Changes in Magnetic Resonance Signal Fluctuation in Superior Sagittal Sinus: Deterioration of Arteriolar Vasomotor Function of Young Smokers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjescts
2.2. Data Acquisition (Tang 2017)
2.3. Data Analysis (Tang 2017)
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rahman, M.; Siddik, A.B. Anatomy, Arterioles. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2021. [Google Scholar]
- Bor-Seng-Shu, E.; Kita, W.S.; Figueiredo, E.G.; Paiva, W.S.; Fonoff, E.T.; Teixeira, M.J.; Panerai, R.B. Cerebral hemodynamics: Concepts of clinical importance. Arq. Neuropsiquiatr. 2012, 70, 357–365. [Google Scholar] [CrossRef] [PubMed]
- Meyer, J.S.; Rauch, G.; Rauch, R.A.; Haque, A. Risk factors for cerebral hypoperfusion, mild cognitive impairment, and dementia. Neurobiol. Aging 2000, 21, 161–169. [Google Scholar] [CrossRef]
- Popa-Wagner, A.; Schröder, E.; Walker, L.C.; Kessler, C. β-amyloid precursor protein and β-amyloid peptide immunoreactivity in the rat brain after middle cerebral artery occlusion. Stroke 1998, 29, 2196–2202. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Zhang, J. Cerebral hypoperfusion and cognitive impairment: The pathogenic role of vascular oxidative stress. Int. J. Neurosci. 2012, 122, 494–499. [Google Scholar] [CrossRef]
- Weller, R.O.; Boche, D.; Nicoll, J.A.R. Microvasculature changes and cerebral amyloid angiopathy in Alzheimer’s disease and their potential impact on therapy. Acta Neuropathol. 2009, 118, 87–102. [Google Scholar] [CrossRef] [PubMed]
- Popa-Wagner, A.; Buga, A.; Popescu, B.; Muresanu, D. Vascular cognitive impairment, dementia, aging and energy demand. A vicious cycle. J. Neural. Transm. 2015, 122, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Kalaria, R.N. Vascular basis for brain degeneration: Faltering controls and risk factors for dementia. Nutr. Rev. 2010, 68, S74–S87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hiu, S.; Ong, M.; Kandiah, N. Role of cerebrovascular risk factors in dementia. Neurol. Asia 2016, 21, 103–111. [Google Scholar]
- Iturria-Medina, Y.; Sotero, R.C.; Toussaint, P.J.; Mateos-Perez, J.M.; Evans, A.C. Early role of vascular dysregulation on late-onset Alzheimer’s disease based on multifactorial data-driven analysis. Nat. Commun. 2016, 7, 11934. [Google Scholar] [CrossRef]
- Shankar, K.B.; Moseley, H.; Kumar, Y.; Vemula, V. Arterial to end tidal carbon dioxide tension difference during caesarean section anaesthesia. Anaesthesia 1986, 41, 698–702. [Google Scholar] [CrossRef]
- Klingelhöfer, J.; Sander, D. Doppler CO2 test as an indicator of cerebral vasoreactivity and prognosis in severe intracranial hemorrhages. Stroke 1992, 23, 962–966. [Google Scholar] [CrossRef] [Green Version]
- Smielewski, P.; Kirkpatrick, P.; Minhas, P.; Pickard, J.D.; Czosnyka, M. Can cerebrovascular reactivity be measured with near-infrared spectroscopy? Stroke 1995, 26, 2285–2292. [Google Scholar] [CrossRef]
- Smielewski, P.; Czosnyka, M.; Pickard, J.D.; Kirkpatrick, P. Assessment of cerebrovascular reactivity in patients with carotid artery disease using near-infrared spectroscopy. Acta Neurochir. Suppl. 1998, 1998, 263–265. [Google Scholar] [CrossRef]
- Ito, H.; Kanno, I.; Ibaraki, M.; Hatazawa, J. Effect of aging on cerebral vascular response to PaCO2 changes in humans as measured by positron emission tomography. J. Cereb. Blood Flow Metab. 2002, 22, 997–1003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yezhuvath, U.S.; Lewis-Amezcua, K.; Varghese, R.; Xiao, G.; Lu, H. On the assessment of cerebrovascular reactivity using hypercapnia BOLD MRI. NMR Biomed. 2009, 22, 779–786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Markus, H.S.; Harrison, M.J.G. Estimation of cerebrovascular reactivity using transcranial doppler, including the use of breath-holding as the vasodilatory stimulus. Stroke 1992, 23, 668–673. [Google Scholar] [CrossRef] [Green Version]
- Tancredi, F.B.; Hoge, R.D. Comparison of cerebral vascular reactivity measures obtained using breath-holding and CO2 inhalation. J. Cereb. Blood Flow Metab. 2013, 33, 1066–1074. [Google Scholar] [CrossRef] [Green Version]
- Oláh, L.; Raiter, Y.; Candale, C.; Molnár, S.; Rosengarten, B.; Bornstein, N.; Csiba, L. Visually evoked cerebral vasomotor response in smoking and nonsmoking young adults, investigated by functional transcranial doppler. Nicotine Tob. Res. 2008, 10, 353–358. [Google Scholar] [CrossRef] [Green Version]
- Silvestrini, M.; Troisi, E.; Matteis, M.; Cupini, L.M.; Bernardi, G. Effect of smoking on cerebrovascular reactivity. J. Cereb. Blood Flow Metab. 1996, 16, 746–749. [Google Scholar] [CrossRef] [Green Version]
- Terborg, C.; Bramer, S.; Weiller, C.; Röther, J. Short-term effect of cigarette smoking on CO2-induced vasomotor reactivity in man: A study with near-infrared spectroscopy and tanscranial Doppler sonography. J. Neurol. Sci. 2002, 205, 15–20. [Google Scholar] [CrossRef]
- Iida, M.; Iida, H.; Dohi, S.; Takenaka, M.; Fujiwara, H.; Traystman, R.J. Mechanisms underlying cerebrovascular effects of cigarette smoking in rats in vivo. Stroke 1998, 29, 1656–1665. [Google Scholar] [CrossRef] [PubMed]
- Kubota, K.; Yamaguchi, T.; Abe, Y.; Fujiwara, T.; Hatazawa, J.; Matsuzawa, T. Effects of smoking on regional cerebral blood flow in neurologically normal subjects. Stroke 1987, 14, 720–724. [Google Scholar] [CrossRef] [Green Version]
- Vafaee, M.S.; Gjedde, A.; Imamirad, N.; Vang, K.; Chakravarty, M.M.; Lerch, J.P.; Cumming, P. Smoking normalizes cerebral blood flow and oxygen consumption after 12-hour abstention. J. Cereb. Blood Flow Metab. 2015, 35, 699–705. [Google Scholar] [CrossRef]
- Mozzini, C.; Casadei, A.; Roscia, G.; Cominacini, L. Young smoker “ABCD” vascular assessment: A four-step ultrasound examination for detecting peripheral, extra and intra-cranial early arterial damage. BMC Cardiovasc. Disord. 2016, 16, 147. [Google Scholar] [CrossRef] [Green Version]
- Boms, N.; Yonai, Y.; Molnar, S.; Rosengarten, B.; Bornstein, N.M.; Csiba, L.; Olah, L. Effect of smoking cessation on visually evoked cerebral blood flow response in healthy volunteers. J. Vasc. Res. 2010, 47, 214–220. [Google Scholar] [CrossRef]
- Gay, S.B.; Sistrom, C.L.; Holder, C.A.; Suratt, P.M. Breath-holding capability of adults. Invest. Radiol. 1994, 29, 848–851. [Google Scholar] [CrossRef]
- Alwatban, M.; Truemper, E.J.; Al-rethaia, A.; Murman, D.L.; Bashford, G.R. The breath-hold acceleration index: A new method to evaluate cerebrovascular reactivity using transcranial doppler. J. Neuroimag. 2018, 28, 429–435. [Google Scholar] [CrossRef] [PubMed]
- Tang, M.; Nishi, K.; Yamamoto, T. Analysis of fluctuation in cerebral venous oxygenation using MR imaging: Quantitative evaluation of vasomotor function of arterioles. Magn. Reson. Med. Sci. 2017, 16, 45–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buchhalter, A.R.; Thomas, E. Preliminary evaluation of a novel smoking system: Effects on subjective and physiological measures and on smoking behavior. Nicotine Tob. Res. 2000, 2, 39–43. [Google Scholar] [CrossRef] [PubMed]
- Sipinková, I.; Hahn, G.; Meyer, M.; Tadlánek, M.; Hájek, J. Effect of respiration and posture on heart rate variability. Physiol. Res. 1997, 46, 173–179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biswal, B.; Yetkin, F.Z.; Haughton, V.M.; Hyde, J.S. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn. Reson. Med. 1995, 34, 537–541. [Google Scholar] [CrossRef] [PubMed]
- Window Correction Factors. Available online: https://community.sw.siemens.com/s/article/window-correction-factors (accessed on 26 February 2022).
- Barhoum, S.; Rodgers, Z.B.; Langham, M.; Magland, J.F.; Li, C.; Wehrli, F.W. Comparison of MRI methods for measuring whole-brain venous oxygen saturation. Magn. Reson. Med. 2015, 73, 2122–2128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qin, Q.; Grgac, K.; van Zijl, P.C.M. Determination of whole-brain oxygen extraction fractions by fast measurement of blood T2 in the jugular vein. Magn. Reson. Med. 2011, 65, 471–479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vapaatalo, H.; Mervaala, E. Clinically important factors influencing endothelial function. Med. Sci. Monit. 2001, 7, 1075–1085. [Google Scholar]
- Toda, N.; Toda, H. Nitric oxide-mediated blood flow regulation as affected by smoking and nicotine. Eur. J. Pharmacol. 2010, 649, 1–13. [Google Scholar] [CrossRef]
- Celermajer, D.S.; Sorensen, K.E.; Gooch, V.M.; Miller, O.I.; Sullivan, I.D.; Lloyd, J.K.; Deanfield, J.E.; Spiegelhalter, D.J. Non-invasive detection of endothelial dysfunction in children and adults at risk of atherosclerosis. Lancet 1992, 340, 1111–1115. [Google Scholar] [CrossRef]
- Durazzo, T.C.; Meyerhoff, D.J.; Nixon, S.J. Chronic cigarette smoking: Implications for neurocognition and brain neurobiology. Int. J. Environ. Res. Public Health 2010, 7, 3760–3790. [Google Scholar] [CrossRef] [Green Version]
- Siemann, D.W.; Hill, R.P.; Bush, R.S. Smoking: The influence of carboxyhemoglobin (HbCO) on tumor oxygenation and response to radiation. Int. J. Radiat. Oncol. 1978, 4, 657–662. [Google Scholar] [CrossRef]
- Sagone, A.L.; Lawrence, T.; Balcerzak, S.P. Effect of Smoking on Tissue Oxygen Supply. Blood 1973, 41, 845–851. [Google Scholar] [CrossRef]
- Lu, H.; Xu, F.; Rodrigue, K.M.; Kennedy, K.M.; Cheng, Y.; Flicker, B.; Hebrank, A.C.; Uh, J.; Park, D.C. Alterations in Cerebral Metabolic Rate and Blood Supply across the Adult Lifespan. Cereb. Cortex 2011, 21, 1426–1434. [Google Scholar] [CrossRef] [Green Version]
- Cao, W.; Chang, Y.V.; Englund, E.K.; Song, H.K.; Barhoum, S.; Rodgers, Z.B.; Langham, M.C.; Wehrli, F.W. High-speed whole-brain oximetry by golden-angle radial MRI. Magn. Reson. Med. 2018, 79, 217–223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Smokers | Number of Cigarettes Per Day | Duration of Smoking [Years] | Brinkman Index |
---|---|---|---|
1 | 10 | 4 | 40 |
2 | 10 | 4 | 40 |
3 | 10 | 6 | 60 |
4 | 10 | 7 | 70 |
5 | 9 | 3 | 27 |
6 | 15 | 3.5 | 52.5 |
7 | 11.5 | 5 | 57.5 |
8 | 10 | 6 | 60 |
9 | 10 | 4 | 40 |
10 | 12.5 | 3 | 37.5 |
Mean ± SD | 10.8 ± 1.7 | 4.6 ± 1.3 | 48.5 ± 12.7 |
Physiological Parameters | Non-Smokers | Smokers |
---|---|---|
PetCO2 [mmHg] | 32.7 ± 5.0 | 33.8 ± 4.5 |
MAP [mmHg] | 81 ± 4 | 81 ± 9 |
Heart rate [min−1] | 67 ± 8 | 61 ± 10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, M.; Kubota, M.; Nitanda, Y.; Yamamoto, T. Changes in Magnetic Resonance Signal Fluctuation in Superior Sagittal Sinus: Deterioration of Arteriolar Vasomotor Function of Young Smokers. Tomography 2022, 8, 657-666. https://doi.org/10.3390/tomography8020055
Tang M, Kubota M, Nitanda Y, Yamamoto T. Changes in Magnetic Resonance Signal Fluctuation in Superior Sagittal Sinus: Deterioration of Arteriolar Vasomotor Function of Young Smokers. Tomography. 2022; 8(2):657-666. https://doi.org/10.3390/tomography8020055
Chicago/Turabian StyleTang, Minghui, Masaya Kubota, Yusuke Nitanda, and Toru Yamamoto. 2022. "Changes in Magnetic Resonance Signal Fluctuation in Superior Sagittal Sinus: Deterioration of Arteriolar Vasomotor Function of Young Smokers" Tomography 8, no. 2: 657-666. https://doi.org/10.3390/tomography8020055
APA StyleTang, M., Kubota, M., Nitanda, Y., & Yamamoto, T. (2022). Changes in Magnetic Resonance Signal Fluctuation in Superior Sagittal Sinus: Deterioration of Arteriolar Vasomotor Function of Young Smokers. Tomography, 8(2), 657-666. https://doi.org/10.3390/tomography8020055