Radiomic Analysis of Treatment Effect for Patients with Radiation Necrosis Treated with Pentoxifylline and Vitamin E
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Response Assessment
2.3. Statistical Analysis
2.4. Radiomics
2.4.1. Clinical Data Collection
2.4.2. Pre-Processing
2.4.3. Feature Extraction
2.4.4. Classification
3. Results
3.1. Descriptive Data
3.2. Use of Ptx + VitE with Other RN Treatments
3.3. Side Effects Associated with Ptx + VitE
3.4. Assessment of Imaging Response after Initiating Ptx + VitE
3.5. Radiomics Assessment of Treatment Response
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Giglio, P.; Gilbert, M.R. Cerebral radiation necrosis. Neurologist 2003, 9, 180–188. [Google Scholar] [CrossRef] [PubMed]
- Ruben, J.D.; Dally, M.; Bailey, M.; Smith, R.; McLean, C.A.; Fedele, P. Cerebral radiation necrosis: Incidence, outcomes, and risk factors with emphasis on radiation parameters and chemotherapy. Int. J. Radiat. Oncol. Biol. Phys. 2006, 65, 499–508. [Google Scholar] [CrossRef]
- Miyatake, S.-I.; Nonoguchi, N.; Furuse, M.; Yoritsune, E.; Miyata, T.; Kawabata, S.; Kuroiwa, T. Pathophysiology, Diagnosis, and Treatment of Radiation Necrosis in the Brain. Neurol. Med.-Chir. 2015, 55, 50–59. [Google Scholar] [CrossRef] [PubMed]
- Marks, J.E.; Bagĺan, R.J.; Prassad, S.C.; Blank, W.F. Cerebral radionecrosis: Incidence and risk in relation to dose, time, fractionation and volume. Int. J. Radiat. Oncol. Biol. Phys. 1981, 7, 243–252. [Google Scholar] [CrossRef] [PubMed]
- Cheng, K.-M.; Chan, C.-M.; Fu, Y.-T.; Ho, L.-C.; Cheung, F.-C.; Law, C.-K. Acute hemorrhage in late radiation necrosis of the temporal lobe: Report of five cases and review of the literature. J. Neurooncol. 2001, 51, 143–150. [Google Scholar] [CrossRef] [PubMed]
- Connolly, D.T.; Heuvelman, D.M.; Nelson, R.; Olander, J.V.; Eppley, B.L.; Delfino, J.J.; Siegel, N.R.; Leimgruber, R.M.; Feder, J. Tumor vascular permeability factor stimulates endothelial cell growth and angiogenesis. J. Clin. Investig. 1989, 84, 1470–1478. [Google Scholar] [CrossRef]
- Nonoguchi, N.; Miyatake, S.-I.; Fukumoto, M.; Furuse, M.; Hiramatsu, R.; Kawabata, S.; Kuroiwa, T.; Tsuji, M.; Fukumoto, M.; Ono, K. The distribution of vascular endothelial growth factor-producing cells in clinical radiation necrosis of the brain: Pathological consideration of their potential roles. J. Neurooncol. 2011, 105, 423–431. [Google Scholar] [CrossRef]
- Yoshii, Y. Pathological review of late cerebral radionecrosis. Brain Tumor. Pathol. 2008, 25, 51–58. [Google Scholar] [CrossRef]
- Patel, U.; Patel, A.; Cobb, C.; Benkers, T.; Vermeulen, S. The management of brain necrosis as a result of SRS treatment for intra-cranial tumors. Transl. Cancer Res. 2014, 3, 373–382. [Google Scholar]
- Boothe, D.; Young, R.; Yamada, Y.; Prager, A.; Chan, T.; Beal, K. Bevacizumab as a treatment for radiation necrosis of brain metastases post stereotactic radiosurgery. Neuro Oncol. 2013, 15, 1257–1263. [Google Scholar] [CrossRef]
- Glantz, M.J.; Burger, P.C.; Friedman, A.H.; Radtke, R.A.; Massey, E.W.; Schold, S.C. Treatment of radiation-induced nervous system injury with heparin and warfarin. Neurology 1994, 44, 2020–2027. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, G.; Bhatia, S.; Smith, B.J.; Button, A.M.; Bodeker, K.; Buatti, J. Randomized trial of pentoxifylline and vitamin E vs standard follow-up after breast irradiation to prevent breast fibrosis, evaluated by tissue compliance meter. Int. J. Radiat. Oncol. Biol. Phys. 2013, 85, 604–608. [Google Scholar] [CrossRef]
- Kaidar-Person, O.; Marks, L.B.; Jones, E.L. Pentoxifylline and vitamin E for treatment or prevention of radiation-induced fibrosis in patients with breast cancer. Breast J. 2018, 24, 816–819. [Google Scholar] [CrossRef]
- Williamson, R.; Kondziolka, D.; Kanaan, H.; Lunsford, L.D.; Flickinger, J.C. Adverse radiation effects after radiosurgery may benefit from oral vitamin E and pentoxifylline therapy: A pilot study. Stereotact. Funct. Neurosurg. 2008, 86, 359–366. [Google Scholar] [CrossRef] [PubMed]
- 3D Slicer Image Computing Platform. Available online: https://www.slicer.org/ (accessed on 19 May 2019).
- Fedorov, A.; Beichel, R.; Kalpathy-Cramer, J.; Finet, J.; Fillion-Robin, J.-C.; Pujol, S.; Bauer, C.; Jennings, D.; Fennessy, F.; Sonka, M.; et al. 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn. Reson. Imaging 2012, 30, 1323–1341. [Google Scholar] [CrossRef]
- Karlton, W. Time Frequency Analysis of Wavelet and Fourier Transform. In Wavelet Theory; Somayeh, M., Ed.; IntechOpen: Rijeka, Croatia, 2020; Chapter 1. [Google Scholar]
- van Griethuysen, J.J.M.; Fedorov, A.; Parmar, C.; Hosny, A.; Aucoin, N.; Narayan, V.; Beets-Tan, R.G.H.; Fillion-Robin, J.-C.; Pieper, S.; Aerts, H.J.W.L. Computational Radiomics System to Decode the Radiographic Phenotype. Cancer Res. 2017, 77, e104–e107. [Google Scholar] [CrossRef] [PubMed]
- Xanthopoulos, P.; Pardalos, P.M.; Trafalis, T.B. Linear Discriminant Analysis. In Robust Data Mining; Xanthopoulos, P., Pardalos, P.M., Trafalis, T.B., Eds.; Springer: New York, NY, USA, 2013; pp. 27–33. [Google Scholar]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Cervantes, J.; Garcia-Lamont, F.; Rodríguez-Mazahua, L.; Lopez, A. A comprehensive survey on support vector machine classification: Applications, challenges and trends. Neurocomputing 2020, 408, 189–215. [Google Scholar] [CrossRef]
- Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic minority over-sampling technique. J. Artif. Intell. Res. 2002, 16, 321–357. [Google Scholar] [CrossRef]
- Zhang, K.; Abdoli, N.; Gilley, P.; Sadri, Y.; Chen, X.; Thai, T.C.; Dockery, L.; Moore, K.; Mannel, R.S.; Qiu, Y. Developing a Novel Image Marker to Predict the Responses of Neoadjuvant Chemotherapy (NACT) for Ovarian Cancer Patients. arXiv 2023, arXiv:2309.07087. [Google Scholar]
- Bradley, A.P. The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognit. 1997, 30, 1145–1159. [Google Scholar] [CrossRef]
- Prabhu, R.S.; Press, R.H.; Patel, K.R.; Boselli, D.M.; Symanowski, J.T.; Lankford, S.P.; McCammon, R.J.; Moeller, B.J.; Heinzerling, J.H.; Fasola, C.E.; et al. Single-Fraction Stereotactic Radiosurgery (SRS) Alone Versus Surgical Resection and SRS for Large Brain Metastases: A Multi-institutional Analysis. Int. J. Radiat. Oncol. Biol. Phys. 2017, 99, 459–467. [Google Scholar] [CrossRef] [PubMed]
- Kerschbaumer, J.; Demetz, M.; Krigers, A.; Nevinny-Stickel, M.; Thomé, C.; Freyschlag, C.F. Risk Factors for Radiation Necrosis in Patients Undergoing Cranial Stereotactic Radiosurgery. Cancers 2021, 13, 4736. [Google Scholar] [CrossRef] [PubMed]
- Tanenbaum, D.G.; Buchwald, Z.S.; Jhaveri, J.; Schreibmann, E.; Switchenko, J.M.; Prabhu, R.S.; Chowdhary, M.; Abugideiri, M.; Pfister, N.T.; Eaton, B.; et al. Dosimetric Factors Related to Radiation Necrosis After 5-Fraction Radiosurgery for Patients with Resected Brain Metastases. Pract. Radiat. Oncol. 2020, 10, 36–43. [Google Scholar] [CrossRef]
- Acquitter, C.; Piram, L.; Sabatini, U.; Gilhodes, J.; Cohen-Jonathan, E.M.; Ken, S.; Lemasson, B. Radiomics-Based Detection of Radionecrosis Using Harmonized Multiparametric MRI. Cancers 2022, 14, 286. [Google Scholar] [CrossRef]
- Peng, L.; Parekh, V.; Huang, P.; Lin, D.D.; Sheikh, K.; Baker, B.; Kirschbaum, T.; Silvestri, F.; Son, J.; Robinson, A.; et al. Distinguishing True Progression From Radionecrosis After Stereotactic Radiation Therapy for Brain Metastases With Machine Learning and Radiomics. Int. J. Radiat. Oncol. Biol. Phys. 2018, 102, 1236–1243. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, J.; Ho, A.; Jiang, W.; Logan, J.; Wang, X.; Brown, P.D.; McGovern, S.L.; Guha-Thakurta, N.; Ferguson, S.D.; et al. A predictive model for distinguishing radiation necrosis from tumour progression after gamma knife radiosurgery based on radiomic features from MR images. Eur. Radiol. 2018, 28, 2255–2263. [Google Scholar] [CrossRef]
- Khan, M.; Zhao, Z.; Arooj, S.; Liao, G. Bevacizumab for radiation necrosis following radiotherapy of brain metastatic disease: A systematic review & meta-analysis. BMC Cancer 2021, 21, 167. [Google Scholar]
- Zhuang, H.; Shi, S.; Yuan, Z.; Chang, J.Y. Bevacizumab treatment for radiation brain necrosis: Mechanism, efficacy and issues. Mol. Cancer 2019, 18, 21. [Google Scholar] [CrossRef]
- Co, J.; De Moraes, M.V.; Katznelson, R.; Evans, A.W.; Shultz, D.; Laperriere, N.; Millar, B.-A.; Berlin, A.; Kongkham, P.; Tsang, D.S. Hyperbaric Oxygen for Radiation Necrosis of the Brain. Can. J. Neurol. Sci. 2020, 47, 92–99. [Google Scholar] [CrossRef]
- Smith, J.A.; Fenderson, J.L. Diving Into Radiation Necrosis: Hyperbaric Oxygen Therapy in Cerebral Radiation Necrosis. JCO Oncol. Pract. 2020, 16, 519–521. [Google Scholar] [CrossRef] [PubMed]
- Lefaix, J.-L.; Delanian, S.; Vozenin, M.-C.; Leplat, J.-J.; Tricaud, Y.; Martin, M. Striking regression of subcutaneous fibrosis induced by high doses of gamma rays using a combination of pentoxifylline and alpha-tocopherol: An experimental study. Int. J. Radiat. Oncol. Biol. Phys. 1999, 43, 839–847. [Google Scholar] [CrossRef] [PubMed]
- Delanian, S.; Chatel, C.; Porcher, R.; Depondt, J.; Lefaix, J.-L. Complete restoration of refractory mandibular osteoradionecrosis by prolonged treatment with a pentoxifylline-tocopherol-clodronate combination (PENTOCLO): A phase II trial. Int. J. Radiat. Oncol. Biol. Phys. 2011, 80, 832–839. [Google Scholar] [CrossRef] [PubMed]
- Delanian, S.; Depondt, J.; Lefaix, J.L. Major healing of refractory mandible osteoradionecrosis after treatment combining pentoxifylline and tocopherol: A phase II trial. Head Neck 2005, 27, 114–123. [Google Scholar] [CrossRef] [PubMed]
- Andrés, L.; Vicente, B.; David, M. Texture Analysis in Magnetic Resonance Imaging: Review and Considerations for Future Applications. In Assessment of Cellular and Organ Function and Dysfunction Using Direct and Derived MRI Methodologies; Christakis, C., Ed.; IntechOpen: Rijeka, Croatia, 2016; Chapter 5. [Google Scholar]
- Fink, K.R.; Fink, J.R. Imaging of brain metastases. Surg. Neurol. Int. 2013, 4 (Suppl. 4), S209–S219. [Google Scholar] [CrossRef]
- Demircioglu, A. The effect of preprocessing filters on predictive performance in radiomics. Eur. Radiol. Exp. 2022, 6, 40. [Google Scholar] [CrossRef]
- Salari, E.; Elsamaloty, H.; Ray, A.; Hadziahmetovic, M.; Parsai, E.I. Differentiating Radiation Necrosis and Metastatic Progression in Brain Tumors Using Radiomics and Machine Learning. Am. J. Clin. Oncol. 2023, 46, 486–495. [Google Scholar] [CrossRef]
Variable | N = 48 | |
---|---|---|
Dose/fraction (Gy) | Mean/Median | 14.00/17.50 |
Range | 1.80–21 | |
Std Dev | 5.94 | |
Missing | 1 | |
Number of fractions | Mean/Median | 3.88/1 |
Range | 1–33 | |
Std Dev | 7.76 | |
Missing | 0 |
Variable | N = 48 | % | |
---|---|---|---|
Sex | Male | 24 | 50 |
Female | 24 | 50 | |
Age at treatment | Average | 55 y | |
Interquartile range | 20.2 y | ||
Diagnosis | Meningioma | 8 | 16.7 |
Non-small-cell lung cancer (NSCLC) | 13 | 27.1 | |
Arteriovenous Malformation (AVM) | 13 | 27.1 | |
Breast cancer | 2 | 4.2 | |
Melanoma | 6 | 12.5 | |
Other | 6 | 12.5 | |
Location of lesion | Frontal | 19 | 39.6 |
Parietal | 9 | 18.8 | |
Temporal | 4 | 8.3 | |
Occipital | 4 | 8.3 | |
Posterior fossa | 7 | 14.6 | |
Thalamic | 1 | 2.1 | |
Other | 4 | 8.4 | |
Was the RN lesion re-irradiated? | Yes | 7 | 14.6 |
No | 41 | 85.4 | |
Were other lesions treated? | Yes | 17 | 35.4 |
No | 31 | 64.6 | |
RN-associated symptoms pre-Ptx + VitE | Asymptomatic | 21 | 43.8 |
Headache | 4 | 8.3 | |
Seizures | 8 | 16.7 | |
Weakness | 4 | 8.3 | |
Impaired co-ordination | 5 | 10.4 | |
Vision | 2 | 4.2 | |
Facial droop | 1 | 2.1 | |
Confusion | 2 | 4.2 | |
Speech | 1 | 2.1 | |
Interval from treatment completion to RN presentation (years) | Mean | 1.92 | - |
Median | 1.26 | - | |
Minimum | 0.25 | - | |
Maximum | 10.22 | - | |
Std Dev | 1.85 | - |
Variable | N = 48 | % | |
---|---|---|---|
Dexamethasone | None | 14 | 29.2 |
Started w/Ptx + VitE | 16 | 33.3 | |
Started after Ptx + VitE | 11 | 22.9 | |
Started before Ptx + VitE | 7 | 14.6 | |
Non-steroid therapies used in addition to Ptx + VitE | None | 38 | 79.2 |
Bevacizumab | 3 | 6.3 | |
Hyperbaric oxygen | 3 | 6.3 | |
Surgery | 3 | 6.3 | |
SRS | 1 | 2.1 | |
Reported adherence to Ptx + VitE Prescription | Yes | 43 | 89.6 |
Stopped early due to side effects | 3 | 6.3 | |
Unclear | 2 | 4.2 |
Variable | N = 48 | % | |
---|---|---|---|
Radiation oncologist’s assessment of MRI after Ptx + VitE | No change | 9 | 18.8 |
Improvement | 21 | 43.8 | |
Worsening | 12 | 25.0 | |
Mixed | 1 | 2.1 | |
Disease progression | 4 | 8.3 | |
Worsening RN + disease progression | 1 | 2.1 | |
Interval from starting Ptx + VitE to MRI assessment (Months) | Mean | 4.52 | - |
Median | 3.17 | - | |
Minimum | 0.66 | - | |
Maximum | 12.68 | - | |
Std Dev | 2.64 | - | |
Missing | 0 | - |
Improved on Ptx + VitE | |||||
---|---|---|---|---|---|
Covariate | Statistics | Level | No N = 27 | Yes N = 21 | p-Value * |
Diagnosis | N (Col %) | Meningioma/NSCLC | 14 (51.85) | 7 (33.33) | 0.199 |
N (Col %) | Other | 13 (48.15) | 14 (66.67) | ||
Location | N (Col %) | Frontal | 10 (37.04) | 9 (42.86) | 0.683 |
N (Col %) | Other | 17 (62.96) | 12 (57.14) | ||
Re-treatment | N (Col %) | Yes | 4 (14.81) | 3 (14.29) | 1.000 |
N (Col %) | No | 23 (85.19) | 18 (85.71) | ||
Other lesions treated | N (Col %) | Yes | 13 (48.15) | 4 (19.05) | 0.037 |
N (Col %) | No | 14 (51.85) | 17 (80.95) | ||
Symptoms pre pentoxi | N (Col %) | Yes | 14 (51.85) | 13 (61.9) | 0.486 |
N (Col %) | No | 13 (48.15) | 8 (38.1) | ||
Dexamethasone | N (Col %) | Yes | 18 (66.67) | 16 (76.19) | 0.471 |
N (Col %) | No | 9 (33.33) | 5 (23.81) | ||
Years from treatment to post-MRI | N | 27 | 21 | 0.964 | |
Mean | 2.24 | 2.26 | |||
Median | 1.99 | 1.55 | |||
Min | 0.44 | 0.45 | |||
Max | 5.69 | 10.74 | |||
Std Dev | 1.48 | 2.37 | |||
Months from pre-MRI to post-MRI | N | 27 | 21 | 0.296 | |
Mean | 4.17 | 4.98 | |||
Median | 3.29 | 3.06 | |||
Min | 1.15 | 0.66 | |||
Max | 12.68 | 11.01 | |||
Std Dev | 2.49 | 2.81 |
Improved on Ptx = Yes | |||
---|---|---|---|
Covariate | Level | Odds Ratio (95% CI) | OR p-Value |
Other lesions treated | Yes | 0.28 (0.07–1.08) | 0.064 |
No | - | - | |
Diagnosis | Other | 1.93 (0.56–6.63) | 0.297 |
Meningioma/NSCLC | - | - | |
Dexamethasone | Yes | 0.80 (0.20–3.20) | 0.752 |
No | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patel, J.S.; Salari, E.; Chen, X.; Switchenko, J.; Eaton, B.R.; Zhong, J.; Yang, X.; Shu, H.-K.G.; Sudmeier, L.J. Radiomic Analysis of Treatment Effect for Patients with Radiation Necrosis Treated with Pentoxifylline and Vitamin E. Tomography 2024, 10, 1501-1512. https://doi.org/10.3390/tomography10090110
Patel JS, Salari E, Chen X, Switchenko J, Eaton BR, Zhong J, Yang X, Shu H-KG, Sudmeier LJ. Radiomic Analysis of Treatment Effect for Patients with Radiation Necrosis Treated with Pentoxifylline and Vitamin E. Tomography. 2024; 10(9):1501-1512. https://doi.org/10.3390/tomography10090110
Chicago/Turabian StylePatel, Jimmy S., Elahheh Salari, Xuxin Chen, Jeffrey Switchenko, Bree R. Eaton, Jim Zhong, Xiaofeng Yang, Hui-Kuo G. Shu, and Lisa J. Sudmeier. 2024. "Radiomic Analysis of Treatment Effect for Patients with Radiation Necrosis Treated with Pentoxifylline and Vitamin E" Tomography 10, no. 9: 1501-1512. https://doi.org/10.3390/tomography10090110