Machine Learning and Feature Selection in Pediatric Appendicitis
Abstract
1. Introduction
Hypotheses and Contributions
- ▪
- The use of open-source machine learning software applied to the Regensburg Pediatric Appendicitis Dataset may produce useful technology for predicting aspects of pediatric appendicitis patient care.
- ▪
- By creating technologies that can predict diagnosis, severity, and management of pediatric appendicitis, both by using and withholding US image-derived features, we can assess the apparent value of US imaging in the context of AI predictive technology.
- ▪
- Our models will be able to more accurately predict their respective target variables (diagnosis, management, and severity), as compared to previous works on this topic, by thoroughly examining a large set of combinations of machine learning and feature selection algorithms.
- ▪
- Feature selection subsets will be informative to clinicians and researchers as to factors that are predictive of diagnosis, management, and severity of pediatric appendicitis, respectively.
2. Materials and Methods
2.1. Study Design Overview
2.2. Participants
2.3. Variables/Measurements
- Diagnosis: Appendicitis (n = 463, 59.36%) or no appendicitis (n = 317, 40.64%).
- Management: Surgical (n = 298, 38.16%) or conservative (n = 483, 61.84%).
- Severity: Complicated (n = 119, 15.24%) or uncomplicated (n = 662, 84.76%).
2.4. Data Preprocessing
2.5. Machine Learning
- Targeting Diagnosis with US Image Features Included;
- Targeting Diagnosis without US Image Features Included;
- Targeting Management with US Image Features Included;
- Targeting Management without US Image Features Included;
- Targeting Severity with US Image Features Included;
- Targeting Severity without US Image Features Included.
2.6. Statistical Analysis
3. Results
3.1. Predicting Diagnosis
3.2. Predicting Management
3.3. Predicting Severity
3.4. GANDALF Results
4. Discussion
4.1. Interactions Between Machine Learning and Feature Selection Technologies
4.2. Discussion of GANDALF Results
4.3. Predictive Significance of US Image Features
4.4. Literature Comparison
4.5. Future Work and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
LGBM | Light Gradient Boosting Machine |
RF | Random Forest |
LR | Linear Regression |
SGD | Stochastic Gradient Descent |
AUROC | Area Under the Receiver Operating Characteristic Curve |
US | Ultrasound |
GANDALF | Gated Adaptive Network for Deep Automated Learning of Features |
Appendix A
Feature | Class | % Appendicitis | % No Appendicitis | % of Total |
---|---|---|---|---|
Sex | female | 53.19 | 46.81 | 48.33 |
male | 65.01 | 34.99 | 51.67 | |
Management | conservative | 35.2 | 64.8 | 61.84 |
primary surgical | 99.26 | 0.74 | 34.57 | |
secondary surgical | 96.15 | 3.85 | 3.46 | |
simultaneous appendectomy | 0 | 100 | 0.13 | |
Severity | complicated | 99.16 | 0.84 | 15.24 |
uncomplicated | 52.19 | 47.81 | 84.76 | |
Appendix on the US | no | 30.04 | 69.96 | 35.14 |
yes | 75 | 25 | 64.86 | |
Migratory Pain | no | 56.23 | 43.77 | 72.7 |
yes | 66.82 | 33.18 | 27.3 | |
Lower Right Abd Pain | no | 36.59 | 63.41 | 5.3 |
yes | 60.44 | 39.56 | 94.7 | |
Contralateral Rebound Tenderness | no | 51.6 | 48.4 | 61.15 |
yes | 70.13 | 29.87 | 38.85 | |
Coughing Pain | no | 55.84 | 44.16 | 71.54 |
yes | 66.06 | 33.94 | 28.46 | |
Nausea | no | 48.91 | 51.09 | 41.47 |
yes | 66.45 | 33.55 | 58.53 | |
Loss of Appetite | no | 51.05 | 48.95 | 49.22 |
yes | 66.84 | 33.16 | 50.78 | |
Neutrophilia | no | 44.47 | 55.53 | 50.68 |
yes | 74.52 | 25.48 | 49.32 | |
Dysuria | no | 58.67 | 41.33 | 94.16 |
yes | 47.73 | 52.27 | 5.84 | |
Stool | constipation | 59.77 | 40.23 | 11.37 |
constipation, diarrhea | 100 | 0 | 0.13 | |
diarrhea | 65.62 | 34.38 | 16.73 | |
normal | 57.19 | 42.81 | 71.76 | |
Peritonitis | generalized | 87.8 | 12.2 | 5.3 |
local | 86.98 | 13.02 | 24.84 | |
no | 47.04 | 52.96 | 69.86 | |
Psoas Sign | no | 60.67 | 39.33 | 68.59 |
yes | 52.56 | 47.44 | 31.41 | |
Ipsilateral Rebound Tenderness | no | 47.68 | 52.32 | 93.86 |
yes | 73.68 | 26.32 | 6.14 | |
US_Performed | no | 71.43 | 28.57 | 1.93 |
yes | 59.11 | 40.89 | 98.07 | |
Free_Fluids | no | 50.61 | 49.39 | 56.88 |
yes | 71.94 | 28.06 | 43.12 | |
Appendix Wall Layers | intact | 77.27 | 22.73 | 60.55 |
partially raised | 100 | 0 | 4.13 | |
raised | 96.05 | 3.95 | 34.86 | |
upset | 100 | 0 | 0.46 | |
Target Sign | no | 49.02 | 50.98 | 36.96 |
yes | 94.25 | 5.75 | 63.04 | |
Appendicolith | no | 90.91 | 9.09 | 47.83 |
suspected | 100 | 0 | 4.35 | |
yes | 100 | 0 | 47.83 | |
Perfusion | hyperperfused | 96.77 | 3.23 | 49.21 |
hypoperfused | 96.43 | 3.57 | 44.44 | |
no | 100 | 0 | 4.76 | |
present | 100 | 0 | 1.59 | |
Perforation | no | 88.24 | 11.76 | 41.98 |
not excluded | 100 | 0 | 18.52 | |
suspected | 66.67 | 33.33 | 3.7 | |
yes | 100 | 0 | 35.8 | |
Surrounding Tissue Reaction | no | 63.64 | 36.36 | 17.46 |
yes | 94.23 | 5.77 | 82.54 | |
Appendicular Abscess | no | 86.15 | 13.85 | 76.47 |
suspected | 100 | 0 | 1.18 | |
yes | 100 | 0 | 22.35 | |
Pathological Lymph Nodes | no | 59.18 | 40.82 | 24.14 |
yes | 53.25 | 46.75 | 75.86 | |
Bowel Wall Thickening | no | 50 | 50 | 44.44 |
yes | 85.45 | 14.55 | 55.56 | |
Conglomerate of Bowel Loops | no | 81.82 | 18.18 | 51.16 |
yes | 90.48 | 9.52 | 48.84 | |
Ileus | no | 83.78 | 16.22 | 61.67 |
yes | 100 | 0 | 38.33 | |
Coprostasis | no | 100 | 0 | 35.21 |
yes | 50 | 50 | 64.79 | |
Meteorism | no | 100 | 0 | 7.86 |
yes | 45.74 | 54.26 | 92.14 | |
Enteritis | no | 86.67 | 13.33 | 22.73 |
yes | 31.37 | 68.63 | 77.27 |
Feature | Class | Conservative | Primary Surgical | Secondary Surgical |
---|---|---|---|---|
Sex | female | 65.52 | 29.97 | 4.24 |
male | 58.56 | 38.96 | 2.48 | |
Severity | complicated | 0 | 96.64 | 3.36 |
uncomplicated | 72.96 | 23.41 | 3.47 | |
Diagnosis | appendicitis | 36.72 | 57.88 | 5.4 |
no appendicitis | 98.74 | 0.63 | 0.32 | |
Appendix_on_US | no | 68.86 | 26.74 | 4.03 |
yes | 58.53 | 38.89 | 2.58 | |
Migratory_Pain | no | 63.17 | 33.81 | 2.85 |
yes | 60.66 | 36.02 | 3.32 | |
Lower_Right_Abd_Pain | no | 73.17 | 24.39 | 2.44 |
yes | 61.8 | 35.06 | 3 | |
Contralateral_Rebound_Tenderness | no | 70.79 | 27.29 | 1.71 |
yes | 50.67 | 44.63 | 4.7 | |
Coughing_Pain | no | 64.6 | 32.85 | 2.55 |
yes | 59.17 | 38.07 | 2.29 | |
Nausea | no | 73.83 | 23.36 | 2.8 |
yes | 54.3 | 42.6 | 2.87 | |
Loss_of_Appetite | no | 71.05 | 27.63 | 1.32 |
yes | 54.34 | 41.33 | 4.08 | |
Neutrophilia | no | 79.51 | 17.52 | 2.96 |
yes | 46.26 | 50.69 | 2.77 | |
Dysuria | no | 64.32 | 32.58 | 2.96 |
yes | 61.36 | 36.36 | 2.27 | |
Stool | constipation | 63.22 | 35.63 | 1.15 |
constipation, diarrhea | 0 | 100 | 0 | |
diarrhea | 57.81 | 39.06 | 3.12 | |
normal | 64.48 | 32.24 | 3.1 | |
Peritonitis | generalized | 14.63 | 82.93 | 2.44 |
local | 19.79 | 74.48 | 5.21 | |
no | 81.3 | 16.67 | 2.04 | |
Psoas_Sign | no | 63.8 | 34.05 | 2.15 |
yes | 66.24 | 29.49 | 4.27 | |
Ipsilateral_Rebound_Tenderness | no | 80.03 | 18.76 | 1.2 |
yes | 47.37 | 50 | 2.63 | |
US_Performed | no | 26.67 | 46.67 | 26.67 |
yes | 62.78 | 34.34 | 2.75 | |
Free_Fluids | no | 74.57 | 22.49 | 2.93 |
yes | 46.45 | 50.32 | 2.9 | |
Appendix_Wall_Layers | intact | 71.97 | 26.52 | 1.52 |
partially raised | 0 | 100 | 0 | |
raised | 17.11 | 76.32 | 6.58 | |
upset | 0 | 100 | 0 | |
Target_Sign | no | 60.78 | 31.37 | 7.84 |
yes | 29.89 | 68.97 | 1.15 | |
Appendicolith | no | 54.55 | 36.36 | 9.09 |
suspected | 100 | 0 | 0 | |
yes | 9.09 | 87.88 | 3.03 | |
Perfusion | hyperperfused | 48.39 | 45.16 | 6.45 |
hypoperfused | 14.29 | 78.57 | 7.14 | |
no | 0 | 100 | 0 | |
present | 0 | 100 | 0 | |
Perforation | no | 44.12 | 50 | 5.88 |
not excluded | 0 | 100 | 0 | |
suspected | 66.67 | 33.33 | 0 | |
yes | 0 | 100 | 0 | |
Surrounding_Tissue_Reaction | no | 77.27 | 22.73 | 0 |
yes | 26.44 | 69.71 | 3.85 | |
Appendicular_Abscess | no | 38.46 | 58.46 | 3.08 |
suspected | 0 | 100 | 0 | |
yes | 0 | 89.47 | 10.53 | |
Pathological_Lymph_Nodes | no | 59.18 | 38.78 | 2.04 |
yes | 68.83 | 27.27 | 3.9 | |
Bowel_Wall_Thickening | no | 68.18 | 27.27 | 4.55 |
yes | 23.64 | 67.27 | 9.09 | |
Conglomerate_of_Bowel_Loops | no | 31.82 | 63.64 | 4.55 |
yes | 9.52 | 85.71 | 4.76 | |
Ileus | no | 27.03 | 62.16 | 8.11 |
yes | 0 | 95.65 | 4.35 | |
Coprostasis | no | 4 | 88 | 8 |
yes | 69.57 | 30.43 | 0 | |
Meteorism | no | 0 | 90.91 | 9.09 |
yes | 66.67 | 27.91 | 4.65 | |
Enteritis | no | 20 | 73.33 | 6.67 |
yes | 90.2 | 9.8 | 0 |
Feature | Class | Complicated | Uncomplicated | % of Total |
---|---|---|---|---|
Sex | female | 14.85 | 85.15 | 48.33 |
male | 15.63 | 84.37 | 51.67 | |
Management | conservative | 0 | 100 | 61.84 |
primary surgical | 42.59 | 57.41 | 34.57 | |
secondary surgical | 14.81 | 85.19 | 3.46 | |
simultaneous appendectomy | 0 | 100 | 0.13 | |
Diagnosis | appendicitis | 25.49 | 74.51 | 59.36 |
no appendicitis | 0.32 | 99.68 | 40.64 | |
Appendix_on_US | no | 17.22 | 82.78 | 35.14 |
yes | 14.09 | 85.91 | 64.86 | |
Migratory_Pain | no | 15.12 | 84.88 | 72.7 |
yes | 15.17 | 84.83 | 27.3 | |
Lower_Right_Abd_Pain | no | 19.51 | 80.49 | 5.3 |
yes | 14.87 | 85.13 | 94.7 | |
Contralateral_Rebound_Tenderness | no | 11.73 | 88.27 | 61.15 |
yes | 19.46 | 80.54 | 38.85 | |
Coughing_Pain | no | 14.05 | 85.95 | 71.54 |
yes | 16.97 | 83.03 | 28.46 | |
Nausea | no | 5.61 | 94.39 | 41.47 |
yes | 21.85 | 78.15 | 58.53 | |
Loss_of_Appetite | no | 7.37 | 92.63 | 49.22 |
yes | 22.7 | 77.3 | 50.78 | |
Neutrophilia | no | 5.12 | 94.88 | 50.68 |
yes | 23.82 | 76.18 | 49.32 | |
Dysuria | no | 13.96 | 86.04 | 94.16 |
yes | 18.18 | 81.82 | 5.84 | |
Stool | constipation | 17.24 | 82.76 | 11.37 |
constipation, diarrhea | 100 | 0 | 0.13 | |
diarrhea | 19.53 | 80.47 | 16.73 | |
normal | 13.11 | 86.89 | 71.76 | |
Peritonitis | generalized | 51.22 | 48.78 | 5.3 |
local | 29.17 | 70.83 | 24.84 | |
no | 7.22 | 92.78 | 69.86 | |
Psoas_Sign | no | 15.66 | 84.34 | 68.59 |
yes | 10.26 | 89.74 | 31.41 | |
Ipsilateral_Rebound_Tenderness | no | 6.54 | 93.46 | 93.86 |
yes | 23.68 | 76.32 | 6.14 | |
US_Performed | no | 13.33 | 86.67 | 1.93 |
yes | 15.07 | 84.93 | 98.07 | |
Free_Fluids | no | 7.58 | 92.42 | 56.88 |
yes | 23.55 | 76.45 | 43.12 | |
Appendix_Wall_Layers | intact | 5.3 | 94.7 | 60.55 |
partially raised | 66.67 | 33.33 | 4.13 | |
raised | 32.89 | 67.11 | 34.86 | |
upset | 100 | 0 | 0.46 | |
Target_Sign | no | 19.61 | 80.39 | 36.96 |
yes | 21.84 | 78.16 | 63.04 | |
Appendicolith | no | 9.09 | 90.91 | 47.83 |
suspected | 0 | 100 | 4.35 | |
yes | 48.48 | 51.52 | 47.83 | |
Perfusion | hyperperfused | 16.13 | 83.87 | 49.21 |
hypoperfused | 28.57 | 71.43 | 44.44 | |
no | 0 | 100 | 4.76 | |
present | 100 | 0 | 1.59 | |
Perforation | no | 11.76 | 88.24 | 41.98 |
not excluded | 66.67 | 33.33 | 18.52 | |
suspected | 33.33 | 66.67 | 3.7 | |
yes | 68.97 | 31.03 | 35.8 | |
Surrounding_Tissue_Reaction | no | 6.82 | 93.18 | 17.46 |
yes | 30.29 | 69.71 | 82.54 | |
Appendicular_Abscess | no | 21.54 | 78.46 | 76.47 |
suspected | 100 | 0 | 1.18 | |
yes | 78.95 | 21.05 | 22.35 | |
Pathological_Lymph_Nodes | no | 16.33 | 83.67 | 24.14 |
yes | 9.74 | 90.26 | 75.86 | |
Bowel_Wall_Thickening | no | 11.36 | 88.64 | 44.44 |
yes | 36.36 | 63.64 | 55.56 | |
Conglomerate_of_Bowel_Loops | no | 22.73 | 77.27 | 51.16 |
yes | 71.43 | 28.57 | 48.84 | |
Ileus | no | 10.81 | 89.19 | 61.67 |
yes | 82.61 | 17.39 | 38.33 | |
Coprostasis | no | 28 | 72 | 35.21 |
yes | 21.74 | 78.26 | 64.79 | |
Meteorism | no | 27.27 | 72.73 | 7.86 |
yes | 13.18 | 86.82 | 92.14 | |
Enteritis | no | 20 | 80 | 22.73 |
yes | 5.88 | 94.12 | 77.27 |
Variable | Variable Name in Data Files | Explanation | Mode and Time of Measurement | Variable Type and Values |
---|---|---|---|---|
Age, years | Age | Obtained from the date of birth | At hospital admission | Continuous |
Sex | Sex | Registered gender | At hospital admission | Binary: female/male |
Height, cm | Height | Patient’s height | At hospital admission | Continuous |
Weight, kg | Weight | Patient’s weight | At hospital admission | Continuous |
Body mass index (BMI), kg/m2 | BMI | Measures body fat; patient’s weight divided by the square of the height | At hospital admission | Continuous |
Length of stay, days | Length_of_Stay | Length of stay in the hospital | At discharge | Continuous |
Variable | Variable Name in Data Files | Explanation | Mode and Time of Measurement | Variable Type and Values |
---|---|---|---|---|
Alvarado score (AS), pts | Alvarado_Score | Patient’s score according to the scoring system | At hospital admission, after clinical examination and laboratory data | Discrete |
Pediatric appendicitis score (PAS), pts | Pediatric_Appendicitis_Score | Patient’s score according to the scoring system | At hospital admission, after clinical examination and laboratory data | Discrete |
Variable | Variable Name in Data Files | Explanation | Mode and Time of Measurement | Variable Type and Values |
---|---|---|---|---|
Peritonitis/ abdominal guarding | Peritonitis | Spasm of abdominal wall muscles detected on palpation, usually a result of inflammation | At hospital admission, during clinical examination, or after a few hours of observation, if needed, after analgesia | Categorical: no localized generalized |
Migration of pain | Migratory_Pain | Abdominal pain; usually starts in the epigastrium and moves to the right lower quadrant | At hospital admission, during clinical examination or anamnesis | Binary: no/yes |
Tenderness in right lower quadrant (RLQ) | Lower_Right_Abd_Pain | Right iliac fossa pain detected on palpation | At hospital admission, during clinical examination | Binary: no/yes |
Contralateral rebound tnderness | Contralateral_Rebound_Tenderness | A state in which pain of the contralateral side (usually, the right lower quadrant) is felt on the release of pressure (usually, in the left lower quadrant) over the abdomen | At hospital admission, during clinical examination | Binary: no/yes |
Ipsilateral rebound tenderness | Ipsilateral_Rebound_Tenderness | A state in which pain of the ipsilateral side is felt on the release of pressure over the abdomen | At hospital admission, during clinical examination | Binary: no/yes |
Cough tenderness | Coughing_Pain | Abdominal pain from forced cough | At hospital admission, during clinical examination | Binary: no/yes |
Psoas sign | Psoas_Sign | Abdominal pain produced by extension of the hip | At hospital admission, during clinical examination | Binary: negative/positive |
Nausea/vomiting | Nausea | Feeling of sickness/ejection of contents from the stomach through the mouth | Anamnesis | Binary: no/yes |
Anorexia | Loss_of_Appetite | Loss of appetite | Anamnesis | Binary: no/yes |
Body temperature, °C | Body_Temperature | Measured by a thermometer placed in the rectum or in the auditory canal | At hospital admission or after a few hours of observation | Continuous |
Dysuria | Dysuria | Pain or other difficulty during urination | Anamnesis | Binary: no/yes |
Stool | Stool | Characteristics of bowel movements | Anamnesis | Categorical: · normal · diarrhea · obstipation |
Variable | Variable Name in Data Files | Explanation | Mode and Time of Measurement | Variable Type and Values |
---|---|---|---|---|
White blood cell count (WBC), 103/µL | WBC_Count | The number of leucocytes in a unit volume of blood; inflammation parameter | At hospital admission, obtained from a routine hemogram | Continuous |
Red blood cell count (RBC), /pL | RBC_Count | The number of erythrocytes in a unit volume of bood | At hospital admission, obtained from a routine hemogram | Continuous |
Hemoglobin, g/dL | Hemoglobin | Hemoglobin level; a red protein in the red blood cells that contains iron and is responsible for transporting oxygen | At hospital admission, obtained from a routine hemogram | Continuous |
Red cell distribution width (RDW), % | RDW | A blood test that measures the differences in the volume and size of the erythrocytes | At hospital admission, obtained from a routine hemogram | Continuous |
Thrombocyte count, /nL | Thrombocyte_Count | The number of platelets in a unit volume of bood | At hospital admission, obtained from a routine hemogram | Continuous |
Neutrophils, % | Neutrophil_Percentage | Mature WBC in the granulocytic series | At hospital admission, obtained from differential WBC | Continuous |
Neutrophilia, >= 75% | Neutrophilia | Relative neutrophilic leucocytosis, often a result of a bacterial infection | At hospital admission, obtained from differential WBC | Binary: no/yes |
Segmented neutrophils, % | Segmented_Neutrophils | Most mature neutrophilic granulocytes present in circulating blood, increased during an inflammatory disorder | At hospital admission, obtained from differential WBC | Continuous |
C-reactive protein (CRP), mg/L | CRP | Protein produced by the liver, elevated in case of inflammation, infection, or injury | At hospital admission, obtained from blood sample | Continuous |
Ketones in urine | Ketones_in_Urine | Presence of ketone bodies in urine, e.g., in case of anorexia | At hospital admission, obtained from routine urine status | Categorical: o + ++ +++ |
Erythrocytes in urine | RBC_in_Urine | Blood in urine | At hospital admission, obtained from routine urine status | Categorical: neg: <5 ery/µL +: approx. 5–10 ery/µL ++: approx. 25 ery/µL +++: approx. 50 ery/µL |
White blood cells in urine | WBC_in_Urine | Leucocytes in urine, e.g., in case of infection | At hospital admission, obtained from routine urine status | Categorical: no + ++ +++ |
Variable | Variable Name in Data Files | Explanation | Mode and Time of Measurement | Variable Type and Values |
---|---|---|---|---|
Performed ultrasound (US) | US_Performed | If an abdominal ultrasonography was performed or not | At hospital admission, after clinical examination, or after a few hours of observation | Binary: no/yes |
Visibility of appendix | Appendix_on_US | Detectability of the vermiform appendix during sonographic examination | At hospital admission, after clinical examination, or after a few hours of observation | Binary: no/yes |
Appendix diameter, mm | Appendix_Diameter | Maximal outer diameter of the appendix | At hospital admission, after clinical examination, or after a few hours of observation | Continuous |
Free intraperitoneal fluid | Free_Fluids | Free fluids inside the abdomen | At hospital admission, after clinical examination, or after a few hours of observation | Binary: no/yes |
Appendix layer structure | Appendix_Wall_Layers | Distribution and characteristics of appendix layers, e.g., irregular in case of increasing inflammation | At hospital admission, after clinical examination, or after a few hours of observation | Binary: regular/irregular |
Target sign | Target_Sign | Axial image of appendix with a fluid-filled centre surrounded by echogenic mucosa and submucosa and hypoechoic muscularis | At hospital admission, after clinical examination, or after a few hours of observation | Binary: no/yes |
Appendix perfusion | Perfusion | Blood flow to the appendix wall | At hospital admission, after clinical examination, or after a few hours of observation | Categorical: unremarkable hypoperfused hyperperfused |
Surrounding tissue reaction | Surrounding_Tissue_Reaction | Inflammation signs in tissue (i.a. in omentum/fat tissue) surrounding appendix | At hospital admission, after clinical examination, or after a few hours of observation | Binary: no/yes |
Pathological lymph nodes | Pathological_Lymph_Nodes | Enlarged and inflamed intra-abdominal lymph nodes | At hospital admission, after clinical examination, or after a few hours of observation | Binary: no/yes |
Location of pathological lymph nodes | Lymph_Node_Location | The location of pathological lymph nodes in the abdomen | At hospital admission, after clinical examination, or after a few hours of observation | Free-form text (in German) |
Thickening of the bowel wall | Bowel_Wall_Thickening | Edema of the intestinal wall, >2–3 mm for small bowel wall thickening | At hospital admission, after clinical examination, or after a few hours of observation | Binary: no/yes |
Ileus | Ileus | Sonographic signs of paralytic ileus (e.g., dilated intestinal loops, pendulum peristalsis or absence of peristalsis) | At hospital admission, after clinical examination, or after a few hours of observation | Binary: no/yes |
Coprostasis | Coprostasis | Fecal impaction in the colon | At hospital admission, after clinical examination, or after a few hours of observation | Binary: no/yes |
Meteorism | Meteorism | Accumulation of gas in the intestine | At hospital admission. after clinical examination, or after a few hours of observation | Binary: no/yes |
Enteritis | Enteritis | Sonographic features of gastroenteritis, e.g., wall thickening of the ileum, increased peristalsis | At hospital admission, after clinical examination, or after a few hours of observation | Binary: no/yes |
Appendicolith | Apendicolith | Presence of fecalith in the appendix, e.g., acoustic shadow | At hospital admission, after clinical examination, or after a few hours of observation | Binary: no/yes |
Perforation | Perforation | Signs of appendix perforation in US | At hospital admission, after clinical examination, or after a few hours of observation | Binary: no/yes |
Appendicular abscess | Appendicular_Abscess | Appendiceal mass | At hospital admission, after clinical examination, or after a few hours of observation | Binary: no/yes |
Location of abscess | Abscess_Location | Location of the abscess intraperitoneal | At hospital admission, after clinical examination, or after a few hours of observation | Free-form text (in German) |
Conglomerate of bowel loops | Conglomerate_of_Bowel_Loops | Small intestine conglomerate as a sign of intraperitoneal inflammation | At hospital admission, after clinical examination, or after a few hours of observation | Binary: no/yes |
Gynecological findings | Gynecological_Findings | Gynecological abnormalities, e.g., cysts, ovarian torsion | At hospital admission, after clinical examination, or after a few hours of observation | Free-form text (in German) |
Ultrasound images | NA | Snapshots from the abdominal ultrasound exams | At hospital admission, after clinical examination, or after a few hours of observation | Images in BMP format |
Variable | Variable Name in Data Files | Explanation | Mode and Time of Measurement | Variable Type and Values |
---|---|---|---|---|
Presumptive diagnosis | Diagnosis_Presumptive | Patient’s suspected diagnosis | At hospital admission, after clinical examination, or after a few hours of observation | Free-form text (in German) |
Diagnosis | Diagnosis | Patient’s diagnosis, histologically confirmed for operated patients. Conservatively managed patients were labelled as having appendicitis if they had an AS or PAS of ≥ 4 and an appendix diameter of ≥6 mm | At hospital admission, after clinical examination, or after a few hours of observation | Binary: no appendicitis/appendicitis |
Management | Management | Management of the patient assigned by a senior pediatric surgeon: operative (appendectomy: laparoscopic, open or conversion) or conservative (without antibiotics). In case of the secondary surgery after prior stay, the patient was labelled as operatively managed. | At hospital admission after clinical examination, or after a few hours of observation; or during follow-up. | Categorical: conservative primary surgical secondary surgical |
Severity | Severity | Severity of appendicitis: uncomplicated: subacute/catharral, fibrosis; phlegmonous or complicated: gangrenous, perforated, abscessed | At hospital admission after clinical examination, or after a few hours of observation; or during follow-up. | Binary: uncomplicated or no appendicitis/complicated appendicitis |
Appendix B
Model | Selection | Embed_Selector | Acc | Auroc | Bal-Acc | F1 | Npv | Ppv | Sens | Spec |
---|---|---|---|---|---|---|---|---|---|---|
rf | embed_lgbm | lgbm | 0.981 | 0.993 | 0.978 | 0.980 | 0.992 | 0.974 | 0.978 | 0.961 |
lgbm | embed_linear | linear | 0.981 | 0.993 | 0.979 | 0.980 | 0.984 | 0.979 | 0.979 | 0.969 |
rf | pred | none | 0.981 | 0.993 | 0.979 | 0.980 | 0.984 | 0.979 | 0.979 | 0.969 |
lgbm | none | none | 0.981 | 0.994 | 0.979 | 0.980 | 0.984 | 0.979 | 0.979 | 0.969 |
lgbm | pred | none | 0.978 | 0.996 | 0.976 | 0.977 | 0.976 | 0.978 | 0.976 | 0.969 |
rf | embed_linear | linear | 0.978 | 0.991 | 0.974 | 0.977 | 0.992 | 0.968 | 0.974 | 0.953 |
lgbm | assoc | none | 0.978 | 0.994 | 0.975 | 0.977 | 0.984 | 0.973 | 0.975 | 0.961 |
lgbm | embed_lgbm | lgbm | 0.978 | 0.996 | 0.976 | 0.977 | 0.976 | 0.978 | 0.976 | 0.969 |
rf | none | none | 0.965 | 0.992 | 0.958 | 0.963 | 0.992 | 0.948 | 0.958 | 0.921 |
rf | assoc | none | 0.952 | 0.993 | 0.942 | 0.949 | 0.991 | 0.929 | 0.942 | 0.890 |
rf | wrap | none | 0.875 | 0.945 | 0.867 | 0.870 | 0.861 | 0.884 | 0.867 | 0.827 |
lr | pred | none | 0.865 | 0.947 | 0.864 | 0.862 | 0.820 | 0.899 | 0.864 | 0.858 |
lgbm | wrap | none | 0.862 | 0.950 | 0.857 | 0.857 | 0.833 | 0.882 | 0.857 | 0.827 |
sgd | pred | none | 0.837 | 0.843 | 0.823 | 0.828 | 0.833 | 0.838 | 0.823 | 0.748 |
lr | assoc | none | 0.833 | 0.910 | 0.827 | 0.827 | 0.795 | 0.859 | 0.827 | 0.795 |
lr | none | none | 0.833 | 0.910 | 0.827 | 0.827 | 0.795 | 0.859 | 0.827 | 0.795 |
lr | embed_linear | linear | 0.833 | 0.910 | 0.827 | 0.827 | 0.795 | 0.859 | 0.827 | 0.795 |
lr | embed_lgbm | lgbm | 0.804 | 0.893 | 0.794 | 0.796 | 0.770 | 0.826 | 0.794 | 0.740 |
sgd | embed_linear | linear | 0.779 | 0.798 | 0.759 | 0.765 | 0.769 | 0.784 | 0.759 | 0.654 |
sgd | none | none | 0.766 | 0.753 | 0.753 | 0.755 | 0.725 | 0.792 | 0.753 | 0.685 |
sgd | assoc | none | 0.760 | 0.748 | 0.748 | 0.749 | 0.713 | 0.789 | 0.748 | 0.685 |
sgd | wrap | none | 0.760 | 0.795 | 0.753 | 0.752 | 0.700 | 0.802 | 0.753 | 0.717 |
lr | wrap | none | 0.753 | 0.847 | 0.724 | 0.730 | 0.766 | 0.748 | 0.724 | 0.567 |
sgd | embed_lgbm | lgbm | 0.753 | 0.743 | 0.743 | 0.743 | 0.702 | 0.787 | 0.743 | 0.685 |
knn | none | none | 0.683 | 0.715 | 0.651 | 0.653 | 0.649 | 0.697 | 0.651 | 0.480 |
knn | embed_linear | linear | 0.683 | 0.721 | 0.644 | 0.644 | 0.671 | 0.687 | 0.644 | 0.433 |
knn | assoc | none | 0.683 | 0.721 | 0.644 | 0.644 | 0.671 | 0.687 | 0.644 | 0.433 |
knn | pred | none | 0.676 | 0.722 | 0.634 | 0.633 | 0.667 | 0.679 | 0.634 | 0.409 |
knn | embed_lgbm | lgbm | 0.657 | 0.677 | 0.627 | 0.628 | 0.602 | 0.682 | 0.627 | 0.465 |
knn | wrap | none | 0.622 | 0.601 | 0.601 | 0.602 | 0.539 | 0.670 | 0.601 | 0.488 |
dummy | embed_lgbm | lgbm | 0.593 | 0.500 | 0.500 | 0.372 | nan | 0.593 | 0.500 | 0.000 |
dummy | wrap | none | 0.593 | 0.500 | 0.500 | 0.372 | nan | 0.593 | 0.500 | 0.000 |
dummy | pred | none | 0.593 | 0.500 | 0.500 | 0.372 | nan | 0.593 | 0.500 | 0.000 |
dummy | none | none | 0.593 | 0.500 | 0.500 | 0.372 | nan | 0.593 | 0.500 | 0.000 |
dummy | embed_linear | linear | 0.593 | 0.500 | 0.500 | 0.372 | nan | 0.593 | 0.500 | 0.000 |
dummy | assoc | none | 0.593 | 0.500 | 0.500 | 0.372 | nan | 0.593 | 0.500 | 0.000 |
Model | Selection | Embed_Selector | Acc | Auroc | Bal-Acc | F1 | Npv | Ppv | Sens | Spec |
---|---|---|---|---|---|---|---|---|---|---|
rf | embed_linear | linear | 0.984 | 0.993 | 0.981 | 0.983 | 0.992 | 0.979 | 0.981 | 0.968 |
lgbm | assoc | none | 0.984 | 0.995 | 0.983 | 0.983 | 0.985 | 0.984 | 0.983 | 0.976 |
lgbm | pred | none | 0.981 | 0.997 | 0.980 | 0.980 | 0.977 | 0.984 | 0.980 | 0.976 |
lgbm | none | none | 0.981 | 0.997 | 0.977 | 0.980 | 0.992 | 0.974 | 0.977 | 0.960 |
rf | embed_lgbm | lgbm | 0.981 | 0.993 | 0.977 | 0.980 | 0.992 | 0.974 | 0.977 | 0.960 |
rf | pred | none | 0.978 | 0.994 | 0.975 | 0.977 | 0.985 | 0.974 | 0.975 | 0.960 |
lgbm | embed_linear | linear | 0.974 | 0.993 | 0.971 | 0.973 | 0.985 | 0.969 | 0.971 | 0.952 |
rf | none | none | 0.962 | 0.992 | 0.956 | 0.960 | 0.977 | 0.954 | 0.956 | 0.929 |
rf | assoc | none | 0.926 | 0.988 | 0.932 | 0.925 | 0.880 | 0.971 | 0.932 | 0.960 |
lgbm | wrap | none | 0.859 | 0.944 | 0.851 | 0.851 | 0.848 | 0.881 | 0.851 | 0.810 |
rf | wrap | none | 0.859 | 0.949 | 0.849 | 0.852 | 0.853 | 0.868 | 0.849 | 0.794 |
lr | pred | none | 0.856 | 0.939 | 0.853 | 0.851 | 0.810 | 0.891 | 0.853 | 0.842 |
lgbm | embed_lgbm | lgbm | 0.827 | 0.909 | 0.819 | 0.819 | 0.792 | 0.853 | 0.819 | 0.778 |
lr | embed_linear | linear | 0.811 | 0.900 | 0.805 | 0.803 | 0.763 | 0.851 | 0.805 | 0.778 |
lr | none | none | 0.811 | 0.899 | 0.805 | 0.803 | 0.763 | 0.851 | 0.805 | 0.778 |
lr | assoc | none | 0.811 | 0.899 | 0.805 | 0.803 | 0.763 | 0.851 | 0.805 | 0.778 |
sgd | pred | none | 0.792 | 0.801 | 0.785 | 0.784 | 0.737 | 0.832 | 0.785 | 0.755 |
lr | embed_lgbm | lgbm | 0.785 | 0.873 | 0.774 | 0.773 | 0.746 | 0.817 | 0.774 | 0.715 |
sgd | embed_linear | linear | 0.750 | 0.806 | 0.747 | 0.743 | 0.678 | 0.806 | 0.747 | 0.731 |
sgd | assoc | none | 0.750 | 0.743 | 0.743 | 0.741 | 0.685 | 0.798 | 0.743 | 0.707 |
sgd | none | none | 0.743 | 0.741 | 0.737 | 0.734 | 0.674 | 0.799 | 0.737 | 0.707 |
sgd | embed_lgbm | lgbm | 0.731 | 0.726 | 0.726 | 0.723 | 0.659 | 0.787 | 0.726 | 0.700 |
lr | wrap | none | 0.712 | 0.809 | 0.686 | 0.688 | 0.685 | 0.728 | 0.686 | 0.550 |
knn | embed_linear | linear | 0.683 | 0.719 | 0.641 | 0.640 | 0.683 | 0.684 | 0.641 | 0.417 |
knn | assoc | none | 0.683 | 0.719 | 0.641 | 0.640 | 0.683 | 0.684 | 0.641 | 0.417 |
sgd | wrap | none | 0.682 | 0.684 | 0.675 | 0.672 | 0.605 | 0.744 | 0.675 | 0.636 |
knn | pred | none | 0.679 | 0.725 | 0.645 | 0.643 | 0.641 | 0.695 | 0.645 | 0.462 |
knn | none | none | 0.676 | 0.739 | 0.646 | 0.649 | 0.639 | 0.696 | 0.646 | 0.487 |
knn | embed_lgbm | lgbm | 0.670 | 0.717 | 0.643 | 0.642 | 0.606 | 0.701 | 0.643 | 0.503 |
dummy | embed_lgbm | lgbm | 0.593 | 0.500 | 0.500 | 0.372 | nan | 0.593 | 0.500 | 0.000 |
dummy | wrap | none | 0.593 | 0.500 | 0.500 | 0.372 | nan | 0.593 | 0.500 | 0.000 |
dummy | pred | none | 0.593 | 0.500 | 0.500 | 0.372 | nan | 0.593 | 0.500 | 0.000 |
dummy | none | none | 0.593 | 0.500 | 0.500 | 0.372 | nan | 0.593 | 0.500 | 0.000 |
dummy | embed_linear | linear | 0.593 | 0.500 | 0.500 | 0.372 | nan | 0.593 | 0.500 | 0.000 |
dummy | assoc | none | 0.593 | 0.500 | 0.500 | 0.372 | nan | 0.593 | 0.500 | 0.000 |
knn | wrap | none | 0.580 | 0.561 | 0.561 | 0.560 | 0.484 | 0.643 | 0.561 | 0.463 |
Appendix C
Feature | Score |
---|---|
Management_surgical | 6.800 × 101 |
Appendix_Diameter | 5.800 × 101 |
Appendix_Diameter_NAN | 4.900 × 101 |
Thrombocyte_Count | 3.400 × 101 |
Age | 3.400 × 101 |
Paedriatic_Appendicitis_Score | 2.900 × 101 |
WBC_Count | 2.700 × 101 |
Alvarado_Score | 2.500 × 101 |
CRP | 2.200 × 101 |
Appendix_on_US_yes | 1.800 × 101 |
Hemoglobin | 1.400 × 101 |
RDW | 1.400 × 101 |
Neutrophil_Percentage | 1.300 × 101 |
BMI | 1.000 × 101 |
Body_Temperature | 9.000 × 100 |
RBC_Count | 8.000 × 100 |
Coughing_Pain_yes | 7.000 × 100 |
Height | 4.000 × 100 |
Surrounding_Tissue_Reaction_nan | 2.000 × 100 |
Peritonitis_no | 2.000 × 100 |
Weight | 1.000 × 100 |
Contralateral_Rebound_Tenderness_yes | 1.000 × 100 |
Psoas_Sign_yes | 1.000 × 100 |
Appendix D
Model | Selection | Embed_Selector | Acc | Auroc | Bal-Acc | F1 | Npv | Ppv | Sens | Spec |
---|---|---|---|---|---|---|---|---|---|---|
lgbm | none | none | 0.801 | 0.873 | 0.798 | 0.796 | 0.744 | 0.844 | 0.798 | 0.780 |
sgd | wrap | none | 0.792 | 0.780 | 0.780 | 0.782 | 0.758 | 0.812 | 0.780 | 0.717 |
lgbm | assoc | none | 0.782 | 0.882 | 0.778 | 0.776 | 0.722 | 0.827 | 0.778 | 0.756 |
rf | embed_lgbm | lgbm | 0.779 | 0.864 | 0.778 | 0.774 | 0.710 | 0.833 | 0.778 | 0.772 |
lgbm | embed_lgbm | lgbm | 0.776 | 0.871 | 0.766 | 0.767 | 0.728 | 0.807 | 0.766 | 0.717 |
rf | none | none | 0.769 | 0.861 | 0.772 | 0.765 | 0.690 | 0.838 | 0.772 | 0.787 |
rf | embed_linear | linear | 0.766 | 0.859 | 0.768 | 0.762 | 0.688 | 0.833 | 0.768 | 0.780 |
rf | assoc | none | 0.766 | 0.861 | 0.751 | 0.754 | 0.733 | 0.786 | 0.751 | 0.669 |
rf | wrap | none | 0.760 | 0.862 | 0.742 | 0.746 | 0.732 | 0.775 | 0.742 | 0.646 |
rf | pred | none | 0.760 | 0.858 | 0.744 | 0.747 | 0.724 | 0.781 | 0.744 | 0.661 |
lgbm | embed_linear | linear | 0.753 | 0.872 | 0.746 | 0.745 | 0.692 | 0.797 | 0.746 | 0.709 |
lr | wrap | none | 0.750 | 0.823 | 0.730 | 0.734 | 0.725 | 0.764 | 0.730 | 0.622 |
lgbm | pred | none | 0.747 | 0.855 | 0.735 | 0.736 | 0.697 | 0.779 | 0.735 | 0.669 |
lgbm | wrap | none | 0.744 | 0.858 | 0.734 | 0.734 | 0.685 | 0.784 | 0.734 | 0.685 |
lr | pred | none | 0.740 | 0.847 | 0.726 | 0.728 | 0.695 | 0.768 | 0.726 | 0.646 |
lr | embed_linear | linear | 0.734 | 0.814 | 0.710 | 0.715 | 0.712 | 0.745 | 0.710 | 0.583 |
lr | assoc | none | 0.728 | 0.815 | 0.704 | 0.708 | 0.702 | 0.740 | 0.704 | 0.575 |
sgd | embed_linear | linear | 0.724 | 0.753 | 0.707 | 0.710 | 0.678 | 0.751 | 0.707 | 0.614 |
lr | none | none | 0.715 | 0.809 | 0.692 | 0.695 | 0.679 | 0.733 | 0.692 | 0.567 |
sgd | pred | none | 0.715 | 0.785 | 0.699 | 0.701 | 0.661 | 0.747 | 0.699 | 0.614 |
lr | embed_lgbm | lgbm | 0.712 | 0.769 | 0.684 | 0.688 | 0.687 | 0.723 | 0.684 | 0.535 |
sgd | none | none | 0.712 | 0.766 | 0.695 | 0.697 | 0.658 | 0.744 | 0.695 | 0.606 |
sgd | embed_lgbm | lgbm | 0.708 | 0.689 | 0.689 | 0.691 | 0.661 | 0.735 | 0.689 | 0.583 |
sgd | assoc | none | 0.705 | 0.763 | 0.675 | 0.678 | 0.684 | 0.714 | 0.675 | 0.512 |
knn | wrap | none | 0.689 | 0.682 | 0.659 | 0.662 | 0.656 | 0.704 | 0.659 | 0.496 |
knn | none | none | 0.686 | 0.713 | 0.654 | 0.656 | 0.656 | 0.699 | 0.654 | 0.480 |
knn | embed_lgbm | lgbm | 0.673 | 0.721 | 0.633 | 0.632 | 0.654 | 0.680 | 0.633 | 0.417 |
knn | assoc | none | 0.660 | 0.659 | 0.623 | 0.623 | 0.621 | 0.676 | 0.623 | 0.425 |
knn | pred | none | 0.647 | 0.667 | 0.616 | 0.617 | 0.588 | 0.674 | 0.616 | 0.449 |
knn | embed_linear | linear | 0.644 | 0.620 | 0.620 | 0.621 | 0.574 | 0.681 | 0.620 | 0.488 |
dummy | wrap | none | 0.593 | 0.500 | 0.500 | 0.372 | nan | 0.593 | 0.500 | 0.000 |
dummy | embed_linear | linear | 0.593 | 0.500 | 0.500 | 0.372 | nan | 0.593 | 0.500 | 0.000 |
dummy | none | none | 0.593 | 0.500 | 0.500 | 0.372 | nan | 0.593 | 0.500 | 0.000 |
dummy | pred | none | 0.593 | 0.500 | 0.500 | 0.372 | nan | 0.593 | 0.500 | 0.000 |
dummy | embed_lgbm | lgbm | 0.593 | 0.500 | 0.500 | 0.372 | nan | 0.593 | 0.500 | 0.000 |
dummy | assoc | none | 0.593 | 0.500 | 0.500 | 0.372 | nan | 0.593 | 0.500 | 0.000 |
Model | Selection | Embed_Selector | Acc | Auroc | Bal-Acc | F1 | Npv | Ppv | Sens | Spec |
---|---|---|---|---|---|---|---|---|---|---|
lgbm | embed_lgbm | lgbm | 0.808 | 0.878 | 0.805 | 0.802 | 0.756 | 0.855 | 0.805 | 0.794 |
lgbm | none | none | 0.801 | 0.880 | 0.798 | 0.795 | 0.753 | 0.847 | 0.798 | 0.779 |
lgbm | embed_linear | linear | 0.795 | 0.894 | 0.788 | 0.787 | 0.751 | 0.833 | 0.788 | 0.755 |
lgbm | assoc | none | 0.785 | 0.883 | 0.784 | 0.780 | 0.720 | 0.840 | 0.784 | 0.779 |
rf | wrap | none | 0.782 | 0.865 | 0.776 | 0.774 | 0.730 | 0.826 | 0.776 | 0.747 |
rf | pred | none | 0.779 | 0.867 | 0.776 | 0.773 | 0.714 | 0.831 | 0.776 | 0.763 |
rf | assoc | none | 0.772 | 0.870 | 0.765 | 0.764 | 0.715 | 0.816 | 0.765 | 0.731 |
lgbm | pred | none | 0.772 | 0.864 | 0.763 | 0.762 | 0.720 | 0.809 | 0.763 | 0.715 |
lgbm | wrap | none | 0.769 | 0.866 | 0.775 | 0.765 | 0.686 | 0.856 | 0.775 | 0.810 |
lr | pred | none | 0.766 | 0.831 | 0.750 | 0.752 | 0.728 | 0.790 | 0.750 | 0.667 |
rf | none | none | 0.763 | 0.853 | 0.748 | 0.751 | 0.728 | 0.785 | 0.748 | 0.670 |
rf | embed_linear | linear | 0.759 | 0.866 | 0.766 | 0.755 | 0.671 | 0.851 | 0.766 | 0.802 |
rf | embed_lgbm | lgbm | 0.747 | 0.861 | 0.741 | 0.739 | 0.692 | 0.794 | 0.741 | 0.709 |
lr | wrap | none | 0.747 | 0.815 | 0.733 | 0.734 | 0.704 | 0.778 | 0.733 | 0.660 |
lr | assoc | none | 0.743 | 0.800 | 0.729 | 0.730 | 0.696 | 0.773 | 0.729 | 0.652 |
lr | embed_linear | linear | 0.737 | 0.799 | 0.722 | 0.723 | 0.687 | 0.768 | 0.722 | 0.644 |
lr | none | none | 0.730 | 0.798 | 0.714 | 0.716 | 0.682 | 0.761 | 0.714 | 0.628 |
sgd | wrap | none | 0.718 | 0.710 | 0.710 | 0.708 | 0.648 | 0.771 | 0.710 | 0.668 |
sgd | pred | none | 0.718 | 0.775 | 0.698 | 0.700 | 0.667 | 0.746 | 0.698 | 0.596 |
lr | embed_lgbm | lgbm | 0.708 | 0.754 | 0.686 | 0.686 | 0.657 | 0.738 | 0.686 | 0.573 |
sgd | assoc | none | 0.695 | 0.759 | 0.677 | 0.676 | 0.636 | 0.735 | 0.677 | 0.580 |
sgd | none | none | 0.692 | 0.750 | 0.678 | 0.676 | 0.626 | 0.741 | 0.678 | 0.604 |
knn | wrap | none | 0.686 | 0.706 | 0.671 | 0.671 | 0.625 | 0.728 | 0.671 | 0.590 |
knn | pred | none | 0.683 | 0.716 | 0.669 | 0.670 | 0.618 | 0.727 | 0.669 | 0.598 |
sgd | embed_lgbm | lgbm | 0.679 | 0.670 | 0.670 | 0.668 | 0.602 | 0.738 | 0.670 | 0.621 |
sgd | embed_linear | linear | 0.676 | 0.736 | 0.665 | 0.663 | 0.597 | 0.737 | 0.665 | 0.612 |
knn | none | none | 0.670 | 0.735 | 0.639 | 0.640 | 0.634 | 0.689 | 0.639 | 0.472 |
knn | embed_lgbm | lgbm | 0.657 | 0.722 | 0.619 | 0.617 | 0.613 | 0.673 | 0.619 | 0.416 |
knn | assoc | none | 0.654 | 0.680 | 0.638 | 0.639 | 0.580 | 0.702 | 0.638 | 0.552 |
dummy | embed_lgbm | lgbm | 0.593 | 0.500 | 0.500 | 0.372 | nan | 0.593 | 0.500 | 0.000 |
dummy | pred | none | 0.593 | 0.500 | 0.500 | 0.372 | nan | 0.593 | 0.500 | 0.000 |
dummy | embed_linear | linear | 0.593 | 0.500 | 0.500 | 0.372 | nan | 0.593 | 0.500 | 0.000 |
dummy | none | none | 0.593 | 0.500 | 0.500 | 0.372 | nan | 0.593 | 0.500 | 0.000 |
dummy | wrap | none | 0.593 | 0.500 | 0.500 | 0.372 | nan | 0.593 | 0.500 | 0.000 |
dummy | assoc | none | 0.593 | 0.500 | 0.500 | 0.372 | nan | 0.593 | 0.500 | 0.000 |
knn | embed_linear | linear | 0.570 | 0.569 | 0.557 | 0.556 | 0.474 | 0.641 | 0.557 | 0.487 |
Appendix E
Target | US Features | Model | Feature Selection | Hyperparameters |
---|---|---|---|---|
Diagnosis | Yes | rf | embed_linear | {‘verbosity’: −1, ‘boosting_type’: ‘rf’, ‘bagging_freq’: 1, ‘bagging_fraction’: 0.6424705933428012, ‘n_estimators’: 100, ‘reg_alpha’: 0.0003532789339921058, ‘reg_lambda’: 0.004369030571226374, ‘num_leaves’: 8, ‘colsample_bytree’: 0.8437223587619459, ‘subsample’: 0.403473633073295, ‘subsample_freq’: 1, ‘min_child_samples’: 5} |
Diagnosis | No | lgbm | embed_lgbm | {‘verbosity’: −1, ‘n_estimators’: 50, ‘reg_alpha’: 0.06466023097198124, ‘reg_lambda’: 0.022294761212156983, ‘num_leaves’: 15, ‘colsample_bytree’: 0.5464250771120893, ‘subsample’: 0.5536293838457955, ‘subsample_freq’: 7, ‘min_child_samples’: 29} |
Management | Yes | lgbm | assoc | {‘verbosity’: −1, ‘n_estimators’: 150, ‘reg_alpha’: 0.01918207182498792, ‘reg_lambda’: 7.461771397395436, ‘num_leaves’: 2,’colsample_bytree’: 0.5614712282427238, ‘subsample’: 0.8168115609573287, ‘subsample_freq’: 5, ‘min_child_samples’: 7} |
Management | No | lgbm | no_select | {‘verbosity’: −1, ‘n_estimators’: 50, ‘reg_alpha’: 1.2550179156417959 × 10−8, ‘reg_lambda’: 1.9742923076305905 × 10−8, ‘num_leaves’: 2, ‘colsample_bytree’: 0.9856142911837322, ‘subsample’: 0.7805261984723494, ‘subsample_freq’: 0, ‘min_child_samples’: 5} |
Severity | Yes | lr | wrap | {‘max_iter’: 2000, ‘penalty’: ‘elasticnet’, ‘solver’: ‘saga’, ‘l1_ratio’: 0.09092139813688659, ‘C’: 0.0007760418893874168} |
Severity | No | lgbm | assoc | {‘verbosity’: −1, ‘n_estimators’: 200, ‘reg_alpha’: 0.025561180230324252, ‘reg_lambda’: 0.0020714646371430326, ‘num_leaves’: 67, ‘colsample_bytree’: 0.4887103613060258, ‘subsample’: 0.5044229983427804, ‘subsample_freq’: 3, ‘min_child_samples’: 18} |
Appendix F
Model | Selection | Embed_Selector | Acc | Auroc | Bal-Acc | F1 | Npv | Ppv | Sens | Spec |
---|---|---|---|---|---|---|---|---|---|---|
rf | assoc | none | 0.936 | 0.984 | 0.922 | 0.931 | 0.963 | 0.922 | 0.922 | 0.866 |
rf | embed_linear | linear | 0.936 | 0.978 | 0.922 | 0.931 | 0.963 | 0.922 | 0.922 | 0.866 |
rf | none | none | 0.933 | 0.980 | 0.917 | 0.927 | 0.971 | 0.914 | 0.917 | 0.849 |
lgbm | none | none | 0.930 | 0.982 | 0.916 | 0.924 | 0.953 | 0.917 | 0.916 | 0.857 |
rf | pred | none | 0.930 | 0.977 | 0.914 | 0.924 | 0.962 | 0.913 | 0.914 | 0.849 |
lgbm | pred | none | 0.927 | 0.980 | 0.911 | 0.920 | 0.953 | 0.913 | 0.911 | 0.849 |
rf | wrap | none | 0.923 | 0.946 | 0.902 | 0.916 | 0.980 | 0.897 | 0.902 | 0.815 |
rf | embed_lgbm | lgbm | 0.923 | 0.980 | 0.909 | 0.917 | 0.944 | 0.913 | 0.909 | 0.849 |
lgbm | assoc | none | 0.923 | 0.981 | 0.907 | 0.917 | 0.952 | 0.909 | 0.907 | 0.840 |
lgbm | embed_lgbm | lgbm | 0.923 | 0.982 | 0.906 | 0.916 | 0.961 | 0.905 | 0.906 | 0.832 |
lgbm | embed_linear | linear | 0.920 | 0.983 | 0.903 | 0.913 | 0.952 | 0.904 | 0.903 | 0.832 |
lgbm | wrap | none | 0.920 | 0.943 | 0.900 | 0.912 | 0.970 | 0.897 | 0.900 | 0.815 |
lr | pred | none | 0.879 | 0.949 | 0.855 | 0.866 | 0.909 | 0.864 | 0.855 | 0.756 |
lr | embed_linear | linear | 0.866 | 0.929 | 0.838 | 0.851 | 0.905 | 0.849 | 0.838 | 0.723 |
lr | none | none | 0.866 | 0.929 | 0.838 | 0.851 | 0.905 | 0.849 | 0.838 | 0.723 |
lr | assoc | none | 0.863 | 0.924 | 0.834 | 0.847 | 0.904 | 0.845 | 0.834 | 0.714 |
lr | embed_lgbm | lgbm | 0.853 | 0.920 | 0.823 | 0.836 | 0.892 | 0.836 | 0.823 | 0.697 |
sgd | pred | none | 0.847 | 0.890 | 0.837 | 0.837 | 0.798 | 0.876 | 0.837 | 0.798 |
sgd | assoc | none | 0.827 | 0.839 | 0.823 | 0.819 | 0.756 | 0.876 | 0.823 | 0.807 |
lr | wrap | none | 0.827 | 0.897 | 0.784 | 0.801 | 0.911 | 0.799 | 0.784 | 0.605 |
sgd | none | none | 0.805 | 0.789 | 0.789 | 0.791 | 0.754 | 0.834 | 0.789 | 0.723 |
sgd | embed_linear | linear | 0.802 | 0.872 | 0.785 | 0.788 | 0.752 | 0.830 | 0.785 | 0.714 |
sgd | wrap | none | 0.780 | 0.792 | 0.759 | 0.762 | 0.727 | 0.808 | 0.759 | 0.672 |
sgd | embed_lgbm | lgbm | 0.776 | 0.852 | 0.746 | 0.754 | 0.747 | 0.790 | 0.746 | 0.622 |
knn | embed_lgbm | lgbm | 0.741 | 0.772 | 0.699 | 0.706 | 0.721 | 0.749 | 0.699 | 0.521 |
knn | pred | none | 0.719 | 0.779 | 0.656 | 0.659 | 0.746 | 0.712 | 0.656 | 0.395 |
knn | none | none | 0.696 | 0.757 | 0.617 | 0.606 | 0.773 | 0.684 | 0.617 | 0.286 |
knn | embed_linear | linear | 0.696 | 0.757 | 0.617 | 0.606 | 0.773 | 0.684 | 0.617 | 0.286 |
knn | assoc | none | 0.696 | 0.757 | 0.617 | 0.606 | 0.773 | 0.684 | 0.617 | 0.286 |
knn | wrap | none | 0.687 | 0.720 | 0.637 | 0.640 | 0.630 | 0.707 | 0.637 | 0.429 |
dummy | embed_lgbm | lgbm | 0.620 | 0.500 | 0.500 | 0.383 | nan | 0.620 | 0.500 | 0.000 |
dummy | wrap | none | 0.620 | 0.500 | 0.500 | 0.383 | nan | 0.620 | 0.500 | 0.000 |
dummy | pred | none | 0.620 | 0.500 | 0.500 | 0.383 | nan | 0.620 | 0.500 | 0.000 |
dummy | none | none | 0.620 | 0.500 | 0.500 | 0.383 | nan | 0.620 | 0.500 | 0.000 |
dummy | embed_linear | linear | 0.620 | 0.500 | 0.500 | 0.383 | nan | 0.620 | 0.500 | 0.000 |
dummy | assoc | none | 0.620 | 0.500 | 0.500 | 0.383 | nan | 0.620 | 0.500 | 0.000 |
Model | Selection | Embed_Selector | Acc | Auroc | Bal-Acc | F1 | Npv | Ppv | Sens | Spec |
---|---|---|---|---|---|---|---|---|---|---|
lgbm | assoc | none | 0.930 | 0.976 | 0.918 | 0.924 | 0.945 | 0.922 | 0.918 | 0.866 |
lgbm | embed_linear | linear | 0.930 | 0.973 | 0.918 | 0.924 | 0.944 | 0.923 | 0.918 | 0.867 |
rf | embed_lgbm | lgbm | 0.927 | 0.973 | 0.912 | 0.920 | 0.953 | 0.914 | 0.912 | 0.850 |
rf | none | none | 0.920 | 0.968 | 0.907 | 0.913 | 0.937 | 0.914 | 0.907 | 0.850 |
rf | embed_linear | linear | 0.920 | 0.971 | 0.905 | 0.913 | 0.944 | 0.909 | 0.905 | 0.841 |
rf | assoc | none | 0.920 | 0.973 | 0.908 | 0.914 | 0.929 | 0.917 | 0.908 | 0.858 |
lgbm | embed_lgbm | lgbm | 0.920 | 0.969 | 0.910 | 0.914 | 0.919 | 0.922 | 0.910 | 0.866 |
lgbm | wrap | none | 0.911 | 0.937 | 0.893 | 0.902 | 0.942 | 0.897 | 0.893 | 0.816 |
rf | pred | none | 0.911 | 0.968 | 0.896 | 0.902 | 0.928 | 0.905 | 0.896 | 0.833 |
lgbm | none | none | 0.907 | 0.976 | 0.895 | 0.900 | 0.914 | 0.909 | 0.895 | 0.841 |
lgbm | pred | none | 0.907 | 0.971 | 0.895 | 0.900 | 0.911 | 0.906 | 0.895 | 0.841 |
rf | wrap | none | 0.904 | 0.938 | 0.886 | 0.895 | 0.936 | 0.892 | 0.886 | 0.808 |
lr | pred | none | 0.882 | 0.938 | 0.864 | 0.871 | 0.890 | 0.881 | 0.864 | 0.790 |
lr | embed_linear | linear | 0.805 | 0.892 | 0.778 | 0.786 | 0.795 | 0.812 | 0.778 | 0.664 |
lr | none | none | 0.805 | 0.892 | 0.778 | 0.786 | 0.795 | 0.812 | 0.778 | 0.664 |
sgd | pred | none | 0.801 | 0.861 | 0.789 | 0.789 | 0.748 | 0.839 | 0.789 | 0.739 |
lr | assoc | none | 0.799 | 0.888 | 0.771 | 0.779 | 0.786 | 0.808 | 0.771 | 0.656 |
lr | embed_lgbm | lgbm | 0.782 | 0.877 | 0.750 | 0.759 | 0.773 | 0.789 | 0.750 | 0.614 |
sgd | wrap | none | 0.770 | 0.778 | 0.756 | 0.756 | 0.711 | 0.814 | 0.756 | 0.697 |
lr | wrap | none | 0.754 | 0.837 | 0.710 | 0.719 | 0.759 | 0.755 | 0.710 | 0.529 |
sgd | none | none | 0.750 | 0.730 | 0.730 | 0.733 | 0.690 | 0.788 | 0.730 | 0.647 |
sgd | embed_linear | linear | 0.744 | 0.812 | 0.724 | 0.726 | 0.684 | 0.783 | 0.724 | 0.639 |
sgd | assoc | none | 0.741 | 0.791 | 0.716 | 0.720 | 0.687 | 0.775 | 0.716 | 0.614 |
sgd | embed_lgbm | lgbm | 0.725 | 0.814 | 0.702 | 0.704 | 0.649 | 0.768 | 0.702 | 0.605 |
knn | pred | none | 0.716 | 0.782 | 0.644 | 0.640 | 0.795 | 0.702 | 0.644 | 0.344 |
knn | none | none | 0.697 | 0.755 | 0.615 | 0.599 | 0.778 | 0.684 | 0.615 | 0.276 |
knn | embed_linear | linear | 0.697 | 0.755 | 0.615 | 0.599 | 0.778 | 0.684 | 0.615 | 0.276 |
knn | assoc | none | 0.697 | 0.755 | 0.615 | 0.599 | 0.778 | 0.684 | 0.615 | 0.276 |
knn | embed_lgbm | lgbm | 0.693 | 0.750 | 0.656 | 0.658 | 0.623 | 0.728 | 0.656 | 0.504 |
knn | wrap | none | 0.690 | 0.718 | 0.658 | 0.660 | 0.617 | 0.731 | 0.658 | 0.522 |
dummy | embed_lgbm | lgbm | 0.620 | 0.500 | 0.500 | 0.383 | nan | 0.620 | 0.500 | 0.000 |
dummy | embed_linear | linear | 0.620 | 0.500 | 0.500 | 0.383 | nan | 0.620 | 0.500 | 0.000 |
dummy | wrap | none | 0.620 | 0.500 | 0.500 | 0.383 | nan | 0.620 | 0.500 | 0.000 |
dummy | none | none | 0.620 | 0.500 | 0.500 | 0.383 | nan | 0.620 | 0.500 | 0.000 |
dummy | pred | none | 0.620 | 0.500 | 0.500 | 0.383 | nan | 0.620 | 0.500 | 0.000 |
dummy | assoc | none | 0.620 | 0.500 | 0.500 | 0.383 | nan | 0.620 | 0.500 | 0.000 |
Appendix G
Mut_Info | |
---|---|
CRP__Management.0 | 1.396 × 10−1 |
CRP__Management.1 | 1.358 × 10−1 |
Alvarado_Score__Management.1 | 1.052 × 10−1 |
Appendix_Diameter__Management.0 | 9.615 × 10−2 |
Appendix_Diameter__Management.1 | 8.457 × 10−2 |
WBC_Count__Management.1 | 7.696 × 10−2 |
Neutrophil_Percentage__Management.0 | 7.531 × 10−2 |
Paedriatic_Appendicitis_Score__Management.0 | 7.084 × 10−2 |
Neutrophil_Percentage__Management.1 | 6.487 × 10−2 |
Alvarado_Score__Management.0 | 6.183 × 10−2 |
WBC_Count__Management.0 | 6.059 × 10−2 |
Height__Management.1 | 5.915 × 10−2 |
RDW__Management.0 | 5.379 × 10−2 |
Segmented_Neutrophils__Management.0 | 5.172 × 10−2 |
Paedriatic_Appendicitis_Score__Management.1 | 4.978 × 10−2 |
RDW__Management.1 | 4.709 × 10−2 |
Ketones_in_Urine__Management.0 | 4.477 × 10−2 |
Weight__Management.0 | 4.001 × 10−2 |
Weight__Management.1 | 3.639 × 10−2 |
Hemoglobin__Management.0 | 3.513 × 10−2 |
Height__Management.0 | 3.048 × 10−2 |
Body_Temperature__Management.0 | 2.882 × 10−2 |
Ketones_in_Urine__Management.1 | 2.756 × 10−2 |
RBC_Count__Management.1 | 1.856 × 10−2 |
Body_Temperature__Management.1 | 1.781 × 10−2 |
Hemoglobin__Management.1 | 1.754 × 10−2 |
WBC_in_Urine__Management.1 | 1.720 × 10−2 |
RBC_Count__Management.0 | 1.283 × 10−2 |
Age__Management.0 | 9.069 × 10−3 |
Age__Management.1 | 8.695 × 10−3 |
RBC_in_Urine__Management.1 | 8.061 × 10−3 |
Segmented_Neutrophils__Management.1 | 0.000 × 100 |
Thrombocyte_Count__Management.0 | 0.000 × 100 |
Thrombocyte_Count__Management.1 | 0.000 × 100 |
BMI__Management.1 | 0.000 × 100 |
RBC_in_Urine__Management.0 | 0.000 × 100 |
WBC_in_Urine__Management.0 | 0.000 × 100 |
BMI__Management.0 | 0.000 × 100 |
Feature_Targetclass | Mut_Info |
---|---|
Ipsilateral_Rebound_Tenderness__Management.surgical | 2.827 × 10−1 |
Ipsilateral_Rebound_Tenderness__Management.conservative | 2.827 × 10−1 |
Ipsilateral_Rebound_Tenderness | 2.827 × 10−1 |
Diagnosis | 2.553 × 10−1 |
Diagnosis__Management.surgical | 2.553 × 10−1 |
Diagnosis__Management.conservative | 2.553 × 10−1 |
Peritonitis__Management.conservative | 1.963 × 10−1 |
Peritonitis | 1.963 × 10−1 |
Peritonitis__Management.surgical | 1.963 × 10−1 |
Severity | 1.800 × 10−1 |
Severity__Management.conservative | 1.800 × 10−1 |
Severity__Management.surgical | 1.800 × 10−1 |
Surrounding_Tissue_Reaction__Management.conservative | 1.077 × 10−1 |
Surrounding_Tissue_Reaction | 1.077 × 10−1 |
Surrounding_Tissue_Reaction__Management.surgical | 1.077 × 10−1 |
Neutrophilia__Management.surgical | 6.087 × 10−2 |
Neutrophilia | 6.087 × 10−2 |
Neutrophilia__Management.conservative | 6.087 × 10−2 |
Appendix_Wall_Layers__Management.conservative | 5.302 × 10−2 |
Appendix_Wall_Layers | 5.302 × 10−2 |
Appendix_Wall_Layers__Management.surgical | 5.302 × 10−2 |
Ileus__Management.conservative | 4.696 × 10−2 |
Ileus__Management.surgical | 4.696 × 10−2 |
Ileus | 4.696 × 10−2 |
Dysuria__Management.conservative | 3.966 × 10−2 |
Dysuria | 3.966 × 10−2 |
Dysuria__Management.surgical | 3.966 × 10−2 |
Free_Fluids__Management.surgical | 3.871 × 10−2 |
Free_Fluids__Management.conservative | 3.871 × 10−2 |
Free_Fluids | 3.871 × 10−2 |
Perforation__Management.conservative | 3.749 × 10−2 |
Perforation__Management.surgical | 3.749 × 10−2 |
Perforation | 3.749 × 10−2 |
Appendicolith | 3.328 × 10−2 |
Appendicolith__Management.surgical | 3.328 × 10−2 |
Appendicolith__Management.conservative | 3.328 × 10−2 |
Psoas_Sign | 3.245 × 10−2 |
Psoas_Sign__Management.surgical | 3.245 × 10−2 |
Psoas_Sign__Management.conservative | 3.245 × 10−2 |
Target_Sign__Management.surgical | 3.087 × 10−2 |
Target_Sign__Management.conservative | 3.087 × 10−2 |
Target_Sign | 3.087 × 10−2 |
Contralateral_Rebound_Tenderness | 2.795 × 10−2 |
Contralateral_Rebound_Tenderness__Management.surgical | 2.795 × 10−2 |
Contralateral_Rebound_Tenderness__Management.conservative | 2.795 × 10−2 |
Coprostasis__Management.conservative | 2.749 × 10−2 |
Coprostasis | 2.749 × 10−2 |
Coprostasis__Management.surgical | 2.749 × 10−2 |
Perfusion__Management.conservative | 2.600 × 10−2 |
Perfusion__Management.surgical | 2.600 × 10−2 |
Perfusion | 2.600 × 10−2 |
Nausea | 2.583 × 10−2 |
Nausea__Management.surgical | 2.583 × 10−2 |
Nausea__Management.conservative | 2.583 × 10−2 |
Loss_of_Appetite__Management.surgical | 2.467 × 10−2 |
Loss_of_Appetite__Management.conservative | 2.467 × 10−2 |
Loss_of_Appetite | 2.467 × 10−2 |
Enteritis__Management.surgical | 2.135 × 10−2 |
Enteritis | 2.135 × 10−2 |
Enteritis__Management.conservative | 2.135 × 10−2 |
Stool__Management.conservative | 2.133 × 10−2 |
Stool__Management.surgical | 2.133 × 10−2 |
Stool | 2.133 × 10−2 |
Conglomerate_of_Bowel_Loops__Management.conservative | 2.066 × 10−2 |
Conglomerate_of_Bowel_Loops__Management.surgical | 2.066 × 10−2 |
Conglomerate_of_Bowel_Loops | 2.066 × 10−2 |
Bowel_Wall_Thickening__Management.surgical | 1.697 × 10−2 |
Bowel_Wall_Thickening__Management.conservative | 1.697 × 10−2 |
Bowel_Wall_Thickening | 1.697 × 10−2 |
Appendicular_Abscess | 1.666 × 10−2 |
Appendicular_Abscess__Management.conservative | 1.666 × 10−2 |
Appendicular_Abscess__Management.surgical | 1.666 × 10−2 |
Coughing_Pain__Management.conservative | 1.565 × 10−2 |
Coughing_Pain__Management.surgical | 1.565 × 10−2 |
Coughing_Pain | 1.565 × 10−2 |
Meteorism | 1.319 × 10−2 |
Meteorism__Management.surgical | 1.319 × 10−2 |
Meteorism__Management.conservative | 1.319 × 10−2 |
Appendix_on_US | 1.000 × 10−2 |
Appendix_on_US__Management.conservative | 1.000 × 10−2 |
Appendix_on_US__Management.surgical | 1.000 × 10−2 |
US_Performed | 6.948 × 10−3 |
US_Performed__Management.surgical | 6.948 × 10−3 |
US_Performed__Management.conservative | 6.948 × 10−3 |
Lower_Right_Abd_Pain__Management.conservative | 6.616 × 10−3 |
Lower_Right_Abd_Pain__Management.surgical | 6.616 × 10−3 |
Lower_Right_Abd_Pain | 6.616 × 10−3 |
Migratory_Pain__Management.surgical | 6.200 × 10−3 |
Migratory_Pain | 6.200 × 10−3 |
Migratory_Pain__Management.conservative | 6.200 × 10−3 |
Pathological_Lymph_Nodes__Management.conservative | 5.161 × 10−3 |
Pathological_Lymph_Nodes__Management.surgical | 5.161 × 10−3 |
Pathological_Lymph_Nodes | 5.161 × 10−3 |
Sex__Management.conservative | 4.313 × 10−4 |
Sex__Management.surgical | 4.313 × 10−4 |
Sex | 4.313 × 10−4 |
Appendix H
Model | Selection | Embed_Selector | Acc | Auroc | Bal-Acc | F1 | Npv | Ppv | Sens | Spec |
---|---|---|---|---|---|---|---|---|---|---|
rf | none | none | 0.939 | 0.980 | 0.925 | 0.934 | 0.972 | 0.923 | 0.925 | 0.866 |
rf | assoc | none | 0.936 | 0.980 | 0.922 | 0.931 | 0.963 | 0.922 | 0.922 | 0.866 |
lgbm | embed_linear | linear | 0.936 | 0.977 | 0.921 | 0.930 | 0.971 | 0.918 | 0.921 | 0.857 |
lgbm | embed_lgbm | lgbm | 0.933 | 0.975 | 0.918 | 0.927 | 0.962 | 0.918 | 0.918 | 0.857 |
rf | embed_linear | linear | 0.933 | 0.979 | 0.918 | 0.927 | 0.962 | 0.918 | 0.918 | 0.857 |
lgbm | none | none | 0.930 | 0.978 | 0.916 | 0.924 | 0.953 | 0.917 | 0.916 | 0.857 |
rf | embed_lgbm | lgbm | 0.930 | 0.979 | 0.916 | 0.924 | 0.953 | 0.917 | 0.916 | 0.857 |
lgbm | assoc | none | 0.930 | 0.977 | 0.914 | 0.924 | 0.962 | 0.913 | 0.914 | 0.849 |
rf | pred | none | 0.927 | 0.981 | 0.911 | 0.920 | 0.953 | 0.913 | 0.911 | 0.849 |
rf | wrap | none | 0.920 | 0.960 | 0.901 | 0.913 | 0.961 | 0.900 | 0.901 | 0.824 |
lgbm | pred | none | 0.917 | 0.978 | 0.896 | 0.909 | 0.970 | 0.893 | 0.896 | 0.807 |
lgbm | wrap | none | 0.917 | 0.953 | 0.894 | 0.908 | 0.979 | 0.889 | 0.894 | 0.798 |
lr | pred | none | 0.856 | 0.932 | 0.819 | 0.836 | 0.940 | 0.825 | 0.819 | 0.664 |
lr | none | none | 0.837 | 0.925 | 0.802 | 0.816 | 0.886 | 0.818 | 0.802 | 0.655 |
lr | embed_linear | linear | 0.837 | 0.925 | 0.802 | 0.816 | 0.886 | 0.818 | 0.802 | 0.655 |
lr | assoc | none | 0.837 | 0.925 | 0.802 | 0.816 | 0.886 | 0.818 | 0.802 | 0.655 |
sgd | none | none | 0.834 | 0.822 | 0.822 | 0.823 | 0.786 | 0.862 | 0.822 | 0.773 |
lr | embed_lgbm | lgbm | 0.824 | 0.916 | 0.788 | 0.802 | 0.864 | 0.809 | 0.788 | 0.639 |
sgd | assoc | none | 0.824 | 0.813 | 0.813 | 0.813 | 0.771 | 0.856 | 0.813 | 0.765 |
lr | wrap | none | 0.815 | 0.903 | 0.771 | 0.786 | 0.886 | 0.791 | 0.771 | 0.588 |
sgd | pred | none | 0.802 | 0.788 | 0.788 | 0.789 | 0.744 | 0.837 | 0.788 | 0.731 |
sgd | embed_linear | linear | 0.767 | 0.862 | 0.744 | 0.748 | 0.713 | 0.795 | 0.744 | 0.647 |
sgd | embed_lgbm | lgbm | 0.754 | 0.750 | 0.738 | 0.739 | 0.678 | 0.800 | 0.738 | 0.672 |
knn | assoc | none | 0.719 | 0.732 | 0.666 | 0.671 | 0.707 | 0.723 | 0.666 | 0.445 |
knn | embed_linear | linear | 0.719 | 0.732 | 0.666 | 0.671 | 0.707 | 0.723 | 0.666 | 0.445 |
knn | wrap | none | 0.709 | 0.723 | 0.642 | 0.642 | 0.741 | 0.702 | 0.642 | 0.361 |
knn | pred | none | 0.706 | 0.748 | 0.633 | 0.629 | 0.765 | 0.695 | 0.633 | 0.328 |
sgd | wrap | none | 0.703 | 0.802 | 0.677 | 0.680 | 0.618 | 0.749 | 0.677 | 0.571 |
knn | embed_lgbm | lgbm | 0.703 | 0.739 | 0.653 | 0.657 | 0.662 | 0.717 | 0.653 | 0.445 |
knn | none | none | 0.626 | 0.588 | 0.588 | 0.589 | 0.510 | 0.681 | 0.588 | 0.429 |
dummy | embed_lgbm | lgbm | 0.620 | 0.500 | 0.500 | 0.383 | nan | 0.620 | 0.500 | 0.000 |
dummy | wrap | none | 0.620 | 0.500 | 0.500 | 0.383 | nan | 0.620 | 0.500 | 0.000 |
dummy | pred | none | 0.620 | 0.500 | 0.500 | 0.383 | nan | 0.620 | 0.500 | 0.000 |
dummy | none | none | 0.620 | 0.500 | 0.500 | 0.383 | nan | 0.620 | 0.500 | 0.000 |
dummy | embed_linear | linear | 0.620 | 0.500 | 0.500 | 0.383 | nan | 0.620 | 0.500 | 0.000 |
dummy | assoc | none | 0.620 | 0.500 | 0.500 | 0.383 | nan | 0.620 | 0.500 | 0.000 |
Model | Selection | Embed_Selector | Acc | Auroc | Bal-Acc | F1 | Npv | Ppv | Sens | Spec |
---|---|---|---|---|---|---|---|---|---|---|
lgbm | none | none | 0.930 | 0.971 | 0.916 | 0.923 | 0.952 | 0.919 | 0.916 | 0.858 |
rf | wrap | none | 0.927 | 0.942 | 0.914 | 0.920 | 0.945 | 0.920 | 0.914 | 0.858 |
rf | embed_lgbm | lgbm | 0.927 | 0.968 | 0.912 | 0.920 | 0.952 | 0.914 | 0.912 | 0.850 |
lgbm | assoc | none | 0.920 | 0.973 | 0.905 | 0.913 | 0.944 | 0.910 | 0.905 | 0.841 |
rf | assoc | none | 0.920 | 0.969 | 0.905 | 0.913 | 0.943 | 0.909 | 0.905 | 0.841 |
rf | none | none | 0.920 | 0.970 | 0.907 | 0.913 | 0.934 | 0.913 | 0.907 | 0.849 |
lgbm | embed_linear | linear | 0.917 | 0.970 | 0.903 | 0.909 | 0.935 | 0.910 | 0.903 | 0.841 |
lgbm | pred | none | 0.914 | 0.974 | 0.905 | 0.907 | 0.903 | 0.922 | 0.905 | 0.867 |
rf | embed_linear | linear | 0.914 | 0.964 | 0.898 | 0.906 | 0.933 | 0.904 | 0.898 | 0.833 |
rf | pred | none | 0.907 | 0.968 | 0.892 | 0.899 | 0.925 | 0.900 | 0.892 | 0.825 |
lgbm | embed_lgbm | lgbm | 0.898 | 0.960 | 0.885 | 0.889 | 0.895 | 0.905 | 0.885 | 0.833 |
lgbm | wrap | none | 0.895 | 0.948 | 0.875 | 0.884 | 0.927 | 0.884 | 0.875 | 0.791 |
lr | pred | none | 0.776 | 0.863 | 0.743 | 0.751 | 0.767 | 0.785 | 0.743 | 0.605 |
lr | assoc | none | 0.760 | 0.864 | 0.725 | 0.733 | 0.735 | 0.772 | 0.725 | 0.580 |
lr | none | none | 0.760 | 0.864 | 0.725 | 0.733 | 0.735 | 0.772 | 0.725 | 0.580 |
lr | embed_linear | linear | 0.760 | 0.864 | 0.725 | 0.733 | 0.735 | 0.772 | 0.725 | 0.580 |
lr | wrap | none | 0.751 | 0.841 | 0.713 | 0.721 | 0.728 | 0.761 | 0.713 | 0.554 |
sgd | pred | none | 0.751 | 0.735 | 0.735 | 0.735 | 0.675 | 0.800 | 0.735 | 0.672 |
lr | embed_lgbm | lgbm | 0.748 | 0.854 | 0.713 | 0.720 | 0.708 | 0.766 | 0.713 | 0.571 |
sgd | none | none | 0.738 | 0.722 | 0.722 | 0.722 | 0.661 | 0.789 | 0.722 | 0.656 |
sgd | embed_linear | linear | 0.735 | 0.815 | 0.718 | 0.718 | 0.657 | 0.784 | 0.718 | 0.647 |
sgd | wrap | none | 0.732 | 0.787 | 0.708 | 0.711 | 0.665 | 0.773 | 0.708 | 0.613 |
sgd | assoc | none | 0.731 | 0.715 | 0.715 | 0.715 | 0.659 | 0.782 | 0.715 | 0.647 |
sgd | embed_lgbm | lgbm | 0.709 | 0.712 | 0.691 | 0.691 | 0.626 | 0.763 | 0.691 | 0.614 |
knn | wrap | none | 0.700 | 0.721 | 0.639 | 0.638 | 0.693 | 0.705 | 0.639 | 0.386 |
knn | pred | none | 0.697 | 0.759 | 0.612 | 0.592 | 0.812 | 0.681 | 0.612 | 0.260 |
knn | embed_lgbm | lgbm | 0.684 | 0.723 | 0.648 | 0.650 | 0.610 | 0.722 | 0.648 | 0.496 |
knn | embed_linear | linear | 0.658 | 0.708 | 0.622 | 0.622 | 0.571 | 0.705 | 0.622 | 0.471 |
knn | assoc | none | 0.658 | 0.708 | 0.622 | 0.622 | 0.571 | 0.705 | 0.622 | 0.471 |
knn | none | none | 0.636 | 0.620 | 0.620 | 0.617 | 0.522 | 0.715 | 0.620 | 0.555 |
dummy | embed_lgbm | lgbm | 0.620 | 0.500 | 0.500 | 0.383 | nan | 0.620 | 0.500 | 0.000 |
dummy | wrap | none | 0.620 | 0.500 | 0.500 | 0.383 | nan | 0.620 | 0.500 | 0.000 |
dummy | pred | none | 0.620 | 0.500 | 0.500 | 0.383 | nan | 0.620 | 0.500 | 0.000 |
dummy | none | none | 0.620 | 0.500 | 0.500 | 0.383 | nan | 0.620 | 0.500 | 0.000 |
dummy | embed_linear | linear | 0.620 | 0.500 | 0.500 | 0.383 | nan | 0.620 | 0.500 | 0.000 |
dummy | assoc | none | 0.620 | 0.500 | 0.500 | 0.383 | nan | 0.620 | 0.500 | 0.000 |
Appendix I
Feature | Score |
---|---|
Ipsilateral_Rebound_Tenderness_nan | 8.312 × 10−1 |
Severity_uncomplicated | 8.932 × 10−1 |
RDW | 8.953 × 10−1 |
Peritonitis_no | 9.359 × 10−1 |
WBC_Count | 9.359 × 10−1 |
Peritonitis_local | 9.295 × 10−1 |
Body_Temperature | 9.274 × 10−1 |
Weight | 8.932 × 10−1 |
CRP | 8.720 × 10−1 |
Segmented_Neutrophils | 8.397 × 10−1 |
Height | 7.884 × 10−1 |
Thrombocyte_Count | 7.478 × 10−1 |
Appendix J
Model | Selection | Embed_Selector | Acc | Auroc | Bal-Acc | F1 | Npv | Ppv | Sens | Spec |
---|---|---|---|---|---|---|---|---|---|---|
lgbm | pred | none | 0.891 | 0.908 | 0.723 | 0.756 | 0.911 | 0.719 | 0.723 | 0.966 |
lr | wrap | none | 0.891 | 0.834 | 0.706 | 0.745 | 0.905 | 0.750 | 0.706 | 0.974 |
lr | pred | none | 0.891 | 0.879 | 0.706 | 0.745 | 0.905 | 0.750 | 0.706 | 0.974 |
lgbm | embed_lgbm | lgbm | 0.891 | 0.939 | 0.782 | 0.787 | 0.933 | 0.652 | 0.782 | 0.940 |
lr | assoc | none | 0.888 | 0.893 | 0.704 | 0.741 | 0.905 | 0.724 | 0.704 | 0.970 |
sgd | assoc | none | 0.888 | 0.854 | 0.712 | 0.746 | 0.908 | 0.710 | 0.712 | 0.966 |
rf | embed_lgbm | lgbm | 0.888 | 0.929 | 0.780 | 0.783 | 0.932 | 0.638 | 0.780 | 0.936 |
lr | none | none | 0.888 | 0.895 | 0.704 | 0.741 | 0.905 | 0.724 | 0.704 | 0.970 |
lgbm | assoc | none | 0.888 | 0.932 | 0.755 | 0.771 | 0.923 | 0.659 | 0.755 | 0.947 |
rf | wrap | none | 0.885 | 0.879 | 0.727 | 0.753 | 0.913 | 0.667 | 0.727 | 0.955 |
rf | pred | none | 0.885 | 0.906 | 0.753 | 0.766 | 0.923 | 0.643 | 0.753 | 0.943 |
lr | embed_linear | linear | 0.885 | 0.892 | 0.702 | 0.736 | 0.905 | 0.700 | 0.702 | 0.966 |
sgd | none | none | 0.882 | 0.857 | 0.700 | 0.732 | 0.904 | 0.677 | 0.700 | 0.962 |
sgd | embed_linear | linear | 0.882 | 0.864 | 0.700 | 0.732 | 0.904 | 0.677 | 0.700 | 0.962 |
rf | assoc | none | 0.882 | 0.933 | 0.811 | 0.788 | 0.945 | 0.596 | 0.811 | 0.913 |
lr | embed_lgbm | lgbm | 0.882 | 0.883 | 0.691 | 0.726 | 0.901 | 0.690 | 0.691 | 0.966 |
sgd | wrap | none | 0.882 | 0.825 | 0.700 | 0.732 | 0.904 | 0.677 | 0.700 | 0.962 |
lgbm | none | none | 0.882 | 0.933 | 0.751 | 0.762 | 0.922 | 0.628 | 0.751 | 0.940 |
lgbm | embed_linear | linear | 0.882 | 0.930 | 0.743 | 0.758 | 0.919 | 0.634 | 0.743 | 0.943 |
knn | none | none | 0.882 | 0.833 | 0.674 | 0.713 | 0.896 | 0.720 | 0.674 | 0.974 |
knn | embed_linear | linear | 0.882 | 0.788 | 0.691 | 0.726 | 0.901 | 0.690 | 0.691 | 0.966 |
knn | embed_lgbm | lgbm | 0.882 | 0.826 | 0.666 | 0.706 | 0.893 | 0.739 | 0.666 | 0.977 |
knn | assoc | none | 0.882 | 0.788 | 0.691 | 0.726 | 0.901 | 0.690 | 0.691 | 0.966 |
rf | embed_linear | linear | 0.879 | 0.933 | 0.809 | 0.784 | 0.945 | 0.586 | 0.809 | 0.909 |
sgd | pred | none | 0.879 | 0.846 | 0.698 | 0.728 | 0.904 | 0.656 | 0.698 | 0.958 |
rf | none | none | 0.872 | 0.920 | 0.780 | 0.766 | 0.934 | 0.574 | 0.780 | 0.913 |
sgd | embed_lgbm | lgbm | 0.872 | 0.846 | 0.720 | 0.736 | 0.912 | 0.600 | 0.720 | 0.940 |
lgbm | wrap | none | 0.869 | 0.869 | 0.709 | 0.726 | 0.909 | 0.590 | 0.709 | 0.940 |
knn | wrap | none | 0.869 | 0.753 | 0.650 | 0.682 | 0.889 | 0.640 | 0.650 | 0.966 |
knn | pred | none | 0.856 | 0.743 | 0.625 | 0.651 | 0.882 | 0.560 | 0.625 | 0.958 |
dummy | embed_lgbm | lgbm | 0.847 | 0.500 | 0.500 | 0.458 | 0.847 | nan | 0.500 | 1.000 |
dummy | wrap | none | 0.847 | 0.500 | 0.500 | 0.458 | 0.847 | nan | 0.500 | 1.000 |
dummy | pred | none | 0.847 | 0.500 | 0.500 | 0.458 | 0.847 | nan | 0.500 | 1.000 |
dummy | none | none | 0.847 | 0.500 | 0.500 | 0.458 | 0.847 | nan | 0.500 | 1.000 |
dummy | embed_linear | linear | 0.847 | 0.500 | 0.500 | 0.458 | 0.847 | nan | 0.500 | 1.000 |
dummy | assoc | none | 0.847 | 0.500 | 0.500 | 0.458 | 0.847 | nan | 0.500 | 1.000 |
Model | Selection | Embed_Selector | Acc | Auroc | Bal-Acc | F1 | Npv | Ppv | Sens | Spec |
---|---|---|---|---|---|---|---|---|---|---|
lr | wrap | none | 0.895 | 0.820 | 0.699 | 0.744 | 0.903 | 0.813 | 0.699 | 0.981 |
lr | assoc | none | 0.891 | 0.873 | 0.707 | 0.746 | 0.905 | 0.753 | 0.707 | 0.974 |
lr | none | none | 0.891 | 0.875 | 0.707 | 0.746 | 0.905 | 0.753 | 0.707 | 0.974 |
lr | embed_lgbm | lgbm | 0.891 | 0.873 | 0.707 | 0.746 | 0.905 | 0.753 | 0.707 | 0.974 |
lr | embed_linear | linear | 0.891 | 0.870 | 0.707 | 0.746 | 0.905 | 0.753 | 0.707 | 0.974 |
rf | assoc | none | 0.888 | 0.926 | 0.790 | 0.785 | 0.936 | 0.628 | 0.790 | 0.932 |
sgd | assoc | none | 0.888 | 0.845 | 0.696 | 0.735 | 0.902 | 0.747 | 0.696 | 0.974 |
knn | pred | none | 0.888 | 0.767 | 0.695 | 0.734 | 0.902 | 0.750 | 0.695 | 0.974 |
rf | embed_linear | linear | 0.885 | 0.924 | 0.789 | 0.781 | 0.936 | 0.617 | 0.789 | 0.928 |
lr | pred | none | 0.885 | 0.856 | 0.687 | 0.724 | 0.899 | 0.753 | 0.687 | 0.974 |
sgd | embed_lgbm | lgbm | 0.885 | 0.842 | 0.711 | 0.742 | 0.908 | 0.695 | 0.711 | 0.962 |
sgd | embed_linear | linear | 0.885 | 0.855 | 0.695 | 0.730 | 0.902 | 0.716 | 0.695 | 0.970 |
rf | none | none | 0.885 | 0.924 | 0.770 | 0.775 | 0.929 | 0.632 | 0.770 | 0.936 |
sgd | none | none | 0.885 | 0.845 | 0.695 | 0.730 | 0.902 | 0.716 | 0.695 | 0.970 |
lgbm | wrap | none | 0.885 | 0.837 | 0.694 | 0.730 | 0.902 | 0.713 | 0.694 | 0.970 |
knn | none | none | 0.882 | 0.781 | 0.649 | 0.688 | 0.888 | 0.800 | 0.649 | 0.985 |
rf | pred | none | 0.879 | 0.874 | 0.707 | 0.735 | 0.907 | 0.660 | 0.707 | 0.955 |
rf | wrap | none | 0.879 | 0.856 | 0.707 | 0.734 | 0.907 | 0.656 | 0.707 | 0.955 |
sgd | pred | none | 0.879 | 0.840 | 0.692 | 0.719 | 0.902 | 0.699 | 0.692 | 0.962 |
lgbm | pred | none | 0.876 | 0.867 | 0.693 | 0.714 | 0.902 | 0.642 | 0.693 | 0.958 |
lgbm | embed_linear | linear | 0.876 | 0.916 | 0.675 | 0.701 | 0.896 | 0.664 | 0.675 | 0.966 |
sgd | wrap | none | 0.876 | 0.824 | 0.689 | 0.718 | 0.901 | 0.652 | 0.689 | 0.958 |
lgbm | embed_lgbm | lgbm | 0.876 | 0.924 | 0.714 | 0.733 | 0.910 | 0.629 | 0.714 | 0.947 |
rf | embed_lgbm | lgbm | 0.872 | 0.928 | 0.645 | 0.676 | 0.887 | 0.680 | 0.645 | 0.974 |
knn | embed_linear | linear | 0.872 | 0.718 | 0.634 | 0.667 | 0.884 | 0.733 | 0.634 | 0.977 |
knn | assoc | none | 0.872 | 0.718 | 0.634 | 0.667 | 0.884 | 0.733 | 0.634 | 0.977 |
lgbm | none | none | 0.866 | 0.897 | 0.651 | 0.677 | 0.889 | 0.600 | 0.651 | 0.962 |
lgbm | assoc | none | 0.866 | 0.915 | 0.615 | 0.644 | 0.878 | 0.687 | 0.615 | 0.977 |
knn | wrap | none | 0.866 | 0.716 | 0.648 | 0.675 | 0.889 | 0.668 | 0.648 | 0.962 |
dummy | embed_lgbm | lgbm | 0.847 | 0.500 | 0.500 | 0.458 | 0.847 | nan | 0.500 | 1.000 |
knn | embed_lgbm | lgbm | 0.847 | 0.815 | 0.500 | 0.458 | 0.847 | nan | 0.500 | 1.000 |
dummy | wrap | none | 0.847 | 0.500 | 0.500 | 0.458 | 0.847 | nan | 0.500 | 1.000 |
dummy | pred | none | 0.847 | 0.500 | 0.500 | 0.458 | 0.847 | nan | 0.500 | 1.000 |
dummy | none | none | 0.847 | 0.500 | 0.500 | 0.458 | 0.847 | nan | 0.500 | 1.000 |
dummy | embed_linear | linear | 0.847 | 0.500 | 0.500 | 0.458 | 0.847 | nan | 0.500 | 1.000 |
dummy | assoc | none | 0.847 | 0.500 | 0.500 | 0.458 | 0.847 | nan | 0.500 | 1.000 |
Appendix K
Feature | Score |
---|---|
CRP | 8.697 × 10−1 |
Peritonitis_no | 8.846 × 10−1 |
Neutrophil_Percentage | 8.889 × 10−1 |
Thrombocyte_Count | 8.954 × 10−1 |
Weight_NAN | 8.996 × 10−1 |
Dysuria_nan | 8.996 × 10−1 |
Meteorism_nan | 8.997 × 10−1 |
Lower_Right_Abd_Pain_nan | 8.975 × 10−1 |
Free_Fluids_nan | 8.975 × 10−1 |
Nausea_nan | 8.954 × 10−1 |
Lower_Right_Abd_Pain_yes | 8.932 × 10−1 |
Peritonitis_generalized | 8.846 × 10−1 |
Segmented_Neutrophils | 8.740 × 10−1 |
Height | 8.654 × 10−1 |
Appendix L
Model | Selection | Embed_Selector | Acc | Auroc | Bal-Acc | F1 | Npv | Ppv | Sens | Spec |
---|---|---|---|---|---|---|---|---|---|---|
lgbm | assoc | none | 0.901 | 0.931 | 0.788 | 0.801 | 0.933 | 0.698 | 0.788 | 0.951 |
rf | assoc | none | 0.891 | 0.933 | 0.782 | 0.787 | 0.933 | 0.652 | 0.782 | 0.940 |
lr | wrap | none | 0.888 | 0.811 | 0.695 | 0.735 | 0.902 | 0.741 | 0.695 | 0.974 |
lr | pred | none | 0.888 | 0.881 | 0.695 | 0.735 | 0.902 | 0.741 | 0.695 | 0.974 |
lr | embed_lgbm | lgbm | 0.888 | 0.878 | 0.695 | 0.735 | 0.902 | 0.741 | 0.695 | 0.974 |
lgbm | none | none | 0.888 | 0.931 | 0.755 | 0.771 | 0.923 | 0.659 | 0.755 | 0.947 |
lr | assoc | none | 0.885 | 0.889 | 0.693 | 0.730 | 0.902 | 0.714 | 0.693 | 0.970 |
sgd | pred | none | 0.885 | 0.827 | 0.676 | 0.718 | 0.896 | 0.750 | 0.676 | 0.977 |
sgd | embed_lgbm | lgbm | 0.885 | 0.854 | 0.702 | 0.736 | 0.905 | 0.700 | 0.702 | 0.966 |
rf | wrap | none | 0.885 | 0.873 | 0.702 | 0.736 | 0.905 | 0.700 | 0.702 | 0.966 |
lr | none | none | 0.885 | 0.889 | 0.693 | 0.730 | 0.902 | 0.714 | 0.693 | 0.970 |
sgd | wrap | none | 0.885 | 0.788 | 0.685 | 0.724 | 0.899 | 0.731 | 0.685 | 0.974 |
knn | embed_linear | linear | 0.885 | 0.807 | 0.702 | 0.736 | 0.905 | 0.700 | 0.702 | 0.966 |
sgd | none | none | 0.882 | 0.855 | 0.700 | 0.732 | 0.904 | 0.677 | 0.700 | 0.962 |
knn | assoc | none | 0.882 | 0.829 | 0.666 | 0.706 | 0.893 | 0.739 | 0.666 | 0.977 |
lr | embed_linear | linear | 0.882 | 0.889 | 0.691 | 0.726 | 0.901 | 0.690 | 0.691 | 0.966 |
knn | none | none | 0.882 | 0.795 | 0.700 | 0.732 | 0.904 | 0.677 | 0.700 | 0.962 |
knn | wrap | none | 0.882 | 0.817 | 0.666 | 0.706 | 0.893 | 0.739 | 0.666 | 0.977 |
lgbm | embed_linear | linear | 0.882 | 0.929 | 0.768 | 0.770 | 0.929 | 0.617 | 0.768 | 0.932 |
sgd | assoc | none | 0.882 | 0.855 | 0.700 | 0.732 | 0.904 | 0.677 | 0.700 | 0.962 |
lgbm | pred | none | 0.879 | 0.928 | 0.749 | 0.758 | 0.922 | 0.614 | 0.749 | 0.936 |
sgd | embed_linear | linear | 0.879 | 0.817 | 0.681 | 0.715 | 0.898 | 0.679 | 0.681 | 0.966 |
knn | embed_lgbm | lgbm | 0.875 | 0.772 | 0.696 | 0.723 | 0.904 | 0.636 | 0.696 | 0.955 |
rf | embed_linear | linear | 0.875 | 0.933 | 0.781 | 0.770 | 0.935 | 0.585 | 0.781 | 0.917 |
rf | pred | none | 0.875 | 0.930 | 0.798 | 0.777 | 0.941 | 0.579 | 0.798 | 0.909 |
lgbm | wrap | none | 0.872 | 0.850 | 0.660 | 0.693 | 0.892 | 0.654 | 0.660 | 0.966 |
rf | embed_lgbm | lgbm | 0.872 | 0.926 | 0.805 | 0.776 | 0.945 | 0.567 | 0.805 | 0.902 |
rf | none | none | 0.872 | 0.926 | 0.797 | 0.773 | 0.941 | 0.569 | 0.797 | 0.906 |
lgbm | embed_lgbm | lgbm | 0.869 | 0.930 | 0.735 | 0.741 | 0.918 | 0.578 | 0.735 | 0.928 |
dummy | embed_linear | linear | 0.847 | 0.500 | 0.500 | 0.458 | 0.847 | nan | 0.500 | 1.000 |
dummy | none | none | 0.847 | 0.500 | 0.500 | 0.458 | 0.847 | nan | 0.500 | 1.000 |
dummy | wrap | none | 0.847 | 0.500 | 0.500 | 0.458 | 0.847 | nan | 0.500 | 1.000 |
dummy | pred | none | 0.847 | 0.500 | 0.500 | 0.458 | 0.847 | nan | 0.500 | 1.000 |
dummy | embed_lgbm | lgbm | 0.847 | 0.500 | 0.500 | 0.458 | 0.847 | nan | 0.500 | 1.000 |
dummy | assoc | none | 0.847 | 0.500 | 0.500 | 0.458 | 0.847 | nan | 0.500 | 1.000 |
knn | pred | none | 0.843 | 0.717 | 0.618 | 0.637 | 0.880 | 0.483 | 0.618 | 0.943 |
Model | Selection | Embed_Selector | Acc | Auroc | Bal-Acc | F1 | Npv | Ppv | Sens | Spec |
---|---|---|---|---|---|---|---|---|---|---|
lgbm | assoc | none | 0.892 | 0.896 | 0.741 | 0.768 | 0.917 | 0.717 | 0.741 | 0.958 |
sgd | none | none | 0.891 | 0.850 | 0.699 | 0.739 | 0.903 | 0.783 | 0.699 | 0.977 |
lr | assoc | none | 0.891 | 0.869 | 0.707 | 0.745 | 0.906 | 0.770 | 0.707 | 0.974 |
lr | embed_lgbm | lgbm | 0.891 | 0.864 | 0.707 | 0.745 | 0.906 | 0.770 | 0.707 | 0.974 |
lr | none | none | 0.891 | 0.869 | 0.707 | 0.745 | 0.906 | 0.770 | 0.707 | 0.974 |
lr | embed_linear | linear | 0.891 | 0.869 | 0.707 | 0.745 | 0.906 | 0.770 | 0.707 | 0.974 |
lgbm | embed_lgbm | lgbm | 0.888 | 0.907 | 0.721 | 0.753 | 0.911 | 0.709 | 0.721 | 0.962 |
sgd | embed_lgbm | lgbm | 0.888 | 0.846 | 0.696 | 0.735 | 0.902 | 0.747 | 0.696 | 0.974 |
knn | none | none | 0.888 | 0.746 | 0.696 | 0.735 | 0.902 | 0.747 | 0.696 | 0.974 |
lr | wrap | none | 0.888 | 0.805 | 0.686 | 0.727 | 0.899 | 0.767 | 0.686 | 0.977 |
rf | assoc | none | 0.885 | 0.923 | 0.712 | 0.742 | 0.908 | 0.687 | 0.712 | 0.962 |
sgd | assoc | none | 0.885 | 0.853 | 0.695 | 0.730 | 0.902 | 0.716 | 0.695 | 0.970 |
rf | wrap | none | 0.885 | 0.821 | 0.694 | 0.731 | 0.902 | 0.728 | 0.694 | 0.970 |
lr | pred | none | 0.885 | 0.847 | 0.678 | 0.717 | 0.896 | 0.777 | 0.678 | 0.977 |
sgd | wrap | none | 0.885 | 0.770 | 0.685 | 0.724 | 0.899 | 0.737 | 0.685 | 0.974 |
sgd | pred | none | 0.882 | 0.780 | 0.684 | 0.720 | 0.899 | 0.741 | 0.684 | 0.970 |
knn | embed_linear | linear | 0.882 | 0.731 | 0.691 | 0.725 | 0.902 | 0.702 | 0.691 | 0.966 |
rf | pred | none | 0.876 | 0.921 | 0.726 | 0.731 | 0.914 | 0.593 | 0.726 | 0.943 |
rf | embed_lgbm | lgbm | 0.876 | 0.918 | 0.816 | 0.781 | 0.949 | 0.570 | 0.816 | 0.902 |
rf | embed_linear | linear | 0.875 | 0.925 | 0.689 | 0.717 | 0.901 | 0.645 | 0.689 | 0.958 |
knn | embed_lgbm | lgbm | 0.872 | 0.719 | 0.634 | 0.667 | 0.884 | 0.733 | 0.634 | 0.977 |
lgbm | embed_linear | linear | 0.869 | 0.928 | 0.593 | 0.605 | 0.872 | 0.700 | 0.593 | 0.992 |
lgbm | wrap | none | 0.869 | 0.807 | 0.684 | 0.709 | 0.900 | 0.620 | 0.684 | 0.951 |
knn | pred | none | 0.869 | 0.738 | 0.658 | 0.687 | 0.892 | 0.634 | 0.658 | 0.962 |
sgd | embed_linear | linear | 0.866 | 0.845 | 0.711 | 0.716 | 0.911 | 0.601 | 0.711 | 0.936 |
lgbm | none | none | 0.856 | 0.876 | 0.609 | 0.629 | 0.877 | 0.567 | 0.609 | 0.966 |
lgbm | pred | none | 0.847 | 0.887 | 0.500 | 0.458 | 0.847 | nan | 0.500 | 1.000 |
rf | none | none | 0.847 | 0.906 | 0.500 | 0.458 | 0.847 | nan | 0.500 | 1.000 |
knn | assoc | none | 0.847 | 0.804 | 0.500 | 0.458 | 0.847 | nan | 0.500 | 1.000 |
dummy | wrap | none | 0.847 | 0.500 | 0.500 | 0.458 | 0.847 | nan | 0.500 | 1.000 |
dummy | pred | none | 0.847 | 0.500 | 0.500 | 0.458 | 0.847 | nan | 0.500 | 1.000 |
dummy | none | none | 0.847 | 0.500 | 0.500 | 0.458 | 0.847 | nan | 0.500 | 1.000 |
knn | wrap | none | 0.847 | 0.816 | 0.500 | 0.458 | 0.847 | nan | 0.500 | 1.000 |
dummy | embed_linear | linear | 0.847 | 0.500 | 0.500 | 0.458 | 0.847 | nan | 0.500 | 1.000 |
dummy | embed_lgbm | lgbm | 0.847 | 0.500 | 0.500 | 0.458 | 0.847 | nan | 0.500 | 1.000 |
dummy | assoc | none | 0.847 | 0.500 | 0.500 | 0.458 | 0.847 | nan | 0.500 | 1.000 |
Appendix M
Feature | Score |
---|---|
CRP | 8.697 × 10−1 |
Peritonitis_no | 8.868 × 10−1 |
Coughing_Pain_nan | 8.868 × 10−1 |
Body_Temperature | 8.847 × 10−1 |
Thrombocyte_Count | 8.718 × 10−1 |
References
- “Appendicitis,” Mayo Clinic. Available online: https://www.mayoclinic.org/diseases-conditions/appendicitis/symptoms-causes/syc-20369543 (accessed on 28 September 2024).
- “Does This Child Have Appendicitis?” Johns Hopkins Medicine. Available online: https://www.hopkinsmedicine.org/health/conditions-and-diseases/does-this-child-have-appendicitis#:~:text=Up%20to%2080%20percent%20of,easy%20to%20miss%20or%20delay. (accessed on 5 October 2024).
- “Appendicitis Tests: Medlineplus Medical Test,” MedlinePlus. Available online: https://medlineplus.gov/lab-tests/appendicitis-tests/#:~:text=CT%20scan%20(computed%20tomography%20scan,up%20better%20in%20the%20pictures (accessed on 28 September 2024).
- Gollapalli, M.; Rahman, A.; Kudos, S.A.; Foula, M.S.; Alkhalifa, A.M.; Albisher, H.M.; Al-Hariri, M.T.; Mohammad, N. Appendicitis Diagnosis: Ensemble Machine Learning and Explainable Artificial Intelligence-Based Comprehensive Approach. Big Data Cogn. Comput. 2024, 8, 108. [Google Scholar] [CrossRef]
- Issaiy, M.; Zarei, D.; Saghazadeh, A. Artificial Intelligence and Acute Appendicitis: A Systematic Review of Diagnostic and Prognostic Models. World J. Emerg. Surg. 2023, 18, 59. [Google Scholar] [CrossRef]
- Kang, C.B.; Li, X.W.; Hou, S.Y.; Chi, X.Q.; Shan, H.F.; Zhang, Q.J. Preoperatively predicting the pathological types of acute appendicitis using machine learning based on peripheral blood biomarkers and clinical features: A retrospective study. Ann. Transl. Med. 2021, 9, 835. [Google Scholar] [CrossRef]
- Park, J.J.; Kim, K.A.; Nam, Y.; Choi, M.H.; Choi, S.Y.; Rhie, J. Convolutional-neural-network-based diagnosis of appendicitis via CT scans in patients with acute abdominal pain presenting in the emergency department. Sci. Rep. 2020, 10, 9556. [Google Scholar] [CrossRef]
- Akbulut, S.; Yagin, F.H.; Cicek, I.B.; Koc, C.; Colak, C.; Yilmaz, S. Prediction of perforated and nonperforated acute appendicitis using machine learning-based explainable artificial intelligence. Diagnostics 2023, 13, 1173. [Google Scholar] [CrossRef]
- Rajpurkar, P.; Park, A.; Irvin, J.; Chute, C.; Bereket, M.; Mastrodicasa, D. AppendiXNet: Deep learning for diagnosis of appendicitis from a small dataset of CT exams using video pretraining. Sci. Rep. 2020, 10, 3958. [Google Scholar] [CrossRef]
- Prabhudesai, S.G.; Gould, S.; Rekhraj, S.; Tekkis, P.P.; Glazer, G.; Ziprin, P. Artificial neural networks: Useful aid in diagnosing acute appendicitis. World J. Surg. 2008, 32, 305–309. [Google Scholar] [CrossRef]
- Park, S.H.; Kim, Y.J.; Kim, K.G.; Chung, J.-W.; Kim, H.C.; Choi, I.Y.; You, M.-W.; Lee, G.P.; Hwang, J.H. Comparison between single and serial computed tomography images in classification of acute appendicitis, acute right-sided diverticulitis, and normal appendix using EfficientNet. PLoS ONE 2023, 18, e0281498. [Google Scholar] [CrossRef]
- Zhao, Y.; Yang, L.; Sun, C.; Li, Y.; He, Y.; Zhang, L. Discovery of urinary proteomic signature for differential diagnosis of acute appendicitis. Biomed. Res. Int. 2020, 2020, 3896263. [Google Scholar] [CrossRef]
- Hsieh, C.H.; Lu, R.H.; Lee, N.H.; Chiu, W.T.; Hsu, M.H.; Li, Y.C. Novel solutions for an old disease: Diagnosis of acute appendicitis with random forest, support vector machines, and artificial neural networks. Surgery 2011, 149, 87–93. [Google Scholar] [CrossRef]
- Phan-Mai, T.A.; Thai, T.T.; Mai, T.Q.; Vu, K.A.; Mai, C.C.; Nguyen, D.A. Validity of machine learning in detecting complicated appendicitis in a resource-limited setting: Findings from Vietnam. Biomed. Res. Int. 2023, 2023, 5013812. [Google Scholar] [CrossRef]
- Sakai, S.; Kobayashi, K.; Toyabe, S.; Mandai, N.; Kanda, T.; Akazawa, K. Comparison of the levels of accuracy of an artificial neural network model and a logistic regression model for the diagnosis of acute appendicitis. J. Med. Syst. 2007, 31, 357–364. [Google Scholar] [CrossRef]
- Lin, H.A.; Lin, L.T.; Lin, S.F. Application of artificial neural network models to differentiate between complicated and uncomplicated acute appendicitis. J. Med. Syst. 2023, 47, 38. [Google Scholar] [CrossRef]
- Bunn, C.; Kulshrestha, S.; Boyda, J.; Balasubramanian, N.; Birch, S.; Karabayir, I. Application of machine learning to the prediction of postoperative sepsis after appendectomy. Surgery 2021, 169, 671–677. [Google Scholar] [CrossRef]
- Eickhoff, R.M.; Bulla, A.; Eickhoff, S.B.; Heise, D.; Helmedag, M.; Kroh, A. Machine learning prediction model for postoperative outcome after perforated appendicitis. Langenbecks Arch. Surg. 2022, 407, 789–795. [Google Scholar] [CrossRef]
- Ghareeb, W.M.; Emile, S.H.; Elshobaky, A. Artificial intelligence compared to alvarado scoring system alone or combined with ultrasound criteria in the diagnosis of acute appendicitis. J. Gastrointest. Surg. 2022, 26, 655–658. [Google Scholar] [CrossRef]
- Ramirez-GarciaLuna, J.L.; Vera-Bañuelos, L.R.; Guevara-Torres, L.; Martínez-Jiménez, M.A.; Ortiz-Dosal, A.; Gonzalez, F.J.; Kolosovas-Machuca, E.S. Infrared thermography of abdominal wall in acute appendicitis: Proof of concept study. Infrared Phys. Technol. 2020, 105, 103165. [Google Scholar] [CrossRef]
- Forsström, J.J.; Irjala, K.; Selén, G.; Nyström, M.; Eklund, P. Using data preprocessing and single layer perceptron to analyze laboratory data. Scand. J. Clin. Lab. Investig. Suppl. 1995, 222, 75–81. [Google Scholar] [CrossRef]
- Afshari Safavi, A.; Zand Karimi, E.; Rezaei, M.; Mohebi, H.; Mehrvarz, S.; Khorrami, M.R. Comparing the accuracy of neural network models and conventional tests in diagnosis of suspected acute appendicitis. J. Maz. Univ. Med. Sci. 2015, 25, 58–65. [Google Scholar]
- Pesonen, E.; Eskelinen, M.; Juhola, M. Comparison of different neural network algorithms in the diagnosis of acute appendicitis. Int. J. Biomed. Comput. 1996, 40, 227–233. [Google Scholar] [CrossRef]
- Ting, H.W.; Wu, J.T.; Chan, C.L.; Lin, S.L.; Chen, M.H. Decision model for acute appendicitis treatment with decision tree technology–a modification of the Alvarado scoring system. J. Chin. Med. Assoc. 2021, 73, 401–406. [Google Scholar] [CrossRef]
- Son, C.S.; Jang, B.K.; Seo, S.T.; Kim, M.S.; Kim, Y.N. A hybrid decision support model to discover informative knowledge in diagnosing acute appendicitis. BMC Med. Inform. Decis. Mak. 2012, 12, 17. [Google Scholar] [CrossRef]
- Yoldaş, Ö.; Tez, M.; Karaca, T. Artificial neural networks in the diagnosis of acute appendicitis. Am. J. Emerg. Med. 2012, 30, 1245–1247. [Google Scholar] [CrossRef]
- Park, S.Y.; Kim, S.M. Acute appendicitis diagnosis using artificial neural networks. Technol. Health Care 2015, 23, S559–S565. [Google Scholar] [CrossRef]
- Jamshidnezhad, A.; Azizi, A.; Zadeh, S.R.; Shirali, S.; Shoushtari, M.H.; Sabaghan, Y. A computer based model in comparison with sonography imaging to diagnosis of acute appendicitis in Iran. J. Acute Med. 2017, 7, 10–18. [Google Scholar]
- Gudelis, M.; Lacasta Garcia, J.D.; Trujillano Cabello, J.J. Diagnosis of pain in the right iliac fossa. A new diagnostic score based on decision-tree and artificial neural network methods. Cir. Esp. (Engl. Ed.) 2019, 97, 329–335. [Google Scholar] [CrossRef]
- Kang, H.J.; Kang, H.; Kim, B.; Chae, M.S.; Ha, Y.R.; Oh, S.B.; Ahn, J.H. Evaluation of the diagnostic performance of a decision tree model in suspected acute appendicitis with equivocal preoperative computed tomography findings compared with Alvarado, Eskelinen, and adult appendicitis scores: A STARD compliant article. Medicine 2019, 98, e17368. [Google Scholar] [CrossRef]
- Shahmoradi, L.; Safdari, R.; Mir Hosseini, M.; Arji, G.; Jannt, B.; Abdar, M. Predicting risk of acute appendicitis: A comparison of artificial neural network and logistic regression models. Acta Med. Iran. 2019, 56, 785. [Google Scholar]
- Li, P.; Zhang, Z.; Weng, S.; Nie, H. Establishment of predictive models for acute complicated appendicitis during pregnancy-a retrospective case-control study. Int. J. Gynaecol. Obstet. 2023, 162, 744–751. [Google Scholar] [CrossRef]
- Lee, Y.H.; Hu, P.J.; Cheng, T.H.; Huang, T.C.; Chuang, W.Y. A preclustering-based ensemble learning technique for acute appendicitis diagnoses. Artif. Intell. Med. 2013, 58, 115–124. [Google Scholar] [CrossRef]
- Xia, J.; Wang, Z.; Yang, D.; Li, R.; Liang, G.; Chen, H. Performance optimization of support vector machine with oppositional grasshopper optimization for acute appendicitis diagnosis. Comput. Biol. Med. 2022, 143, 105206. [Google Scholar] [CrossRef]
- Marcinkevičs, R.; Reis Wolfertstetter, P.; Wellmann, S.; Knorr, C.; Vogt, J.E. Using machine learning to predict the diagnosis, management and severity of pediatric appendicitis. Front. Pediatr. 2021, 9, 662183. [Google Scholar] [CrossRef]
- Regensburg Pediatric Appendicitis. Available online: https://archive.ics.uci.edu/dataset/938/regensburg+pediatric+appendicitis (accessed on 30 September 2024).
- Marcinkevičs, R.; Wolfertstetter, P.R.; Klimiene, U.; Chin-Cheong, K.; Paschke, A.; Zerres, J.; Denzinger, M.; Niederberger, D.; Wellmann, S.; Ozkan, E.; et al. Interpretable and intervenable ultrasonography-based machine learning models for pediatric appendicitis. Med. Image Anal. 2024, 91, 103042. Available online: https://www.sciencedirect.com/science/article/pii/S136184152300302X?via%3Dihub (accessed on 15 November 2024). [CrossRef]
- Navaei, M.; Doogchi, Z.; Gholami, F.; Tavakoli, M.K. Leveraging Machine Learning for Pediatric Appendicitis Diagnosis: A Retrospective Study Integrating Clinical, Laboratory, and Imaging Data. Health Sci. Rep. 2025, 8, e70756. [Google Scholar] [CrossRef]
- Chadaga, K.; Khanna, V.; Prabhu, S.; Sampathila, N.; Chadaga, R.; Umakanth, S.; Bhat, D.; Swathi, K.S.; Kamath, R. An interpretable and transparent machine learning framework for appendicitis detection in pediatric patients. Sci. Rep. 2024, 14, 24454. Available online: https://www.nature.com/articles/s41598-024-75896-y (accessed on 15 November 2024). [CrossRef]
- Thapa, A.; Timilsina, S.; Chapagain, B. Dharma: A novel machine learning framework for pediatric appendicitis-diagnosis, severity assessment and evidence-based clinical decision support. medRxiv 2025. [Google Scholar] [CrossRef]
- Berger, D. DF-analyze/readme.md. GitHub. Available online: https://github.com/stfxecutables/df-analyze/blob/02e546f50d66ba2b27faae94758f5f69d29ad8f8/README.md#feature-type-and-cardinality-inference (accessed on 18 October 2024).
- Kendall, J. appendicitis-ml. GitHub. Available online: https://github.com/johnkxl/appendicitis-ml (accessed on 1 December 2024).
- Berger, D. df-analyze: Redundancy-Aware Feature Selection [Experimental Branch], GitHub. Available online: https://github.com/stfxecutables/df-analyze/tree/experimental?tab=readme-ov-file#redundancy-aware-feature-selection-new (accessed on 15 November 2024).
- Joseph, M.; Raj, H. GANDALF: Gated Adaptive Network For Deep Automated Learning of Features. 2024. Available online: https://arxiv.org/abs/2207.08548 (accessed on 15 October 2024).
- Levman, J.; Jennings, M.; Rouse, E.; Berger, D.; Kabaria, P.; Nangaku, M.; Gondra, I.; Takahashi, E. A Morphological Study of Schizophrenia with Magnetic Resonance Imaging, Advanced Analytics, and Machine Learning. Front. Neurosci. 2022, 16, 926426. [Google Scholar] [CrossRef]
- Figueroa, J.; Etim, P.; Shibu, A.; Berger, D.; Levman, J. Diagnosing and Characterizing Chronic Kidney Disease with Machine Learning: The Value of Clinical Patient Characteristics as Evidenced from an Open Dataset. Electronics 2024, 13, 4326. [Google Scholar] [CrossRef]
- Saville, K.; Berger, D.; Levman, J. Mitigating Bias Due to Race and Gender in Machine Learning Predictions of Traffic Stop Outcomes. Information 2024, 11, 687. [Google Scholar] [CrossRef]
- Huang, X.; Gauthier, C.; Berger, D.; Cai, H.; Levman, J. Identifying Cortical Molecular Biomarkers Potentially Associated with Learning in Mice Using Artificial Intelligence. Int. J. Mol. Sci. 2025, 26, 6878. [Google Scholar] [CrossRef]
Appendicitis | No Appendicitis | |
---|---|---|
Frequency | 463 | 317 |
Proportion | 463/780 | 317/780 |
Conservative | Primary Surgical | Secondary Surgical | Simultaneous Appendectomy | |
---|---|---|---|---|
Frequency | 483 | 270 | 27 | 1 |
Proportion | 483/781 | 270/781 | 27/781 | 1/781 |
Relative Frequency | 61.84% | 34.57% | 3.46% | 0.13% |
Uncomplicated | Complicated | |
---|---|---|
Frequency | 662 | 119 |
Proportion | 662/781 | 119/781 |
Relative Frequency | 84.76% | 15.24% |
Variable | Appendicitis: Mean, SD | No Appendicitis: Mean, SD |
---|---|---|
Age | 11.08, 3.56 | 11.72, 3.46 |
BMI | 18.45, 4.16 | 19.56, 4.62 |
Height | 146.93, 20.43 | 149.51, 18.64 |
Weight | 41.72, 17.47 | 45.25, 17.11 |
Length_of_Stay | 5.11, 2.98 | 3.09, 0.98 |
Alvarado_Score | 6.67, 1.93 | 4.83, 2.0 |
Paedriatic_Appendicitis_Score | 5.82, 1.85 | 4.42, 1.81 |
Appendix_Diameter | 8.7, 2.18 | 5.04, 1.17 |
Body_Temperature | 37.52, 0.81 | 37.24, 1.0 |
WBC_Count | 14.28, 5.34 | 10.33, 4.48 |
Neutrophil_Percentage | 76.03, 12.63 | 65.6, 14.76 |
Segmented_Neutrophils | 71.6, 12.51 | 55.23, 13.29 |
RBC_Count | 4.79, 0.37 | 4.82, 0.64 |
Hemoglobin | 13.38, 1.61 | 13.38, 1.02 |
RDW | 13.4, 5.86 | 12.87, 0.87 |
Thrombocyte_Count | 285.79, 70.83 | 284.48, 74.92 |
Ketones_in_Urine | 1.15, 1.28 | 0.69, 1.11 |
RBC_in_Urine | 0.4, 0.82 | 0.32, 0.71 |
WBC_in_Urine | 0.24, 0.63 | 0.19, 0.55 |
CRP | 44.9, 68.51 | 11.72, 24.92 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kendall, J.; Gaspar, G.; Berger, D.; Levman, J. Machine Learning and Feature Selection in Pediatric Appendicitis. Tomography 2025, 11, 90. https://doi.org/10.3390/tomography11080090
Kendall J, Gaspar G, Berger D, Levman J. Machine Learning and Feature Selection in Pediatric Appendicitis. Tomography. 2025; 11(8):90. https://doi.org/10.3390/tomography11080090
Chicago/Turabian StyleKendall, John, Gabriel Gaspar, Derek Berger, and Jacob Levman. 2025. "Machine Learning and Feature Selection in Pediatric Appendicitis" Tomography 11, no. 8: 90. https://doi.org/10.3390/tomography11080090
APA StyleKendall, J., Gaspar, G., Berger, D., & Levman, J. (2025). Machine Learning and Feature Selection in Pediatric Appendicitis. Tomography, 11(8), 90. https://doi.org/10.3390/tomography11080090