Imaging of Transmetallation and Chelation Phenomena Involving Radiological Contrast Agents in Mineral-Rich Fruits
Abstract
:1. Introduction
1.1. Radiological Contrast Agents and Transmetallation: An Environmental Issue
1.2. X-ray Absorption by Endogenous and Exogenous Minerals in Carbohydrate-Rich Fruit Matrix
1.3. Positive and Negative Signal Enhancement in Proton MRI by Endogenous and Exogenous Minerals
1.4. pH of Host Matrix and Influence on the Stability of Exogenous Contrast Agents
1.5. Residual Radiologic Contrast In Vivo and Detection Limits
1.6. Focus of This Work
2. Materials & Methods
2.1. Low Energy X-ray Experiments
2.2. MRI Based Detection Experiments
- endogenous minerals from the sample fruits may free up toxic metal ions like Gadolinium that may precipitate as Gadolinium salts and have been observed in certain in-vivo applications, or
- fruit biometals may get chelated by the iodinated contrast agent or by macrocyclic Gadolinium ligands and may be detectable by X-ray or by MRI based on spin-lattice or transverse relaxations.
- none of the consequences above take place at the concentration level detectable by imaging.
2.3. Exogenous Contrast Agents (Environmental Stressors) and Imaging Instrumentation
2.3.1. X-ray Equipment
2.3.2. MR Hardware
2.3.3. Radiologic Contrast Media (as Environmental Stressors)
2.3.4. MR Sequences
TR/TE/Flip Angle/Turbo factor/FOV/Matrix/Voxel Resolution/Bandwidth: 300 ms/11 ms/70 degree/3/128 × 128 mm2/256 × 256/0.5 × 0.5 × 4 mm3/200 Hz/pixel.
And a T2 weighted spin echo sequence with the following parameters:
TR/TE/Flip Angle/Turbo factor/FOV/Matrix/Voxel Resolution/Bandwidth: 2000 ms/70 ms/50 degree/1/128 × 128 mm2/256 × 256/0.5 × 0.5 × 4 mm3/200 Hz/pixel.
2.3.5. Sample Preparation
3. Results
3.1. Exogenous Contrast Agents Added to Each Well (Normalized to 0.04 mL Volume)
3.2. X-ray Absorption cross Sections for Endogenous Biometals
3.3. X-ray Imaging
3.4. MR Imaging
3.5. Transmetallation Detection Limits
4. Discussion
5. Study Limitations and Future Directions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cha, M.J.; Kang, D.Y.; Lee, W.; Yoon, S.H.; Choi, Y.H.; Byun, J.S.; Lee, J.; Kim, Y.-H.; Choo, K.S.; Cho, B.S.; et al. Hypersensitivity Reactions to Iodinated Contrast Agents: A Multicenter Study of 196,081 Patients. Radiology 2019, 293, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.L.; Cohan, R.H.; Ellis, J.H.; Caoili, E.M.; Wang, G.; Francis, I.R. Frequency, outcome, and appropriateness of treatment of nonionic iodinated contrast agents reactions. AJR Am. J. Roentgenol. 2008, 191, 409–415. [Google Scholar] [CrossRef] [PubMed]
- Ebrahimi, P.; Barbieri, M. Gadolinium as an Emerging Microcontaminant in Water Resources: Threats and Opportunities. Geosciences 2019, 9, 93. [Google Scholar] [CrossRef] [Green Version]
- Mackowiak, C.L.; Grossl, P.R.; Cook, K.L. Iodine Toxicity in a Plant-Solution System with and without Humic Acid. Plant Soil 2005, 269, 141–150. [Google Scholar] [CrossRef]
- Kanda, T.; Fukusato, T.; Matsuda, M.; Toyoda, K.; Oba, H.; Kotoku, J.; Haruyama, T.; Kitajima, K.; Furui, S. Gadolinium-based Contrast Agent Accumulates in the Brain Even in Subjects without Severe Renal Dysfunction: Evaluation of Autopsy Brain Specimens with Inductively Coupled Plasma Mass Spectroscopy. Radiology 2015, 276, 228–232. [Google Scholar] [CrossRef]
- Murata, N.; Murata, K.; Gonzalez-Cuyar, L.; Maravilla, K.R. Gadolinium Tissue Deposition in Brain and Bone. Magn. Reson. Imaging 2016, 34, 1359–1365. [Google Scholar] [CrossRef]
- Runge, V.M. Critical Questions Regarding Gadolinium Deposition in the Brain and Body After Injections of the Gadolinium-Based Contrast Agents, Safety, and Clinical Recommendations in Consideration of the EMA’s Pharmacovigilance and Risk Assessment Committee Recommendation for Suspension of the Marketing Authorizations for 4 Linear Agents. Investig. Radiol. 2017, 52, 317–323. [Google Scholar]
- Darnall, D.W.; Birnbaum, E.R. Lanthanide ions activate alpha-amylase. Biochemistry 1973, 12, 3489–3491. [Google Scholar] [CrossRef]
- Schijf, J.; Christy, I.J. Effect of Mg and Ca on the Stability of the MRI Contrast Agent Gd–DTPA in Seawater. Front. Mar. Sci. 2018, 5, 111–128. [Google Scholar] [CrossRef] [Green Version]
- Rabiet, M.; Letouzet, N.; Hassanzadeh, S.; Simon, S. Transmetallation of Gd-DTPA by Fe3+, Cu2+ and Zn2+ in water: Batch experiments and coagulation–flocculation simulations. Chemosphere 2014, 95, 639–642. [Google Scholar] [CrossRef]
- Idee, J.M.; Port, M.; Raynal, I.; Schaefer, M.; Le Greneur, S.; Corot, C. Clinical and biological consequences of transmetallation induced by contrast agents for magnetic resonance imaging: A review. Fundam. Clin. Pharmacol. 2006, 20, 563–576. [Google Scholar] [CrossRef] [PubMed]
- Rogowska, J.; Olkowska, E.; Ratajczyk, W.; Wolska, L. Gadolinium as a New Emerging Contaminant of Aquatic Environments. Environ. Toxicol. Chem. 2018, 37, 1523–1534. [Google Scholar] [CrossRef] [PubMed]
- Goel, A.; Hoang, T. Compton Effect. Reference Article, Radiopaedia.org. Available online: https://radiopaedia.org/articles/compton-effect?lang=us (accessed on 2 March 2021).
- Johns, H.E.; Cunningham, R.J. Interaction of Ionising Radiation with Matter. In Physics of Radiology, 5th ed.; Bezak, E., Beddoe, A.H., Marcu, L.G., Ebert, M., Price, R., Eds.; Charles C. Thomas Publisher: Springfield, IL, USA, 1983; Chapter 3; pp. 51–83. [Google Scholar]
- Chen, H.; Rogalski, M.; Anker, J.N. Advances in functional X-ray imaging techniques and contrast agents. Phys. Chem. Chem. Phys. 2012, 14, 13469–13486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmitt-Willich, H. Stability of linear and macrocyclic gadolinium based contrast agents. Br. J. Radiol. 2007, 80, 581–582; author reply 584–585. [Google Scholar] [CrossRef]
- Lusic, H.; Grinstaff, M.W. X-ray Computed Tomography Contrast Agents. Chem. Rev. 2013, 113, 1641–1666. [Google Scholar] [CrossRef] [Green Version]
- Wedeking, P.; Sotak, C.H.; Telser, J.; Kumar, K.; Chang, C.A.; Tweedle, M.F. Quantitative Dependence of MR Signal Intensity on Tissue Concentration of Gd(HP-DO3A) in the Nephrectomized Rat. Magn. Reson. Imaging 1992, 10, 97–108. [Google Scholar] [CrossRef]
- McDonald, R.J.; McDonald, J.S.; Dai, D.; Schroeder, D.; Jentoft, M.E.; Murray, D.L.; Kadirvel, R.; Eckel, L.J.; Kallmes, D.F. Comparison of gadolinium concentrations within multiple rat organs after intravenous administration of linear versus macrocyclic gadolinium chelates. Radiology 2017, 285, 536–545. [Google Scholar] [CrossRef] [Green Version]
- Thakral, C.; Abraham, J.L. Gadolinium-induced nephrogenic systemic fibrosis is associated with insoluble Gd deposits in tissues: In vivo transmetallation confirmed by microanalysis. J. Cutan. Pathol. 2009, 36, 1244–1254. [Google Scholar] [CrossRef]
- Kartamihardja, A.A.P.; Hanaoka, H.; Andriana, P.; Kameo, S.; Takahashi, A.; Koyama, H.; Tsushima, Y. Quantitative analysis of Gd in the protein content of the brain following single injection of gadolinium-based contrast agents (GBCAs) by size exclusion chromatography. Br. J. Radiol. 2019, 92, 20190062. [Google Scholar] [CrossRef]
- GE Healthcare Inc. OMNIPAQUE™(iohexol) Injection; GE Healthcare Inc.: Marlborough, MA, USA, 2017. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/018956s099lbl.pdf (accessed on 15 November 2020).
- Sarkar, S.; Vinokur, Z.; Xu, C.; Soloviova, T.; Shahbaz, A.; Gjoni, A. Mapping gadolinium contrast in a complex ionic and photosynthesis environment of pineapple by near-infrared and X-ray imaging. Spectrosc. Lett. 2010, 53, 505–511. [Google Scholar] [CrossRef]
- Morales, H.; Lemen, L.; Samaratunga, R.; Nguyen, P.; Tomsick, T. Effects of iodinated contrast on various magnetic resonance imaging sequences and field strength: Implications for characterization of hemorrhagic transformation in acute stroke therapy. World J. Radiol. 2016, 8, 588–593. [Google Scholar] [CrossRef] [PubMed]
- Jinkins, J.R.; Robinson, J.W.; Sisk, L.; Fullerton, G.D.; Williams, R.F. Proton relaxation enhancement associated with iodinated contrast agents in MR imaging of the CNS. AJNR Am. J. Neuroradiol. 1992, 13, 19–27. [Google Scholar] [PubMed]
- Hergan, K.; Doringer, W.; Längle, M.; Oser, W. Effects of iodinated contrast agents in MR imaging. Eur. J. Radiol. 1995, 21, 11–17. [Google Scholar] [CrossRef]
- LennTech USA, LLC. Mineral Content of Fruit and Vegetables. Available online: https://www.lenntech.com/fruit-vegetable-mineral-content.htm (accessed on 4 June 2020).
- Clemson University, College of Agriculture, Forestry and Life Sciences. pH Values of Common Food and Ingredients. Available online: https://www.clemson.edu/extension/food/food2market/documents/ph_of_common_foods.pdf (accessed on 4 June 2020).
- Hudson, L.T.; National Institute of Standards and Technology. X-ray Transition Energies Database—SRD 128. Available online: https://physics.nist.gov/PhysRefData/XrayTrans/Html/search.html (accessed on 15 September 2021).
- Storm, E.; Israel, H.I. Photon Cross Sections from 1 keV to 100 MeV for Elements Z = 1 to Z = 100. At. Data Nucl. Data Tables 1970, 7, 565–681. [Google Scholar] [CrossRef]
- Jitao, L.V.; Christie, P.; Zhang, S. Uptake, translocation, and transformation of metal-based nanoparticles in plants: Recent Advances and technological challenges. Environ. Sci. Nano 2018, 6, 41–59. [Google Scholar]
- Flora, S.J.; Pachauri, V. Chelation in metal intoxication. Int. J. Environ. Res. Public Health 2010, 7, 2745–2788. [Google Scholar] [CrossRef] [Green Version]
- Wahsner, J.E.; Gale, E.M.; Aurora, R.-R.; Caravan, P. Chemistry of MRI Contrast Agents: Current Challenges and New Frontiers. Chem. Rev. 2019, 23, 957–1057. [Google Scholar] [CrossRef]
- Sherry, A.D.; Caravan, P.; Lenkinski, R.E. A Primer on gadolinium chemistry. J. Magn. Reson. Imaging 2009, 30, 1240–1248. [Google Scholar] [CrossRef] [Green Version]
- Pan, D.; Schmieder, A.H.; Wickline, S.A.; Lanza, G.M. Manganese-based MRI contrast agents: Past, present and future. Tetrahedron 2011, 67, 8431–8444. [Google Scholar] [CrossRef] [Green Version]
Minerals in Common Oxidation States | Gd3+ 157 mg/mLVwell = 0.04 mL | Iodine 300 mg/mLVwell = 0.04 mL | Na+ | K+ Ұ | Mg2+ | Ca2+ | Mn(2+,3+,4+) ¶ | Cu2+ | Fe(2+,3+) ¶ | |
---|---|---|---|---|---|---|---|---|---|---|
Exogenous or Endogenous Minerals | ||||||||||
Content in mg/100 g or 220 mL volume of apple (density 0.45 g/mL) | 0 | 0 | 1 | 104 | 5 | 6 | 0.03 | 0.03 | 0.1 | |
Endogenous content in μg/mL of bulk volume in apple | 0 | 0 | 5 | 500 Ұ | 25 | 30 | 0.15 ¶ | 0.15 | 0.5 ¶ | |
Exogenous content in μg added to carved wells (per 0.04 mL of well volume) | 6000 | 12,000 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
Endogenous content in μg in a thin imaginary cylinder (v = 0.04 mL) around the wells | 0 | 0 | 0.2 | 20 Ұ | 1 | 1.2 | 0.006 ¶ | 0.006 | 0.02 ¶ | |
K-edges (keV) | 50 | 33 | 1 | 3.3 | 1.3 | 3.7 | 5.9 | 8.0 | 6.4 | |
Cumulative X-ray absorption cross sections (barns/atom) assuming X-ray energies available for photoelectric effects σ < = Abundance × (Z4) § | - | - | σ(expt) <0.7 × 106 | << 65 × 106 | << 0.5 × 106 | << 5 × 106 | σ(expt) <0.05 × 106 = σ (computed) | < 0.1 × 106 | < 0.2 × 106 |
Minerals in Common Oxidation States | Gd3 + 157 mg/mL in Scaled down Vwell = 0.04 mL | Iodine 300 mg/mL in Scaled down Vwell = 0.04 mL | Na+ | K+ Ұ | Mg2+ | Ca2+ | Mn(2+,3+,4+) ¶ | Cu2+ | Fe(2+,3+) ¶ | |
---|---|---|---|---|---|---|---|---|---|---|
Exogenous or Endogenous Minerals | ||||||||||
Content in mg/100 g or 220 mL volume of sweet potato (with density 0.45 g/mL) | 0 | 0 | 55 | 250 | 20 | 50 | 0.3 | 0.2 | 0.7 | |
Endogenous content in μg/mL of bulk volume in sweet potato | 0 | 0 | 240 | 1100 Ұ | 90 | 215 Ұ | 1.3 ¶ | 1 | 3.5 ¶ | |
Exogenous content in μg added to carved wells (per 0.04 mL of well volume) | 6000 | 12,000 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
Endogenous content in μg in a thin imaginary cylinder (v = 0.04 mL) around the wells | 0 | 0 | 10 | 44 Ұ | 3.6 | 8.6 Ұ | 0.05 ¶ | 0.04 | 0.14 ¶ | |
K-edges (keV) | 50 | 33 | 1 | 3.3 | 1.3 | 3.7 | 5.9 | 8.0 | 6.4 | |
Cumulative X-ray absorption cross section (barns/atom) assuming X-ray energies available for photoelectric effects σ < = Abundance × (Z4) § | - | - | σ(expt) <<3.5 × 106 | << 143 × 106 | << 1.8 × 106 | << 34 × 106 | σ(expt) <0.05 × 106 = σ (computed) | < 0.7 × 106 | < 1.6 × 106 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarkar, S.; Vinokur, Z.; Buitrago, B.; Mousa, L.; Sanchez, H.; Basilicata, A.; Douglas, J.-A.; Reddock, S. Imaging of Transmetallation and Chelation Phenomena Involving Radiological Contrast Agents in Mineral-Rich Fruits. Tomography 2022, 8, 1413-1428. https://doi.org/10.3390/tomography8030114
Sarkar S, Vinokur Z, Buitrago B, Mousa L, Sanchez H, Basilicata A, Douglas J-A, Reddock S. Imaging of Transmetallation and Chelation Phenomena Involving Radiological Contrast Agents in Mineral-Rich Fruits. Tomography. 2022; 8(3):1413-1428. https://doi.org/10.3390/tomography8030114
Chicago/Turabian StyleSarkar, Subhendra, Zoya Vinokur, Bleidis Buitrago, Lin Mousa, Hayley Sanchez, Analia Basilicata, Jodi-Ann Douglas, and Seanetta Reddock. 2022. "Imaging of Transmetallation and Chelation Phenomena Involving Radiological Contrast Agents in Mineral-Rich Fruits" Tomography 8, no. 3: 1413-1428. https://doi.org/10.3390/tomography8030114
APA StyleSarkar, S., Vinokur, Z., Buitrago, B., Mousa, L., Sanchez, H., Basilicata, A., Douglas, J. -A., & Reddock, S. (2022). Imaging of Transmetallation and Chelation Phenomena Involving Radiological Contrast Agents in Mineral-Rich Fruits. Tomography, 8(3), 1413-1428. https://doi.org/10.3390/tomography8030114