Partial Breast Irradiation for Early-Stage Breast Cancer: Advances, Challenges, and Future Directions—A Narrative Review
Abstract
:1. Background
2. Delivery Methods for PBI
2.1. PBI Techniques
2.2. Brachytherapy
2.2.1. Intraoperative Radiation Therapy (IORT)
2.2.2. Proton Beam Therapy
2.2.3. External Beam Radiotherapy (EBRT)
3. Clinical Evidence—Results from RCTs
3.1. Oncological Outcomes and Recurrence Rates
3.2. Cosmesis and Toxicity Profiles
3.3. Quality of Life Outcomes
3.4. Dose and Fractionation Schedules in PBI
3.5. Selection of Candidates for PBI
3.6. Tumor Size
3.7. Histologic Grade
3.8. Breast Cancer Subtypes
3.9. Age
4. Limitations and Considerations for PBI in Clinical Practice
4.1. Future Directions in PBI
4.1.1. MRI-Guided Radiotherapy (MRgRT)
4.1.2. Neoadjuvant PBI
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
BCT | Breast-Conserving Therapy |
BCS | Breast-Conserving Surgery |
WBI | Whole-Breast Irradiation |
PBI | Partial Breast Irradiation |
IORT | Intraoperative Radiotherapy |
EBRT | External Beam Radiotherapy |
3D-CRT | Three-Dimensional Conformal Radiotherapy |
IMBT | Intensity-Modulated Brachytherapy |
LINAC | Linear Accelerator |
MRgRT | Magnetic Resonance-Guided Radiotherapy |
GTV | Gross Tumor Volume |
PTV | Planning Target Volume |
Gy | Gray (Unit of Radiation Dose) |
RCT | Randomized Controlled Trial |
IBTR | Ipsilateral Breast Tumor Recurrence |
ABS | American Brachytherapy Society |
ASTRO | American Society for Radiation Oncology |
GEC-ESTRO | Groupe Européen de Curiethérapie—European Society for Radiotherapy and Oncology |
MRI | Magnetic Resonance Imaging |
ER | Estrogen Receptor |
References
- International Agency for Research on Cancer (World Health Organisation). Available online: https://gco.iarc.fr/en (accessed on 1 January 2020).
- Ward, Z.J.; Atun, R.; Hricak, H.; Asante, K.; McGinty, G.; Sutton, E.J.; Norton, L.; Scott, A.M.; Shulman, L.N. The impact of scaling up access to treatment and imaging modalities on global disparities in breast cancer survival: A simulation-based analysis. Lancet Oncol. 2021, 22, 1301–1311. [Google Scholar] [CrossRef] [PubMed]
- Civil, Y.A.; Oei, A.L.; Duvivier, K.M.; Bijker, N.; Meijnen, P.; Donkers, L.; Verheijen, S.; van Kesteren, Z.; Palacios, M.A.; Schijf, L.J.; et al. Prediction of pathologic complete response after single-dose MR-guided partial breast irradiation in low-risk breast cancer patients: The ABLATIVE-2 trial—A study protocol. BMC Cancer 2023, 23, 419. [Google Scholar] [CrossRef]
- Qadir, A.; Singh, N.; Dean, J.; Brown, K.; Tacey, M.; Mann, B.; Kron, T.; Cahoon, G.; Lau, E.; Scott, A.M.; et al. Magnetic resonance imaging-guided single-fraction preoperative radiotherapy for early-stage breast cancer (the RICE trial): Feasibility study. Pilot Feasibility Stud. 2024, 10, 133. [Google Scholar] [CrossRef]
- Qadir, A.; Singh, N.; Moe, A.A.K.; Cahoon, G.; Lye, J.; Chao, M.; Foroudi, F.; Uribe, S. Potential of MRI in Assessing Treatment Response After Neoadjuvant Radiation Therapy Treatment in Breast Cancer Patients: A Scoping Review. Clin. Breast Cancer 2025, 25, e1–e9.e2. [Google Scholar] [CrossRef] [PubMed]
- Fisher, B.; Anderson, S.; Bryant, J.; Margolese, R.G.; Deutsch, M.; Fisher, E.R.; Jeong, J.-H.; Wolmark, N. Twenty-year follow-up of a randomized trial comparing total mastectomy, lumpectomy, and lumpectomy plus irradiation for the treatment of invasive breast cancer. N. Engl. J. Med. 2002, 347, 1233–1241. [Google Scholar] [CrossRef]
- Veronesi, U.; Cascinelli, N.; Mariani, L.; Greco, M.; Saccozzi, R.; Luini, A.; Aguilar, M.; Marubini, E. Twenty-year follow-up of a randomized study comparing breast-conserving surgery with radical mastectomy for early breast cancer. N. Engl. J. Med. 2002, 347, 1227–1232. [Google Scholar] [CrossRef] [PubMed]
- Corradini, S.; Reitz, D.; Pazos, M.; Schönecker, S.; Braun, M.; Harbeck, N.; Matuschek, C.; Bölke, E.; Ganswindt, U.; Alongi, F.; et al. Mastectomy or Breast-Conserving Therapy for Early Breast Cancer in Real-Life Clinical Practice: Outcome Comparison of 7565 Cases. Cancers 2019, 11, 160. [Google Scholar] [CrossRef]
- Darby, S.; McGale, P.; Correa, C.; Taylor, C.; Arriagada, R.; Clarke, M.; Cutter, D.; Davies, C.; Ewertz, M.; Godwin, J.; et al. Effect of radiotherapy after breast-conserving surgery on 10-year recurrence and 15-year breast cancer death: Meta-analysis of individual patient data for 10,801 women in 17 randomised trials. Lancet 2011, 378, 1707–1716. [Google Scholar] [CrossRef]
- Haffty, B.G.; Buchholz, T.A. Hypofractionated breast radiation: Preferred standard of care? Lancet Oncol. 2013, 14, 1032–1034. [Google Scholar] [CrossRef]
- Njeh, C.F.; Saunders, M.W.; Langton, C.M. Accelerated partial breast irradiation using external beam conformal radiation therapy: A review. Crit. Rev. Oncol. Hematol. 2012, 81, 1–20. [Google Scholar] [CrossRef]
- Budach, W.; Bölke, E.; Matuschek, C. Hypofractionated Radiotherapy as Adjuvant Treatment in Early Breast Cancer. A Review and Meta-Analysis of Randomized Controlled Trials. Breast Care 2015, 10, 240–245. [Google Scholar] [CrossRef] [PubMed]
- The START Trialists’ Group. The UK Standardisation of Breast Radiotherapy (START) Trial A of radiotherapy hypofractionation for treatment of early breast cancer: A randomised trial. Lancet Oncol. 2008, 9, 331–341. [Google Scholar] [CrossRef] [PubMed]
- Bentzen, S.M.; Agrawal, R.K.; Aird, E.G.; Barrett, J.M.; Barrett-Lee, P.J.; Bentzen, S.M.; Bliss, J.M.; Brown, J.; Dewar, J.A.; Dobbs, H.J.; et al. The UK Standardisation of Breast Radiotherapy (START) Trial B of radiotherapy hypofractionation for treatment of early breast cancer: A randomised trial. Lancet 2008, 371, 1098–1107. [Google Scholar] [CrossRef]
- Kim, K.S.; Shin, K.H.; Choi, N.; Lee, S.W. Hypofractionated whole breast irradiation: New standard in early breast cancer after breast-conserving surgery. Radiat. Oncol. J. 2016, 34, 81–87. [Google Scholar] [CrossRef] [PubMed]
- Brunt, A.M.; Haviland, J.S.; Kirby, A.M.; Somaiah, N.; Wheatley, D.A.; Bliss, J.M.; Yarnold, J.R. Five-fraction Radiotherapy for Breast Cancer: FAST-Forward to Implementation. Clin. Oncol. 2021, 33, 430–439. [Google Scholar] [CrossRef]
- Darby, S.C.; Ewertz, M.; Hall, P. Ischemic heart disease after breast cancer radiotherapy. N. Engl. J. Med. 2013, 368, 2527. [Google Scholar] [CrossRef] [PubMed]
- Kirova, Y.M.; Gambotti, L.; De Rycke, Y.; Vilcoq, J.R.; Asselain, B.; Fourquet, A. Risk of Second Malignancies After Adjuvant Radiotherapy for Breast Cancer: A Large-Scale, Single-Institution Review. Int. J. Radiat. Oncol. Biol. Phys. 2007, 68, 359–363. [Google Scholar] [CrossRef]
- Hughes, K.S.; Schnaper, L.A.; Bellon, J.R.; Cirrincione, C.T.; Berry, D.A.; McCormick, B.; Muss, H.B.; Smith, B.L.; Hudis, C.A.; Winer, E.P. Lumpectomy plus tamoxifen with or without irradiation in women age 70 years or older with early breast cancer: Long-term follow-up of CALGB 9343. J. Clin. Oncol. 2013, 31, 2382–2387. [Google Scholar] [CrossRef] [PubMed]
- Holli, K.; Saaristo, R.; Isola, J.; Joensuu, H.; Hakama, M. Lumpectomy with or without postoperative radiotherapy for breast cancer with favourable prognostic features: Results of a randomized study. Br. J. Cancer 2001, 84, 164–169. [Google Scholar] [CrossRef]
- Liljegren, G.; Holmberg, L.; Bergh, J.; Lindgren, A.; Tabár, L.; Nordgren, H.; Adami, H.O. 10-Year results after sector resection with or without postoperative radiotherapy for stage I breast cancer: A randomized trial. J. Clin. Oncol. 1999, 17, 2326–2333. [Google Scholar] [CrossRef]
- Shaitelman, S.F.; Anderson, B.M.; Arthur, D.W.; Bazan, J.G.; Bellon, J.R.; Bradfield, L.; Coles, C.E.; Gerber, N.K.; Kathpal, M.; Kim, L.; et al. Partial Breast Irradiation for Patients with Early-Stage Invasive Breast Cancer or Ductal Carcinoma In Situ: An ASTRO Clinical Practice Guideline. Pract. Radiat. Oncol. 2024, 14, 112–132. [Google Scholar] [CrossRef] [PubMed]
- Meattini, I.; de Oliveira Franco, R.; Salvestrini, V.; Hijal, T. Partial Breast Irradiation. Breast 2023, 69, 401–409. [Google Scholar] [CrossRef] [PubMed]
- Figueroa, B.; Vicini, F.; Shah, C. Partial Breast Radiation. Curr. Breast Cancer Rep. 2023, 15, 168–174. [Google Scholar] [CrossRef]
- Mohan, R. A review of proton therapy—Current status and future directions. Precis. Radiat. Oncol. 2022, 6, 164–176. [Google Scholar] [CrossRef]
- Strnad, V.; Polgár, C.; Ott, O.J.; Hildebrandt, G.; Kauer-Dorner, D.; Knauerhase, H.; Major, T.; Łyczek, J.; Guinot, J.L.; Gutierrez Miguelez, C.; et al. Accelerated partial breast irradiation using sole interstitial multicatheter brachytherapy compared with whole-breast irradiation with boost for early breast cancer: 10-year results of a GEC-ESTRO randomised, phase 3, non-inferiority trial. Lancet Oncol. 2023, 24, 262–272. [Google Scholar] [CrossRef]
- Polgár, C.; Fodor, J.; Major, T.; Sulyok, Z.; Kásler, M. Breast-conserving therapy with partial or whole breast irradiation: Ten-year results of the Budapest randomized trial. Radiother. Oncol. 2013, 108, 197–202. [Google Scholar] [CrossRef]
- Sanders, M.E.; Scroggins, T.; Ampil, F.L.; Li, B.D. Accelerated partial breast irradiation in early-stage breast cancer. J. Clin. Oncol. 2007, 25, 996–1002. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, M.; Whelan, T.J. Accelerated Partial Breast Irradiation (APBI): Where Are We Now? Curr. Breast Cancer Rep. 2020, 12, 275–284. [Google Scholar] [CrossRef]
- Vicini, F.A.; Cecchini, R.S.; White, J.R.; Arthur, D.W.; Julian, T.B.; Rabinovitch, R.A.; Kuske, R.R.; Ganz, P.A.; Parda, D.S.; Scheier, M.F.; et al. Long-term primary results of accelerated partial breast irradiation after breast-conserving surgery for early-stage breast cancer: A randomised, phase 3, equivalence trial. Lancet 2019, 394, 2155–2164. [Google Scholar] [CrossRef]
- Pilar, A.; Gupta, M.; Ghosh Laskar, S.; Laskar, S. Intraoperative radiotherapy: Review of techniques and results. Ecancermedicalscience 2017, 11, 750. [Google Scholar] [CrossRef]
- Skowronek, J.; Chicheł, A. Brachytherapy in breast cancer: An effective alternative. Prz. Menopauzalny 2014, 13, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Ning, J.; Cheng, G.; Wu, N. A systematic review on the techniques, long-term outcomes, and complications of partial breast irradiation after breast-conserving surgery for early-stage breast cancer. Sci. Rep. 2024, 14, 22283. [Google Scholar] [CrossRef]
- Wong, J.H.D.; Zaili, Z.; Abdul Malik, R.; Bustam, A.Z.; Saad, M.; Jamaris, S.; Mosiun, J.A.; Mohd Taib, N.A.; Ung, N.M.; See, M.-H. Evaluation of skin dose and skin toxicity in patients undergoing intraoperative radiotherapy for early breast cancer. J. Appl. Clin. Med. Phys. 2021, 22, 139–147. [Google Scholar] [CrossRef] [PubMed]
- Vaidya, J.S.; Wenz, F.; Bulsara, M.; Tobias, J.S.; Joseph, D.J.; Keshtgar, M.; Flyger, H.L.; Massarut, S.; Alvarado, M.; Saunders, C. Risk-adapted targeted intraoperative radiotherapy versus whole-breast radiotherapy for breast cancer: 5-year results for local control and overall survival from the TARGIT-A randomised trial. Lancet 2014, 383, 603–613. [Google Scholar] [CrossRef]
- Veronesi, U.; Orecchia, R.; Maisonneuve, P.; Viale, G.; Rotmensz, N.; Sangalli, C.; Luini, A.; Veronesi, P.; Galimberti, V.; Zurrida, S.; et al. Intraoperative radiotherapy versus external radiotherapy for early breast cancer (ELIOT): A randomised controlled equivalence trial. Lancet Oncol. 2013, 14, 1269–1277. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Sun, M.; Yang, S.; Chen, Y.; Li, T. Intraoperative Radiotherapy Is Not a Better Alternative to Whole Breast Radiotherapy as a Therapeutic Option for Early-Stage Breast Cancer. Front. Oncol. 2021, 11, 737982. [Google Scholar] [CrossRef]
- Vaidya, J.S.; Joseph, D.J.; Tobias, J.S.; Bulsara, M.; Wenz, F.; Saunders, C.; Alvarado, M.; Flyger, H.L.; Massarut, S.; Eiermann, W.; et al. Targeted intraoperative radiotherapy versus whole breast radiotherapy for breast cancer (TARGIT-A trial): An international, prospective, randomised, non-inferiority phase 3 trial. Lancet 2010, 376, 91–102. [Google Scholar] [CrossRef]
- Elsberger, B.; Romsauerova, A.; Vinnicombe, S.; Whelehan, P.; Brown, D.C.; Dewar, J.A.; Thompson, A.M.; Evans, A. Comparison of mammographic findings after intraoperative radiotherapy or external beam whole breast radiotherapy. Eur. J. Surg. Oncol. 2014, 40, 163–167. [Google Scholar] [CrossRef]
- Engel, D.; Schnitzer, A.; Brade, J.; Blank, E.; Wenz, F.; Suetterlin, M.; Schoenberg, S.; Wasser, K. Are mammographic changes in the tumor bed more pronounced after intraoperative radiotherapy for breast cancer? Subgroup analysis from a randomized trial (TARGIT-A). Breast J. 2013, 19, 92–95. [Google Scholar] [CrossRef]
- Shah, C.; Vicini, F.; Shaitelman, S.F.; Hepel, J.; Keisch, M.; Arthur, D.; Khan, A.J.; Kuske, R.; Patel, R.; Wazer, D.E. The American Brachytherapy Society consensus statement for accelerated partial-breast irradiation. Brachytherapy 2018, 17, 154–170. [Google Scholar] [CrossRef]
- Pasalic, D.; Strom, E.A.; Allen, P.K.; Williamson, T.D.; Poenisch, F.; Amos, R.A.; Woodward, W.A.; Stauder, M.C.; Shaitelman, S.F.; Smith, B.D.; et al. Proton Accelerated Partial Breast Irradiation: Clinical Outcomes at a Planned Interim Analysis of a Prospective Phase 2 Trial. Int. J. Radiat. Oncol. Biol. Phys. 2021, 109, 441–448. [Google Scholar] [CrossRef] [PubMed]
- Galland-Girodet, S.; Pashtan, I.; MacDonald, S.M.; Ancukiewicz, M.; Hirsch, A.E.; Kachnic, L.A.; Specht, M.; Gadd, M.; Smith, B.L.; Powell, S.N.; et al. Long-term Cosmetic Outcomes and Toxicities of Proton Beam Therapy Compared with Photon-Based 3-Dimensional Conformal Accelerated Partial-Breast Irradiation: A Phase 1 Trial. Int. J. Radiat. Oncol. Biol. Phys. 2014, 90, 493–500. [Google Scholar] [CrossRef] [PubMed]
- Kozak, K.R.; Smith, B.L.; Adams, J.; Kornmehl, E.; Katz, A.; Gadd, M.; Specht, M.; Hughes, K.; Gioioso, V.; Lu, H.-M.; et al. Accelerated partial-breast irradiation using proton beams: Initial clinical experience. Int. J. Radiat. Oncol. Biol. Phys. 2006, 66, 691–698. [Google Scholar] [CrossRef] [PubMed]
- Bush, D.A.; Do, S.; Lum, S.; Garberoglio, C.; Mirshahidi, H.; Patyal, B.; Grove, R.; Slater, J.D. Partial Breast Radiation Therapy with Proton Beam: 5-Year Results with Cosmetic Outcomes. Int. J. Radiat. Oncol. Biol. Phys. 2014, 90, 501–505. [Google Scholar] [CrossRef]
- Freedman, G.M.; Li, T.; Garver, E.; Shillington, K.; Shinkle, B.; Tchou, J.C.; Fayanju, O.M.; Lin, L.; Taunk, N.K. Five-Year Outcomes of a Phase 1/2 Trial of Accelerated Partial Breast Irradiation Using Proton Therapy for Women with Stage 0-IIA Breast Cancer. Adv. Radiat. Oncol. 2024, 9, 101334. [Google Scholar] [CrossRef]
- Mutter, R.W.; Golafshar, M.A.; Buras, M.R.; Comstock, B.P.; Jacobson, M.; DeWees, T.; Remmes, N.B.; Francis, L.N.; Boughey, J.C.; Ruddy, K.J.; et al. Dose Deintensified 3-Day Photon, Proton, or Brachytherapy: A Nonrandomized Controlled Partial Breast Irradiation Trial. Int. J. Radiat. Oncol. Biol. Phys. 2025, 121, 352–364. [Google Scholar] [CrossRef]
- Press, R.H.; Mehta, M.P. Proton Therapy: Current Status and Controversies. JCO Oncol. Pract. 2024, 20, 747–749. [Google Scholar] [CrossRef]
- Rodríguez, N.; Sanz, X.; Dengra, J.; Foro, P.; Membrive, I.; Reig, A.; Quera, J.; Fernández-Velilla, E.; Pera, Ó.; Lio, J.; et al. Five-year outcomes, cosmesis, and toxicity with 3-dimensional conformal external beam radiation therapy to deliver accelerated partial breast irradiation. Int. J. Radiat. Oncol. Biol. Phys. 2013, 87, 1051–1057. [Google Scholar] [CrossRef]
- Meattini, I.; Marrazzo, L.; Saieva, C.; Desideri, I.; Scotti, V.; Simontacchi, G.; Bonomo, P.; Greto, D.; Mangoni, M.; Scoccianti, S.; et al. Accelerated Partial-Breast Irradiation Compared with Whole-Breast Irradiation for Early Breast Cancer: Long-Term Results of the Randomized Phase III APBI-IMRT-Florence Trial. J. Clin. Oncol. 2020, 38, 4175–4183. [Google Scholar] [CrossRef]
- Offersen, B.V.; Alsner, J.; Nielsen, H.M.; Jakobsen, E.H.; Nielsen, M.H.; Stenbygaard, L.; Pedersen, A.N.; Thomsen, M.S.; Yates, E.; Berg, M.; et al. Partial Breast Irradiation Versus Whole Breast Irradiation for Early Breast Cancer Patients in a Randomized Phase III Trial: The Danish Breast Cancer Group Partial Breast Irradiation Trial. J. Clin. Oncol. 2022, 40, 4189–4197. [Google Scholar] [CrossRef]
- Coles, C.E.; Griffin, C.L.; Kirby, A.M.; Titley, J.; Agrawal, R.K.; Alhasso, A.; Bhattacharya, I.S.; Brunt, A.M.; Ciurlionis, L.; Chan, C.; et al. Partial-breast radiotherapy after breast conservation surgery for patients with early breast cancer (UK IMPORT LOW trial): 5-year results from a multicentre, randomised, controlled, phase 3, non-inferiority trial. Lancet 2017, 390, 1048–1060. [Google Scholar] [CrossRef]
- Whelan, T.J.; Julian, J.A.; Berrang, T.S.; Kim, D.-H.; Germain, I.; Nichol, A.M.; Akra, M.; Lavertu, S.; Germain, F.; Fyles, A. External beam accelerated partial breast irradiation versus whole breast irradiation after breast conserving surgery in women with ductal carcinoma in situ and node-negative breast cancer (RAPID): A randomised controlled trial. Lancet 2019, 394, 2165–2172. [Google Scholar] [CrossRef] [PubMed]
- Meduri, B.; Baldissera, A.; Iotti, C.; Scheijmans, L.J.; Stam, M.R.; Parisi, S.; Boersma, L.J.; Ammendolia, I.; Koiter, E.; Valli, M. Cosmetic results and side effects of accelerated partial-breast irradiation versus whole-breast irradiation for low-risk invasive carcinoma of the breast: The randomized phase III IRMA trial. J. Clin. Oncol. 2023, 41, 2201–2210. [Google Scholar] [CrossRef]
- Livi, L.; Meattini, I.; Marrazzo, L.; Simontacchi, G.; Pallotta, S.; Saieva, C.; Paiar, F.; Scotti, V.; De Luca Cardillo, C.; Bastiani, P.; et al. Accelerated partial breast irradiation using intensity-modulated radiotherapy versus whole breast irradiation: 5-year survival analysis of a phase 3 randomised controlled trial. Eur. J. Cancer 2015, 51, 451–463. [Google Scholar] [CrossRef] [PubMed]
- Strnad, V.; Ott, O.J.; Hildebrandt, G.; Kauer-Dorner, D.; Knauerhase, H.; Major, T.; Lyczek, J.; Guinot, J.L.; Dunst, J.; Miguelez, C.G.; et al. 5-year results of accelerated partial breast irradiation using sole interstitial multicatheter brachytherapy versus whole-breast irradiation with boost after breast-conserving surgery for low-risk invasive and in-situ carcinoma of the female breast: A randomised, phase 3, non-inferiority trial. Lancet 2016, 387, 229–238. [Google Scholar] [CrossRef]
- Meattini, I.; Saieva, C.; Miccinesi, G.; Desideri, I.; Francolini, G.; Scotti, V.; Marrazzo, L.; Pallotta, S.; Meacci, F.; Muntoni, C.; et al. Accelerated partial breast irradiation using intensity modulated radiotherapy versus whole breast irradiation: Health-related quality of life final analysis from the Florence phase 3 trial. Eur. J. Cancer 2017, 76, 17–26. [Google Scholar] [CrossRef]
- Schäfer, R.; Strnad, V.; Polgár, C.; Uter, W.; Hildebrandt, G.; Ott, O.J.; Kauer-Dorner, D.; Knauerhase, H.; Major, T.; Lyczek, J. Quality-of-life results for accelerated partial breast irradiation with interstitial brachytherapy versus whole-breast irradiation in early breast cancer after breast-conserving surgery (GEC-ESTRO): 5-year results of a randomised, phase 3 trial. Lancet Oncol. 2018, 19, 834–844. [Google Scholar] [CrossRef] [PubMed]
- Meattini, I.; Palumbo, I.; Becherini, C.; Borghesi, S.; Cucciarelli, F.; Dicuonzo, S.; Fiorentino, A.; Spoto, R.; Poortmans, P.; Aristei, C.; et al. The Italian Association for Radiotherapy and Clinical Oncology (AIRO) position statements for postoperative breast cancer radiation therapy volume, dose, and fractionation. Radiol. Med. 2022, 127, 1407–1411. [Google Scholar] [CrossRef]
- Kim, D.-H.; Théberge, V.; Parpia, S.; Kong, I.; Provencher, S.; Yassa, M.; Perera, F.; Lavertu, S.; Rousseau, P.; Lee, J.; et al. OPAR: A Randomized Trial of Partial Breast Irradiation in Five Fractions Once Daily for Early Breast Cancer. J. Clin. Oncol. 2025, 43, 505–512. [Google Scholar] [CrossRef]
- Lewis, P.; Brunt, A.; Coles, C.; Griffin, S.; Locke, I.; Roques, T. Moving forward fast with FAST-Forward. Clin. Oncol. 2021, 33, 427–429. [Google Scholar] [CrossRef]
- Meattini, I.; Becherini, C.; Boersma, L.; Kaidar-Person, O.; Marta, G.N.; Montero, A.; Offersen, B.V.; Aznar, M.C.; Belka, C.; Brunt, A.M. European Society for Radiotherapy and Oncology Advisory Committee in Radiation Oncology Practice consensus recommendations on patient selection and dose and fractionation for external beam radiotherapy in early breast cancer. Lancet Oncol. 2022, 23, e21–e31. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, J.B.; Chen, P.Y.; Wallace, M.F.; Shah, C.S.; Benitez, P.R.; Martinez, A.A.; Vicini, F.A. Six-Year Results from a Phase I/II Trial for Hypofractionated Accelerated Partial Breast Irradiation Using a 2-Day Dose Schedule. Am. J. Clin. Oncol. 2018, 41, 986–991. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.J.; Chen, P.Y.; Yashar, C.; Poppe, M.M.; Li, L.; Abou Yehia, Z.; Vicini, F.A.; Moore, D.; Dale, R.; Arthur, D.; et al. Three-Fraction Accelerated Partial Breast Irradiation (APBI) Delivered with Brachytherapy Applicators Is Feasible and Safe: First Results from the TRIUMPH-T Trial. Int. J. Radiat. Oncol. Biol. Phys. 2019, 104, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Polgár, C.; Limbergen, E.V.; Pötter, R.; Kovács, G.; Polo, A.; Lyczek, J.; Hildebrandt, G.; Niehoff, P.; Guinot, J.L.; Guedea, F.; et al. Patient selection for accelerated partial-breast irradiation (APBI) after breast-conserving surgery: Recommendations of the Groupe Européen de Curiethérapie-European Society for Therapeutic Radiology and Oncology (GEC-ESTRO) breast cancer working group based on clinical evidence (2009). Radiother. Oncol. 2010, 94, 264–273. [Google Scholar] [CrossRef]
- Polgár, C.; Major, T.; Takácsi-Nagy, Z.; Fodor, J. Breast-Conserving Surgery Followed by Partial or Whole Breast Irradiation: Twenty-Year Results of a Phase 3 Clinical Study. Int. J. Radiat. Oncol. Biol. Phys. 2021, 109, 998–1006. [Google Scholar] [CrossRef]
- Dorn, P.L.; Al-Hallaq, H.A.; Haq, F.; Goldberg, M.; Abe, H.; Hasan, Y.; Chmura, S.J. A Prospective Study of the Utility of Magnetic Resonance Imaging in Determining Candidacy for Partial Breast Irradiation. Int. J. Radiat. Oncol. Biol. Phys. 2013, 85, 615–622. [Google Scholar] [CrossRef]
- Pramod, N.; Nigam, A.; Basree, M.; Mawalkar, R.; Mehra, S.; Shinde, N.; Tozbikian, G.; Williams, N.; Majumder, S.; Ramaswamy, B. Comprehensive Review of Molecular Mechanisms and Clinical Features of Invasive Lobular Cancer. Oncologist 2021, 26, e943–e953. [Google Scholar] [CrossRef]
- Lișcu, H.-D.; Ionescu, A.-I.; Mologani, I.; Verga, N. Phyllodes Tumor of the Breast: A Case Report Regarding the Importance of Fast Interdisciplinary Management. Reports 2025, 8, 17. [Google Scholar] [CrossRef]
- Correa, C.; Harris, E.E.; Leonardi, M.C.; Smith, B.D.; Taghian, A.G.; Thompson, A.M.; White, J.; Harris, J.R. Accelerated Partial Breast Irradiation: Executive summary for the update of an ASTRO Evidence-Based Consensus Statement. Pract. Radiat. Oncol. 2017, 7, 73–79. [Google Scholar] [CrossRef]
- Taghian, A.G.; Naoum, G.E.; Braunstein, L.Z.; Niemierko, A.; Smith, B.L.; Gadd, M.A.; Powell, S.N.; Recht, A. Defining the Optimal Dose for 3-Dimensional Conformal Accelerated Partial Breast Irradiation: 15-Year Follow-Up of a Dose-Escalation Trial. Int. J. Radiat. Oncol. Biol. Phys. 2025, 121, 900–909. [Google Scholar] [CrossRef]
- Zerella, M.A.; Zaffaroni, M.; Ronci, G.; Dicuonzo, S.; Rojas, D.P.; Morra, A.; Gerardi, M.A.; Fodor, C.; Rondi, E.; Vigorito, S.; et al. A narrative review for radiation oncologists to implement preoperative partial breast irradiation. Radiol. Med. 2023, 128, 1553–1570. [Google Scholar] [CrossRef]
- Jiang, J.; Chen, J.; Li, W.; Li, Y.; Chen, Y.; Zhang, Z.; Liu, C.; Han, D.; Sun, H.; Li, B.; et al. Inter-observer variations of the tumor bed delineation for patients after breast conserving surgery in preoperative magnetic resonance and computed tomography scan fusion. BMC Cancer 2021, 21, 838. [Google Scholar] [CrossRef]
- Omari, E.A.; Refaat, T. Chapter 14—Breast cancer: Role of MR-guided radiation therapy. In Advances in Magnetic Resonance Technology and Applications; Ozyar, E., Onal, C., Hackett, S.L., Eds.; Academic Press: Cambridge, MA, USA, 2023; Volume 8, pp. 283–293. [Google Scholar]
- Jeon, S.H.; Shin, K.H.; Park, S.Y.; Kim, J.I.; Park, J.M.; Kim, J.H.; Chie, E.K.; Wu, H.G. Seroma change during magnetic resonance imaging-guided partial breast irradiation and its clinical implications. Radiat. Oncol. 2017, 12, 103. [Google Scholar] [CrossRef]
- Ocanto, A.; Torres, L.; Montijano, M.; Rincón, D.; Fernández, C.; Sevilla, B.; Gonsalves, D.; Teja, M.; Guijarro, M.; Glaría, L.; et al. MR-LINAC, a New Partner in Radiation Oncology: Current Landscape. Cancers 2024, 16, 270. [Google Scholar] [CrossRef]
- Berlangieri, A.; Elliott, S.; Wasiak, J.; Chao, M.; Foroudi, F. Use of magnetic resonance image-guided radiotherapy for breast cancer: A scoping review. J. Med. Radiat. Sci. 2022, 69, 122–133. [Google Scholar] [CrossRef]
- Keall, P.J.; Brighi, C.; Glide-Hurst, C.; Liney, G.; Liu, P.Z.Y.; Lydiard, S.; Paganelli, C.; Pham, T.; Shan, S.; Tree, A.C.; et al. Integrated MRI-guided radiotherapy—Opportunities and challenges. Nat. Rev. Clin. Oncol. 2022, 19, 458–470. [Google Scholar] [CrossRef]
- Civil, Y.A.; Jonker, L.W.; Groot Koerkamp, M.P.M.; Duvivier, K.M.; de Vries, R.; Oei, A.L.; Slotman, B.J.; van der Velde, S.; van den Bongard, H. Preoperative Partial Breast Irradiation in Patients with Low-Risk Breast Cancer: A Systematic Review of Literature. Ann. Surg. Oncol. 2023, 30, 3263–3279. [Google Scholar] [CrossRef]
- Nichols, E.M.; Dhople, A.A.; Mohiuddin, M.M.; Flannery, T.W.; Yu, C.X.; Regine, W.F. Comparative analysis of the post-lumpectomy target volume versus the use of pre-lumpectomy tumor volume for early-stage breast cancer: Implications for the future. Int. J. Radiat. Oncol. Biol. Phys. 2010, 77, 197–202. [Google Scholar] [CrossRef]
- van der Leij, F.; Bosma, S.C.; van de Vijver, M.J.; Wesseling, J.; Vreeswijk, S.; Rivera, S.; Bourgier, C.; Garbay, J.R.; Foukakis, T.; Lekberg, T.; et al. First results of the preoperative accelerated partial breast irradiation (PAPBI) trial. Radiother. Oncol. 2015, 114, 322–327. [Google Scholar] [CrossRef]
- Bosma, S.C.J.; van der Leij, F.; Elkhuizen, P.H.M.; Vreeswijk, S.; Loo, C.E.; Vogel, W.V.; Bartelink, H.; van de Vijver, M.J. Evaluation of Early Response to Preoperative Accelerated Partial Breast Irradiation (PAPBI) by Histopathology, Magnetic Resonance Imaging, and 18F-fluorodexoyglucose Positron Emission Tomography/Computed Tomography (FDG PET/CT). Int. J. Radiat. Oncol. Biol. Phys. 2021, 110, 1151–1158. [Google Scholar] [CrossRef]
- Nichols, E.; Kesmodel, S.B.; Bellavance, E.; Drogula, C.; Tkaczuk, K.; Cohen, R.J.; Citron, W.; Morgan, M.; Staats, P.; Feigenberg, S.; et al. Preoperative Accelerated Partial Breast Irradiation for Early-Stage Breast Cancer: Preliminary Results of a Prospective, Phase 2 Trial. Int. J. Radiat. Oncol. Biol. Phys. 2017, 97, 747–753. [Google Scholar] [CrossRef] [PubMed]
- Vasmel, J.E.; Charaghvandi, R.K.; Houweling, A.C.; Philippens, M.E.P.; van Asselen, B.; Vreuls, C.P.H.; van Diest, P.J.; van Leeuwen, A.M.G.; van Gorp, J.; Witkamp, A.J.; et al. Tumor Response After Neoadjuvant Magnetic Resonance Guided Single Ablative Dose Partial Breast Irradiation. Int. J. Radiat. Oncol. Biol. Phys. 2020, 106, 821–829. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.R.; Barry, P.N. Pre-operative partial breast irradiation: Revolutionizing radiation treatment for women with early stage breast cancer. Ann. Breast Surg. 2021, 6, 38. [Google Scholar] [CrossRef] [PubMed]
- Leonardi, M.C.; Maisonneuve, P.; Mastropasqua, M.G.; Morra, A.; Lazzari, R.; Dell’Acqua, V.; Ferrari, A.; Rotmensz, N.; Sangalli, C.; Luini, A.; et al. Accelerated partial breast irradiation with intraoperative electrons: Using GEC-ESTRO recommendations as guidance for patient selection. Radiother. Oncol. 2013, 106, 21–27. [Google Scholar] [CrossRef]
- Tiberi, D.; Vavassis, P.; Nguyen, D.; Guilbert, M.C.; Simon-Cloutier, A.; Dubé, P.; Gervais, M.K.; Sideris, L.; Leblanc, G.; Hijal, T.; et al. Tumour response 3 months after neoadjuvant single-fraction radiotherapy for low-risk breast cancer. Curr. Oncol. 2020, 27, 155–158. [Google Scholar] [CrossRef]
- Meattini, I.; Francolini, G.; Di Cataldo, V.; Visani, L.; Becherini, C.; Scoccimarro, E.; Salvestrini, V.; Bellini, C.; Masi, L.; Doro, R.; et al. Preoperative robotic radiosurgery for early breast cancer: Results of the phase II ROCK trial (NCT03520894). Clin. Transl. Radiat. Oncol. 2022, 37, 94–100. [Google Scholar] [CrossRef]
- Weinfurtner, R.J.; Raghunand, N.; Stringfield, O.; Abdalah, M.; Niell, B.L.; Ataya, D.; Williams, A.; Mooney, B.; Rosa, M.; Lee, M.C.; et al. MRI Response to Pre-operative Stereotactic Ablative Body Radiotherapy (SABR) in Early Stage ER/PR+ HER2- Breast Cancer correlates with Surgical Pathology Tumor Bed Cellularity. Clin. Breast Cancer 2022, 22, e214–e223. [Google Scholar] [CrossRef]
- Guidolin, K.; Yaremko, B.; Lynn, K.; Gaede, S.; Kornecki, A.; Muscedere, G.; BenNachum, I.; Shmuilovich, O.; Mouawad, M.; Yu, E.; et al. Stereotactic image-guided neoadjuvant ablative single-dose radiation, then lumpectomy, for early breast cancer: The SIGNAL prospective single-arm trial of single-dose radiation therapy. Curr. Oncol. 2019, 26, e334–e340. [Google Scholar] [CrossRef]
- Horton, J.K.; Blitzblau, R.C.; Yoo, S.; Geradts, J.; Chang, Z.; Baker, J.A.; Georgiade, G.S.; Chen, W.; Siamakpour-Reihani, S.; Wang, C.; et al. Preoperative Single-Fraction Partial Breast Radiation Therapy: A Novel Phase 1, Dose-Escalation Protocol with Radiation Response Biomarkers. Int. J. Radiat. Oncol. Biol. Phys. 2015, 92, 846–855. [Google Scholar] [CrossRef]
- Lavigne, D.; Hijal, T.; Vavassis, P.; Guilbert, M.C.; Sideris, L.; Dubé, P.; Gervais, M.K.; Leblanc, G.; Dufresne, M.P.; Nguyen, D.; et al. Single preoperative radiation therapy with delayed surgery for low-risk breast cancer: Oncologic outcome, toxicity and cosmesis of the SPORT-DS phase I trial. Radiother. Oncol. 2024, 200, 110515. [Google Scholar] [CrossRef]
- Zerella, M.A.; Zaffaroni, M.; Ronci, G.; Dicuonzo, S.; Rojas, D.P.; Morra, A.; Fodor, C.; Rondi, E.; Vigorito, S.; Botta, F.; et al. Single fraction ablative preoperative radiation treatment for early-stage breast cancer: The CRYSTAL study—A phase I/II clinical trial protocol. BMC Cancer 2022, 22, 358. [Google Scholar] [CrossRef] [PubMed]
- SABER Study for Selected Early Stage Breast Cancer (SABER). Available online: https://clinicaltrials.gov/study/NCT04360330 (accessed on 30 January 2025).
Trial Name/Study Name | Inclusion Criteria | Study Design | Number of Patients | Technique Used | Dose | Follow-Up Time | IBTR Rate, WBI vs. PBI %) | Toxicity | Cosmetic Outcome | Overall Survival (OS), WBI vs. PBI |
---|---|---|---|---|---|---|---|---|---|---|
Budapest [27] | ≥40 yrs, stage I-II, ≤20 mm, negative margins, cN0/pN0/pN1mi, grade 1–2 | RCT | 258 | HDR brachy or electron beam vs. WBI | PBI: 36.4 Gy/7 fx (HDR), 50 Gy/25 fx (electron) WBI: 50 Gy/25 fx | Median 10.8 yrs (1.5–13.5) | 5.9% (WBI) vs. 5.1% (PBI) | No difference in late toxicity | Better in PBI group | No difference * (79.7% vs. 82.1%) |
GEC-ESTRO [56] | ≥40 yrs, stage 0–IIA, ≤30 mm, negative margins, cN0/pN0/pNmi | RCT | 1184 | HDR/PDR Brachy vs. WBI | PBI: HDR 32 Gy/8 fx, PDR 50 Gy/continuous; WBI: 50 Gy/25–28 fx + 10 Gy boost | Median 6.6 yrs (5.8–7.6) | 0.92% (WBI) vs. 1.44% (p = 0.42) (PBI) | Lower late skin toxicity (PBI) | Better in PBI group | No difference * (95.6% vs. 97.3%) |
GEC-ESTRO [26] | Median 10.4 yrs (IQR 9.1–11.3) | 1.58% (WBI) vs. 3.51% (PBI) | Lower late skin toxicity (PBI) | Better in PBI group | No difference * (89.5% vs. 90.5%) | |||||
TARGIT [35] | ≥45 yrs, operable invasive BC (T1–small T2, N0–1, M0), suitable for BCS | RCT | 3451 | IORT (intrabeam) vs. WBI | PBI: 20 Gy at tumor bed surface; WBI: 50 Gy/25 fx | Median 2.5 yrs (IQR 12–52 mo) | 1.3% (PBI) vs. 3.3% (p = 0.042) (WBI) | Lower acute skin toxicity (PBI) and higher long-term fat necrosis and scar calcification (PBI) | Worse in PBI group | No difference * (3.9% vs. 5.3%) |
ELIOT [36] | 48–75 yrs, early BC, ≤2.5 cm, BCS candidates | RCT | 1305 | IORT vs. WBI | PBI: 21 Gy single dose; WBI: 50 Gy/25 fx | Median 5.8 yrs (4.1–7.7) | 4.4% (PBI) vs. 0.4% (p = 0.0001) (WBI) | Lower skin toxicity (PBI) | No difference | No difference * (96.8% vs. 96.9%) |
Barcelona [49] | ≥60 yrs, invasive ductal carcinoma, ≤30 mm, cN0/pN0 | RCT | 102 | 3D-CRT PBI vs. WBI | PBI: 37.5 Gy/10 fx BID; WBI: 48 Gy/24 fx + 10 Gy boost | Median 5 yrs (IQR: NR) | 0% (PBI) vs. 0% (WBI) | Lower acute toxicity (PBI) | 66.7% WBI vs. 56.5% PBI rated excellent | No difference * |
Florence [55] | ≥40 yrs, early BC, ≤2.5 cm, BCS candidates | RCT | 520 | IMRT PBI vs. WBI | PBI: 30 Gy/5 fx; WBI: 50 Gy/25 fx + 10 Gy boost | 5.0 yrs (3.4–7.0) | 1.5% (PBI and WBI group) | Lower acute/late toxicity (PBI) | Better in PBI group (p = 0.045) | No difference * (HR 0.99; 95% CI 0.83–1.18) |
Florence [50] | PBI: 30 Gy/5 fx; WBI: 50 Gy/25 fx + 10 Gy boost | Median 10.7 yrs (1.4–14.8) | 2.5% (WBI) vs. 3.7% (PBI) (p = 0.40) | Lower acute/late toxicity (PBI) | Better in PBI group | No difference * (91.9% both) | ||||
DBCG-APBI [51] | Women ≥60 years with ER-positive, HER2-negative, grade 1–2, nonlobular breast cancer (<21 mm, pT1pN0M0), ≥2 mm margins | RCT | 865 | NR | WBI and PBI: 40 Gy/15 fx | Median 5.0 years (4.1–5.1) | 9.7 (WBI) vs. 5.1% (PBI) | NR | Better in PBI group 89%PBI v 85% WBI | No difference * (86.5% vs. 89.3%) |
UK-IMPORT LOW [52] | Women ≥50 years with unifocal invasive ductal (grade 1–3, pT1–2, ≤3 cm, pN0–1), ≥2 mm margins | RCT | 2018 | IMRT | WBI and PBI: 40 Gy/15 fx | Median 6.0 years (5.1–6.9) | 1.1% (WBI) vs. 0.5% (PBI) | Lower acute/late toxicity (PBI) | NR | No difference * |
RAPID [53] | ≥40 yrs, DCIS/invasive BC, BCS with clear margins, node-negative | RCT | 2135 | 3D-CRT/IMRT PBI vs. WBI | PBI: 38.5 Gy/10 fx BID; WBI: 42.5 Gy/16 fx or 50 Gy/25 fx | Median 8.6 yrs (7.3–9.9) | 2.6% (PBI) vs. 3.5% (WBI) | Lower acute toxicity, higher late toxicity (PBI) | Worse in PBI group | No difference * |
IRMA [54] | ≤3 cm, negative nodes or 1–3 nodes, CTV <30% breast volume | RCT | 3309 | 3D-CRT/IMRT PBI vs. WBI | PBI: 38.5 Gy/10 fx BID; WBI: 50 Gy/25 fx or 40 Gy/15 fx | Median 5.6 yrs (4.0–8.4) | NR | Higher late toxicity (PBI) | Worse in PBI group | No difference * (97.2% vs. 97.4%) |
NSABP-B39/RTOG 0413 [30] | ≥18 yrs, early-stage BC, ≤3 cm, node-negative or ≤3 nodes | RCT | 4216 | 3D-CRT/Brachy PBI vs. WBI | PBI: 34 Gy (Brachy) or 38.5 Gy (EBRT); WBI: 50 Gy/25 fx | Median 10.2 yrs (7.5–11.5) | 3.9% (WBI) vs. 4.6% (PBI) | Similar moderate/high toxicity | No difference | No difference * (97.1% vs. 96.7%) |
Criteria | GEC-ESTRO [65] | ASTRO [22] | ABS [41] |
---|---|---|---|
Age | ≥50 years | ≥50 years | ≥45 years |
Lymph Node Status | Negative | Negative | Negative |
Lymphovascular Invasion | None | None | None |
Tumor Size | ≤3 cm | ≤2 cm grade 1–2 | ≤3 cm |
Margins | ≥2 mm | ≥3 mm | Not specified |
Histology | Invasive ductal, ER+/− (excluding invasive lobular carcinoma or DCIS) | Invasive ductal, ER+, DCIS (invasive lobular carcinoma excluded) | All invasive and DCIS (ER status irrelevant) |
Multifocal or Unifocal Disease | Unifocal | Unifocal | Unifocal |
Neoadjuvant Therapy | No neoadjuvant chemotherapy | No Neoadjuvant Therapy | Not specified |
Study | Description/Endpoint | Equipment Used | Treatment |
---|---|---|---|
Preoperative Accelerated Partial Breast Irradiation for Early-Stage Breast Cancer [83] | Evaluate feasibility of utilizing 3D CRT PBI in preoperative setting followed by BCS | 3D CRT | 38.5 Gy/10 fx |
Preoperative robotic radiosurgery for early breast cancer: Results of the phase II ROCK trial [88] | Evaluate safety and feasibility of single-fraction preoperative RT in early-stage breast cancer and identify biological and clinical predictors of treatment outcomes, including toxicity, pathological response, and imaging biomarkers | CyberKnife® RT | 21 Gy/1 fx |
Tumor response 3 months after neoadjuvant single-fraction radiotherapy for low-risk breast cancer [87] | Evaluate feasibility of delivering single-fraction RT and safety | NR | 21 Gy/1 fx |
Evaluation of Early Response to Preoperative Accelerated Partial Breast Irradiation (PAPBI) trial [81] | Evaluate biomarkers for early response to RT in breast cancer | 3D CRT, IMRT or VMAT | 40 Gy/10 fx |
Single-dose radiation, then lumpectomy, for early breast cancer: the SIGNAL trial [90] | Evaluate feasibility, toxicity, surgical, oncologic, and cosmetic outcomes of single-fraction preoperative PBI | Cone-Beam CT | 21 Gy/1 fx |
Single Pre-Operative RT (SPORT) for low-risk BC [92] | Evaluate toxicity, surgical, oncologic, and cosmetic outcomes of single-fraction preoperative PBI | VMAT | 21 Gy/1 fx |
Single Dose Ablative RT for Early-Stage BC (ABLATIVE I) [84] | Evaluate feasibility, safety, and efficacy of preoperative RT in single fraction for breast cancer patients and collect data on response monitoring | MRgRT | 20 Gy/1 fx tumor with 15 Gy to tumor bed |
Preoperative Single-Fraction Radiotherapy in Early-Stage Breast Cancer [93] | Evaluate physician-reported rates of cosmesis | CyberKnife® RT | 18–24 Gy/1 fx to GTV |
Magnetic resonance imaging-guided single-fraction preoperative radiotherapy for early-stage breast cancer (the RICE trial): feasibility study [4] | Evaluate feasibility of treatment using single fraction and collect data on response monitoring | MRgRT | 21 Gy/1 fx |
Prediction of pathologic complete response after single-dose MR-guided partial breast irradiation in low-risk breast cancer patients: the ABLATIVE-2 trial [3] | Evaluate response monitoring after 12-month single-fraction treatment | MRgRT | 20 Gy/1 fx tumor with 15 Gy to tumor bed |
SABER study for selected early-stage BC [94] | Evaluate safety, feasibility, and dose-limiting toxicity of up to four dose levels of stereotactic ablative breast radiotherapy, with surgery planned 4–6 weeks post-treatment, assessing toxicity, pathologic response, and treatment feasibility | NR | Dose Level I: 35 Gy (5 fx of 7 Gy) Dose Level II: 40 Gy (5 fx of 8 Gy) Dose Level III: 45 Gy (5 fx of 9 Gy) Dose Level IV: 50 Gy (5 fx of 10 Gy) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qadir, A.; Singh, N.; Chui, A.; Chao, M.; Uribe, S.; Foroudi, F. Partial Breast Irradiation for Early-Stage Breast Cancer: Advances, Challenges, and Future Directions—A Narrative Review. Tomography 2025, 11, 59. https://doi.org/10.3390/tomography11060059
Qadir A, Singh N, Chui A, Chao M, Uribe S, Foroudi F. Partial Breast Irradiation for Early-Stage Breast Cancer: Advances, Challenges, and Future Directions—A Narrative Review. Tomography. 2025; 11(6):59. https://doi.org/10.3390/tomography11060059
Chicago/Turabian StyleQadir, Ayyaz, Nabita Singh, Anelyn Chui, Michael Chao, Sergio Uribe, and Farshad Foroudi. 2025. "Partial Breast Irradiation for Early-Stage Breast Cancer: Advances, Challenges, and Future Directions—A Narrative Review" Tomography 11, no. 6: 59. https://doi.org/10.3390/tomography11060059
APA StyleQadir, A., Singh, N., Chui, A., Chao, M., Uribe, S., & Foroudi, F. (2025). Partial Breast Irradiation for Early-Stage Breast Cancer: Advances, Challenges, and Future Directions—A Narrative Review. Tomography, 11(6), 59. https://doi.org/10.3390/tomography11060059