Y | Y | 8.26 | 6.40 | Y |
14 | 61 | F | R FC | WHO III | Mutant | Y | Y | 2.36 | 1.23 | Y |
15 | 22 | M | R FTC | WHO III | Mutant | Y | Y | 3.86 | 2.54 | N |
16 | 29 | M | L TC | WHO II | Mutant | N | N | 4.49 | 4.49 | N |
17 | 70 | M | R FC | WHO IV | Wild Type | Y | Y | 4.57 | 2.42 | Y |
18 | 48 | M | R PC | WHO IV | Mutant | Y | Y | 10.99 | 8.17 | N |
19 | 45 | F | L PC | WHO III | Unknown | Y | Y | 14.67 | 12.37 | N |
20 | 46 | M | L TC | WHO II | Mutant | Y | Y | 6.73 | 5.43 | Y |
21 | 52 | F | R FC | WHO II | Mutant | Y | Y | 2.51 | 0.70 | Y |
22 | 28 | F | L TC | WHO II | Mutant | Y | Y | 2.91 | 1.35 | Y |
23 | 38 | M | L TC | WHO II | Mutant | Y | Y | 5.83 | 0.60 | Y |
24 | 60 | F | L FC | WHO III | Unknown | Y | Y | 22.39 | 21.63 | N |
Test | Performance |
---|---|
WPAI Non-Work Ability Impairment (Mean ± SD) [Min, Max] | 26% ± 29% [0, 80%] |
Functional Assessment for Cancer Therapy-Cognitive Function, Perceived Cognitive Impairment (Mean ± SD) [Min, Max] | 43.7 ± 19.6 [6, 72] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Cho, N.S.; Dyk, K.V.; Islam, S.; Raymond, C.; Choi, J.; Salamon, N.; Pope, W.B.; Lai, A.; Cloughesy, T.F.; et al. Characterization of Cognitive Function in Survivors of Diffuse Gliomas Using Morphometric Correlation Networks. Tomography 2022, 8, 1437-1452. https://doi.org/10.3390/tomography8030116
Wang C, Cho NS, Dyk KV, Islam S, Raymond C, Choi J, Salamon N, Pope WB, Lai A, Cloughesy TF, et al. Characterization of Cognitive Function in Survivors of Diffuse Gliomas Using Morphometric Correlation Networks. Tomography. 2022; 8(3):1437-1452. https://doi.org/10.3390/tomography8030116
Chicago/Turabian StyleWang, Chencai, Nicholas S. Cho, Kathleen Van Dyk, Sabah Islam, Catalina Raymond, Justin Choi, Noriko Salamon, Whitney B. Pope, Albert Lai, Timothy F. Cloughesy, and et al. 2022. "Characterization of Cognitive Function in Survivors of Diffuse Gliomas Using Morphometric Correlation Networks" Tomography 8, no. 3: 1437-1452. https://doi.org/10.3390/tomography8030116
APA StyleWang, C., Cho, N. S., Dyk, K. V., Islam, S., Raymond, C., Choi, J., Salamon, N., Pope, W. B., Lai, A., Cloughesy, T. F., Nghiemphu, P. L., & Ellingson, B. M. (2022). Characterization of Cognitive Function in Survivors of Diffuse Gliomas Using Morphometric Correlation Networks. Tomography, 8(3), 1437-1452. https://doi.org/10.3390/tomography8030116