Respiratory Motion Mitigation and Repeatability of Two Diffusion-Weighted MRI Methods Applied to a Murine Model of Spontaneous Pancreatic Cancer
Abstract
:1. Introduction
2. Methodology
2.1. GEM Model of Pancreatic Cancer
2.2. In Vivo MRI and Test-Retest Study
2.3. Data Processing
2.4. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ADC or D | apparent diffusion coefficient |
CVWS | within-subject coefficient of variation |
DWI | diffusion-weighted MRI |
DW-SE-EPI | diffusion-weighted 4-shot spin-echo echo planar imaging protocol |
DW-SE-RAD | diffusion-weighted radially sampled spin-echo protocol |
GEM | genetically engineered mouse |
PDAC | pancreatic ductal adenocarcinoma |
probability density function | |
RC | repeatability coefficient |
SDws | within-subject standard deviation |
References
- Hingorani, S.R.; Petricoin, E.F., III; Maitra, A.; Rajapakse, V.; King, C.; Jacobetz, M.A.; Ross, S.; Conrads, T.P.; Veenstra, T.D.; Hitt, B.A.; et al. Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell 2003, 4, 437–450. [Google Scholar] [CrossRef] [Green Version]
- Bardeesy, N.; Cheng, K.H.; Berger, J.H.; Chu, G.C.; Pahler, J.; Olson, P.; Hezel, A.F.; Horner, J.; Lauwers, G.Y.; Hanahan, D.; et al. Smad4 is dispensable for normal pancreas development yet critical in progression and tumor biology of pancreas cancer. Genes Dev. 2006, 20, 3130–3146. [Google Scholar] [CrossRef] [Green Version]
- Frese, K.K.; Neesse, A.; Cook, N.; Bapiro, T.E.; Lolkema, M.P.; Jodrell, D.I.; Tuveson, D.A. Nab-paclitaxel potentiates gemcitabine activity by reducing cytidine deaminase levels in a mouse model of pancreatic cancer. Cancer Discov. 2012, 2, 260–269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacobetz, M.A.; Chan, D.S.; Neesse, A.; Bapiro, T.E.; Cook, N.; Frese, K.K.; Feig, C.; Nakagawa, T.; Caldwell, M.E.; Zecchini, H.I.; et al. Hyaluronan impairs vascular function and drug delivery in a mouse model of pancreatic cancer. Gut 2013, 62, 112–120. [Google Scholar] [CrossRef] [PubMed]
- Sherman, M.H.; Ruth, T.Y.; Engle, D.D.; Ding, N.; Atkins, A.R.; Tiriac, H.; Collisson, E.A.; Connor, F.; Van Dyke, T.; Kozlov, S.; et al. Vitamin D Receptor-Mediated Stromal Reprogramming Suppresses Pancreatitis and Enhances Pancreatic Cancer Therapy. Cell 2014, 159, 80–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lo, A.; Wang, L.C.S.; Scholler, J.; Monslow, J.; Avery, D.; Newick, K.; O’Brien, S.; Evans, R.A.; Bajor, D.J.; Clendenin, C.; et al. Tumor-Promoting Desmoplasia Is Disrupted by Depleting FAP-Expressing Stromal Cells. Cancer Res. 2015, 75, 2800–2810. [Google Scholar] [CrossRef] [Green Version]
- Beatty, G.L.; Chiorean, E.G.; Fishman, M.P.; Saboury, B.; Teitelbaum, U.R.; Sun, W.; Huhn, R.D.; Song, W.; Li, D.; Sharp, L.L.; et al. CD40 agonists alter tumor stroma and show efficacy against pancreatic carcinoma in mice and humans. Science 2011, 331, 1612–1616. [Google Scholar] [CrossRef] [Green Version]
- Cao, J.; Pickup, S.; Clendenin, C.; Blouw, B.; Choi, H.; Kang, D.; Rosen, M.; O’Dwyer, P.J.; Zhou, R. Dynamic Contrast-enhanced MRI Detects Responses to Stroma-directed Therapy in Mouse Models of Pancreatic Ductal Adenocarcinoma. Clin. Cancer Res. 2019, 25, 2314–2322. [Google Scholar] [CrossRef] [PubMed]
- White, N.S.; McDonald, C.R.; Farid, N.; Kuperman, J.; Karow, D.; Schenker-Ahmed, N.M.; Bartsch, H.; Rakow-Penner, R.; Holland, D.; Shabaik, A.; et al. Diffusion-weighted imaging in cancer: Physical foundations and applications of restriction spectrum imaging. Cancer Res. 2014, 74, 4638–4652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le Bihan, D. Apparent diffusion coefficient and beyond: What diffusion MR imaging can tell us about tissue structure. Radiology 2013, 268, 318–322. [Google Scholar] [CrossRef]
- Taouli, B.; Beer, A.J.; Chenevert, T.; Collins, D.; Lehman, C.; Matos, C.; Padhani, A.R.; Rosenkrantz, A.B.; Shukla-Dave, A.; Sigmund, E.; et al. Diffusion-weighted imaging outside the brain: Consensus statement from an ISMRM-sponsored workshop. J. Magn. Reson. Imaging 2016, 44, 521–540. [Google Scholar] [CrossRef]
- Roth, Y.; Tichler, T.; Kostenich, G.; Ruiz-Cabello, J.; Maier, S.E.; Cohen, J.S.; Orenstein, A.; Mardor, Y. High-b-value diffusion-weighted MR imaging for pretreatment prediction and early monitoring of tumor response to therapy in mice. Radiology 2004, 232, 685–692. [Google Scholar] [CrossRef]
- Koh, D.M.; Scurr, E.; Collins, D.; Kanber, B.; Norman, A.; Leach, M.O.; Husband, J.E. Predicting response of colorectal hepatic metastasis: Value of pretreatment apparent diffusion coefficients. Am. J. Roentgenol. 2007, 188, 1001–1008. [Google Scholar] [CrossRef]
- Galbán, C.J.; Ma, B.; Malyarenko, D.; Pickles, M.D.; Heist, K.; Henry, N.L.; Schott, A.F.; Neal, C.H.; Hylton, N.M.; Rehemtulla, A.; et al. Multi-site clinical evaluation of DW-MRI as a treatment response metric for breast cancer patients undergoing neoadjuvant chemotherapy. PLoS ONE 2015, 10, e0122151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dolde, K.; Dávid, C.; Echner, G.; Floca, R.; Hentschke, C.; Maier, F.; Niebuhr, N.; Ohmstedt, K.; Saito, N.; Alimusaj, M.; et al. 4DMRI-based analysis of inter—And intrafractional pancreas motion and deformation with different immobilization devices. Biomed. Phys. Eng. Express 2019, 5, 025012. [Google Scholar] [CrossRef]
- Jones, B.L.; Schefter, T.; Miften, M. Adaptive motion mapping in pancreatic SBRT patients using Fourier transforms. Radiol. Oncol. 2015, 115, 217–222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Batista, V.; Richter, D.; Chaudhri, N.; Naumann, P.; Herfarth, K.; Jäkel, O. Significance of intra-fractional motion for pancreatic patients treated with charged particles. Radiat. Oncol. 2018, 13, 120. [Google Scholar] [CrossRef] [Green Version]
- Ferris, W.S.; Kissick, M.W.; Bayouth, J.E.; Culberson, W.S.; Smilowitz, J.B. Evaluation of radixact motion synchrony for 3D respiratory motion: Modeling accuracy and dosimetric fidelity. J. Appl. Clin. Med. Phys. 2020, 21, 96–106. [Google Scholar] [CrossRef]
- Bammer, R.; Keeling, S.L.; Augustin, M.; Pruessmann, K.P.; Wolf, R.; Stollberger, R.; Hartung, H.P.; Fazekas, F. Improved diffusion-weighted single-shot echo-planar imaging (EPI) in stroke using sensitivity encoding (SENSE). Magn. Reson. Med. 2001, 46, 548–554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Porter, D.A.; Heidemann, R.M. High resolution diffusion-weighted imaging using readout-segmented echo-planar imaging, parallel imaging and a two-dimensional navigator-based reacquisition. Magn. Reson. Med. 2009, 62, 468–475. [Google Scholar] [CrossRef]
- Gareis, D.; Wichmann, T.; Lanz, T.; Melkus, G.; Horn, M.; Jakob, P.M. Mouse MRI using phased-array coils. NMR Biomed. 2007, 20, 326–334. [Google Scholar] [CrossRef] [PubMed]
- Ribot, E.J.; Trotier, A.J.; Castets, C.R.; Dallaudière, B.; Thiaudière, E.; Franconi, J.M.; Miraux, S. Free-breathing 3D diffusion MRI for high-resolution hepatic metastasis characterization in small animals. Clin. Exp. Metastasis 2016, 33, 167–178. [Google Scholar] [CrossRef]
- Lee, H.J.; Luci, J.J.; Tantawy, M.N.; Lee, H.; Nam, K.T.; Peterson, T.E.; Price, R.R. Detecting peritoneal dissemination of ovarian cancer in mice by DWIBS. Magn. Reson. Imaging 2013, 31, 227–234. [Google Scholar] [CrossRef] [Green Version]
- Chow, A.M.; Gao, D.S.; Fan, S.J.; Qiao, Z.; Lee, F.Y.; Yang, J.; Man, K.; Wu, E.X. Liver fibrosis: An intravoxel incoherent motion (IVIM) study. J. Magn. Reson. Imaging 2012, 36, 159–167. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Kim, H. Assessment of diffusion tensor MR imaging (DTI) in liver fibrosis with minimal confounding effect of hepatic steatosis. Magn. Reson. Med. 2015, 73, 1602–1608. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Zhang, X.P.; Li, X.T.; Tang, L.; Cui, Y.; Zhang, X.Y.; Sun, Y.S. Applicable apparent diffusion coefficient of an orthotopic mouse model of gastric cancer by improved clinical MRI diffusion weighted imaging. Sci. Rep. 2014, 4, 6072. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ge, X.; Quirk, J.D.; Engelbach, J.A.; Bretthorst, G.L.; Li, S.; Shoghi, K.I.; Garbow, J.R.; Ackerman, J.J. Test-Retest Performance of a 1-Hour Multiparametric MR Image Acquisition Pipeline with Orthotopic Triple-Negative Breast Cancer Patient-Derived Tumor Xenografts. Tomography 2019, 5, 320. [Google Scholar] [PubMed]
- Bao, Q.; Liberman, G.; Solomon, E.; Frydman, L. High-resolution diffusion MRI studies of development in pregnant mice visualized by novel spatiotemporal encoding schemes. NMR Biomed. 2020, 33, e4208. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Cai, C.; Yang, H.; Cai, S.; Qian, J.; Xiao, L.; Zhong, K.; Chen, Z. Motion-tolerant diffusion mapping based on single-shot overlapping-echo detachment (OLED) planar imaging. Magn. Reson. Med. 2018, 80, 200–210. [Google Scholar] [CrossRef]
- Kennedy, S.D.; Zhong, J. Diffusion measurements free of motion artifacts using intermolecular dipole-dipole interactions. Magn. Reson. Med. 2004, 52, 1–6. [Google Scholar] [CrossRef]
- Zaitsev, M.; Maclaren, J.; Herbst, M. Motion artifacts in MRI: A complex problem with many partial solutions. J. Magn. Reson. Imaging 2015, 42, 887–901. [Google Scholar] [CrossRef]
- Lin, W.; Guo, J.; Rosen, M.A.; Song, H.K. Respiratory motion-compensated radial dynamic contrast-enhanced (DCE)-MRI of chest and abdominal lesions. Magn. Reson. Med. 2008, 60, 1135–1146. [Google Scholar] [CrossRef] [Green Version]
- Dougherty, L.; Isaac, G.; Rosen, M.A.; Nunes, L.W.; Moate, P.J.; Boston, R.C.; Schnall, M.D.; Song, H.K. High frame-rate simultaneous bilateral breast DCE-MRI. Magn. Reson. Med. 2007, 57, 220–225. [Google Scholar] [CrossRef] [PubMed]
- Rosenkrantz, A.B.; Khasgiwala, A.; Doshi, A.M.; Ream, J.M.; Taneja, S.S.; Lepor, H. Detection of prostate cancer local recurrence following radical prostatectomy: Assessment using a continuously acquired radial golden-angle compressed sensing acquisition. Abdom. Radiol. (N. Y.) 2017, 42, 290–297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heacock, L.; Gao, Y.; Heller, S.L.; Melsaether, A.N.; Babb, J.S.; Block, T.K.; Otazo, R.; Kim, S.G.; Moy, L. Comparison of conventional DCE-MRI and a novel golden-angle radial multicoil compressed sensing method for the evaluation of breast lesion conspicuity. J. Magn. Reson. Imaging 2017, 45, 1746–1752. [Google Scholar] [CrossRef] [PubMed]
- Shukla-Dave, A.; Obuchowski, N.A.; Chenevert, T.L.; Jambawalikar, S.; Schwartz, L.H.; Malyarenko, D.; Huang, W.; Noworolski, S.M.; Young, R.J.; Shiroishi, M.S.; et al. Quantitative imaging biomarkers alliance (QIBA) recommendations for improved precision of DWI and DCE-MRI derived biomarkers in multicenter oncology trials. J. Magn. Reson. Imaging 2019, 49, e101–e121. [Google Scholar] [CrossRef] [PubMed]
- Kjølby, B.F.; Khan, A.R.; Chuhutin, A.; Pedersen, L.; Jensen, J.B.; Jakobsen, S.; Zeidler, D.; Sangill, R.; Nyengaard, J.R.; Jespersen, S.N.; et al. Fast diffusion kurtosis imaging of fibrotic mouse kidneys. NMR Biomed. 2016, 29, 1709–1719. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garrett-Roe, S.; Warren, W.S. Numerical studies of intermolecular multiple quantum coherences: High-resolution NMR in inhomogeneous fields and contrast enhancement in MRI. J. Magn. Reson. 2000, 146, 1–13. [Google Scholar] [CrossRef]
- Neeman, M.; Freyer, J.P.; Sillerud, L.O. A simple method for obtaining cross-term-free images for diffusion anisotropy studies in NMR microimaging. Magn. Reson. Med. 1991, 21, 138–143. [Google Scholar] [CrossRef]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef] [PubMed]
- Feinberg, D.A.; Oshio, K. Phase errors in multi-shot echo planar imaging. Magn. Reson. Med. 1994, 32, 535–539. [Google Scholar] [CrossRef]
- Tofts, P.S.; Lloyd, D.; Clark, C.A.; Barker, G.J.; Parker, G.J.M.; McConville, P.; Baldock, C.; Pope, J.M. Test liquids for quantitative MRI measurements of self-diffusion coefficient in vivo. Magn. Reson. Med. 2000, 43, 368–374. [Google Scholar] [CrossRef] [Green Version]
- Patlak, C.S.; Hospod, F.E.; Trowbridge, S.D.; Newman, G.C. Diffusion of radiotracers in normal and ischemic brain slices. J. Cereb. Blood Flow Metab. 1998, 18, 776–802. [Google Scholar] [CrossRef] [Green Version]
- Sharpless, N.E.; Depinho, R.A. The mighty mouse: Genetically engineered mouse models in cancer drug development. Nat. Rev. Drug Discov. 2006, 5, 741–754. [Google Scholar] [CrossRef]
- Rosenzweig, S.; Holme, H.C.M.; Uecker, M. Simple auto-calibrated gradient delay estimation from few spokes using Radial Intersections (RING). Magn. Reson. Med. 2019, 81, 1898–1906. [Google Scholar] [CrossRef] [PubMed]
- Block, K.T.; Uecker, M.; Frahm, J. Undersampled radial MRI with multiple coils. Iterative image reconstruction using a total variation constraint. Magn. Reson. Med. 2007, 57, 1086–1098. [Google Scholar] [CrossRef] [PubMed]
- Wagner, F.; Laun, F.B.; Kuder, T.A.; Mlynarska, A.; Maier, F.; Faust, J.; Demberg, K.; Lindemann, L.; Rivkin, B.; Nagel, A.M. Temperature and concentration calibration of aqueous polyvinylpyrrolidone (PVP) solutions for isotropic diffusion MRI phantoms. PLoS ONE 2017, 12, e0179276. [Google Scholar] [CrossRef] [Green Version]
- Niwa, T.; Ueno, M.; Ohkawa, S.; Yoshida, T.; Doiuchi, T.; Ito, K.; Inoue, T. Advanced pancreatic cancer: The use of the apparent diffusion coefficient to predict response to chemotherapy. Br. J. Radiol. 2009, 82, 28–34. [Google Scholar] [CrossRef]
- Muraoka, N.; Uematsu, H.; Kimura, H.; Imamura, Y.; Fujiwara, Y.; Murakami, M.; Yamaguchi, A.; Itoh, H. Apparent diffusion coefficient in pancreatic cancer: Characterization and histopathological correlations. J. Magn. Reson. Imaging 2008, 27, 1302–1308. [Google Scholar] [CrossRef] [PubMed]
- Whisenant, J.G.; Ayers, G.D.; Loveless, M.E.; Barnes, S.L.; Colvin, D.C.; Yankeelov, T.E. Assessing reproducibility of diffusion-weighted magnetic resonance imaging studies in a murine model of HER2+ breast cancer. Magn. Reson. Imaging 2014, 32, 245–249. [Google Scholar] [CrossRef] [Green Version]
- Shoghi, K.I.; Badea, C.T.; Blocker, S.J.; Chenevert, T.L.; Laforest, R.; Lewis, M.T.; Luker, G.D.; Manning, H.C.; Marcus, D.S.; Mowery, Y.M.; et al. Co-Clinical Imaging Resource Program (CIRP): Bridging the Translational Divide to Advance Precision Medicine. Tomography 2020, 6, 273–287. [Google Scholar] [PubMed]
- Barnes, A.; Alonzi, R.; Blackledge, M.; Charles-Edwards, G.; Collins, D.J.; Cook, G.; Coutts, G.; Goh, V.; Graves, M.; Kelly, C.; et al. UK quantitative WB-DWI technical workgroup: Consensus meeting recommendations on optimisation, quality control, processing and analysis of quantitative whole-body diffusion-weighted imaging for cancer. Br. J. Radiol. 2018, 91, 20170577. [Google Scholar] [CrossRef] [PubMed]
- Trouard, T.P.; Theilmann, R.J.; Altbach, M.I.; Gmitro, A.F. High-resolution diffusion imaging with DIFRAD-FSE (diffusion-weighted radial acquisition of data with fast spin-echo) MRI. Magn. Reson. Med. 1999, 42, 11–18. [Google Scholar] [CrossRef]
- Wang, F.N.; Huang, T.Y.; Lin, F.H.; Chuang, T.C.; Chen, N.K.; Chung, H.W.; Chen, C.Y.; Kwong, K.K. PROPELLER EPI: An MRI technique suitable for diffusion tensor imaging at high field strength with reduced geometric distortions. Magn. Reson. Med. 2005, 54, 1232–1240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knoll, F.; Raya, J.G.; Halloran, R.O.; Baete, S.; Sigmund, E.; Bammer, R.; Block, T.; Otazo, R.; Sodickson, D.K. A model-based reconstruction for undersampled radial spin-echo DTI with variational penalties on the diffusion tensor. NMR Biomed. 2015, 28, 353–366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Protocol | ADC (Mean ± SD) | ΔD (Mean ± SD) | SDws | CVWS | RC | ||
---|---|---|---|---|---|---|---|
Test b | Retest b | ||||||
Water c | DW-SE-RAD | 3.2 ± 0.29 | 3.3 ± 0.27 | −0.048 ± 0.28 | 0.19 | 0.060 | 0.53 |
DW-SE-EPI | 2.8 ± 0.15 | 2.8 ± 0.10 | 0.069 ± 0.15 | 0.11 | 0.039 | 0.31 | |
Muscle | DW-SE-RAD | 1.8 ± 0.29 | 1.7 ± 0.25 | 0.045 ± 0.20 | 0.14 | 0.073 | 0.38 |
DW-SE-EPI | 1.8 ± 0.22 | 1.7 ± 0.25 | 0.060 ± 0.26 | 0.18 | 0.096 | 0.50 | |
Tumor | DW-SE-RAD | 1.3 ± 0.19 | 1.3 ± 0.29 | −0.017 ± 0.18 | 0.12 | 0.090 | 0.34 |
DW-SE-EPI | 1.5 ± 0.32 | 1.5 ± 0.44 | −0.082 ± 0.34 | 0.24 | 0.13 | 0.66 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, J.; Song, H.K.; Yang, H.; Castillo, V.; Chen, J.; Clendenin, C.; Rosen, M.; Zhou, R.; Pickup, S. Respiratory Motion Mitigation and Repeatability of Two Diffusion-Weighted MRI Methods Applied to a Murine Model of Spontaneous Pancreatic Cancer. Tomography 2021, 7, 66-79. https://doi.org/10.3390/tomography7010007
Cao J, Song HK, Yang H, Castillo V, Chen J, Clendenin C, Rosen M, Zhou R, Pickup S. Respiratory Motion Mitigation and Repeatability of Two Diffusion-Weighted MRI Methods Applied to a Murine Model of Spontaneous Pancreatic Cancer. Tomography. 2021; 7(1):66-79. https://doi.org/10.3390/tomography7010007
Chicago/Turabian StyleCao, Jianbo, Hee Kwon Song, Hanwen Yang, Victor Castillo, Jinbo Chen, Cynthia Clendenin, Mark Rosen, Rong Zhou, and Stephen Pickup. 2021. "Respiratory Motion Mitigation and Repeatability of Two Diffusion-Weighted MRI Methods Applied to a Murine Model of Spontaneous Pancreatic Cancer" Tomography 7, no. 1: 66-79. https://doi.org/10.3390/tomography7010007
APA StyleCao, J., Song, H. K., Yang, H., Castillo, V., Chen, J., Clendenin, C., Rosen, M., Zhou, R., & Pickup, S. (2021). Respiratory Motion Mitigation and Repeatability of Two Diffusion-Weighted MRI Methods Applied to a Murine Model of Spontaneous Pancreatic Cancer. Tomography, 7(1), 66-79. https://doi.org/10.3390/tomography7010007