Relationship between Femoral Proximal Bone Quality Assessment by MRI IDEAL-IQ Sequence and Body Mass Index in Elderly Men
Abstract
:1. Introduction
2. Materials and Methods
2.1. Statement on Ethics
2.2. Study Design
2.3. MRI Examination
2.4. Evaluation of R2* and PDFF
2.5. Statistical Analysis
3. Results
3.1. Patient Demographics
3.2. Correlation between BMI and IDEAL-IQ PDFF
3.3. Correlation between BMI and IDEAL-IQ R2*
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F. Cancer Incidence and Mortality Worldwide: Sources, Methods and Major Patterns in GLOBOCAN 2012. Int. J. Cancer 2015, 136, E359–E386. [Google Scholar] [CrossRef] [PubMed]
- Pakzad, R.; Mohammadian-Hafshejani, A.; Ghoncheh, M.; Pakzad, I.; Salehiniya, H. The Incidence and Mortality of Prostate Cancer and Its Relationship with Development in Asia. Prostate Int. 2015, 3, 135–140. [Google Scholar] [CrossRef] [PubMed]
- Bliuc, D.; Nguyen, N.D.; Milch, V.E.; Nguyen, T.V.; Eisman, J.A.; Center, J.R. Mortality Risk Associated with Low-Trauma Osteoporotic Fracture and Subsequent Fracture in Men and Women. JAMA 2009, 301, 513–521. [Google Scholar] [CrossRef] [PubMed]
- Manolagas, S.C.; O’Brien, C.A.; Almeida, M. The Role of Estrogen and Androgen Receptors in Bone Health and Disease. Nat. Rev. Endocrinol. 2013, 9, 699–712. [Google Scholar] [CrossRef] [PubMed]
- Alibhai, S.M.H.; Yun, L.; Cheung, A.M.; Paszat, L. Screening for Osteoporosis in Men Receiving Androgen Deprivation Therapy. JAMA 2012, 307, 255–256. [Google Scholar] [CrossRef] [PubMed]
- Tanvetyanon, T. Physician Practices of Bone Density Testing and Drug Prescribing to Prevent or Treat Osteoporosis during Androgen Deprivation Therapy. Cancer 2005, 103, 237–241. [Google Scholar] [CrossRef]
- Tanaka, O.; Takagi, S.; Matsuura, K.; Ichikawa, T.; Kobayashi, Y.; Nagai, J. [MR Imaging Findings of the Femoral Marrow in Myelodysplastic Syndrome]. Nihon Igaku Hōshasen Gakkai Zasshi 1995, 55, 837–844. [Google Scholar] [PubMed]
- Yeung, D.K.W.; Griffith, J.F.; Antonio, G.E.; Lee, F.K.H.; Woo, J.; Leung, P.C. Osteoporosis Is Associated with Increased Marrow Fat Content and Decreased Marrow Fat Unsaturation: A Proton MR Spectroscopy Study. J. Magn. Reson. Imaging 2005, 22, 279–285. [Google Scholar] [CrossRef]
- Patsch, J.M.; Li, X.; Baum, T.; Yap, S.P.; Karampinos, D.C.; Schwartz, A.V.; Link, T.M. Bone Marrow Fat Composition as a Novel Imaging Biomarker in Postmenopausal Women with Prevalent Fragility Fractures. J. Bone Miner. Res. 2013, 28, 1721–1728. [Google Scholar] [CrossRef]
- Eskreis-Winkler, S.; Corrias, G.; Monti, S.; Zheng, J.; Capanu, M.; Krebs, S.; Fung, M.; Reeder, S.; Mannelli, L. IDEAL-IQ in an Oncologic Population: Meeting the Challenge of Concomitant Liver Fat and Liver Iron. Cancer Imaging 2018, 18, 51. [Google Scholar] [CrossRef]
- Imajo, K.; Kessoku, T.; Honda, Y.; Hasegawa, S.; Tomeno, W.; Ogawa, Y.; Motosugi, U.; Saigusa, Y.; Yoneda, M.; Kirikoshi, H.; et al. MRI-Based Quantitative R2* Mapping at 3 Tesla Reflects Hepatic Iron Overload and Pathogenesis in Nonalcoholic Fatty Liver Disease Patients. J. Magn. Reson. Imaging 2022, 55, 111–125. [Google Scholar] [CrossRef]
- Ma, Q.; Cheng, X.; Hou, X.; Yang, Z.; Ma, D.; Wang, Z. Bone Marrow Fat Measured by a Chemical Shift-Encoded Sequence (IDEAL-IQ) in Patients with and without Metabolic Syndrome. J. Magn. Reson. Imaging 2021, 54, 146–153. [Google Scholar] [CrossRef]
- Zeng, Z.; Ma, X.; Guo, Y.; Ye, B.; Xu, M.; Wang, W. Quantifying Bone Marrow Fat Fraction and Iron by MRI for Distinguishing Aplastic Anemia from Myelodysplastic Syndromes. J. Magn. Reson. Imaging 2021, 54, 1754–1760. [Google Scholar] [CrossRef]
- Hernando, D.; Hines, C.D.; Yu, H.; Reeder, S.B. Addressing Phase Errors in Fat-Water Imaging Using a Mixed Magnitude/Complex Fitting Method. Magn. Reson. Med. 2012, 67, 638–644. [Google Scholar] [CrossRef]
- International Osteoporosis Foundation. IOF Osteoporrosis Risk Check. 2023. Available online: https://riskcheck.osteoporosis.foundation (accessed on 8 May 2024).
- Nielson, C.M.; Marshall, L.M.; Adams, A.L.; LeBlanc, E.S.; Cawthon, P.M.; Ensrud, K.; Stefanick, M.L.; Barrett-Connor, E.; Orwoll, E.S.; Osteoporotic Fractures in Men Study Research Group. BMI and Fracture Risk in Older Men: The Osteoporotic Fractures in Men Study (MrOS). J. Bone Miner. Res. 2011, 26, 496–502. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, D.; Kimura, T.; Yanagida, K.; Yoshida, T.; Kawae, N.; Nakamura, T.; Kajihara, H.; Mizushima, A. Feasibility of Assessing Male Osteoporosis Using MRI IDEAL-IQ Sequence of Proximal Femur in Prostate Cancer Patients. Aging Male 2022, 25, 228–233. [Google Scholar] [CrossRef] [PubMed]
- Griffith, J.F.; Yeung, D.K.W.; Antonio, G.E.; Lee, F.K.H.; Hong, A.W.L.; Wong, S.Y.S.; Lau, E.M.C.; Leung, P.C. Vertebral Bone Mineral Density, Marrow Perfusion, and Fat Content in Healthy Men and Men with Osteoporosis: Dynamic Contrast-Enhanced MR Imaging and MR Spectroscopy. Radiology 2005, 236, 945–951. [Google Scholar] [CrossRef]
- Shan, B.; Ding, H.; Lin, Q.; Zuo, X.; Lin, L.; Yu, D.; Hu, C. Repeatability and Image Quality of IDEAL-IQ in Human Lumbar Vertebrae for Fat and Iron Quantification Across Acquisition Parameters. Comput. Math. Methods Med. 2022, 2022, 2229160. [Google Scholar] [CrossRef] [PubMed]
- Yu, B.; Huo, L.; Liu, Y.; Deng, P.; Szymanski, J.; Li, J.; Luo, X.; Hong, C.; Lin, J.; Wang, C.-Y. PGC-1α Controls Skeletal Stem Cell Fate and Bone-Fat Balance in Osteoporosis and Skeletal Aging by Inducing TAZ. Cell Stem Cell 2018, 23, 615–623. [Google Scholar] [CrossRef]
- Johnell, O.; Kanis, J.A. An Estimate of the Worldwide Prevalence and Disability Associated with Osteoporotic Fractures. Osteoporos. Int. 2006, 17, 1726–1733. [Google Scholar] [CrossRef]
- Walsh, J.S.; Eastell, R. Osteoporosis in Men. Nat. Rev. Endocrinol. 2013, 9, 637–645. [Google Scholar] [CrossRef] [PubMed]
- Gilsanz, V.; Chalfant, J.; Mo, A.O.; Lee, D.C.; Dorey, F.J.; Mittelman, S.D. Reciprocal Relations of Subcutaneous and Visceral Fat to Bone Structure and Strength. J. Clin. Endocrinol. Metab. 2009, 94, 3387–3393. [Google Scholar] [CrossRef] [PubMed]
- Fazeli, P.K.; Horowitz, M.C.; MacDougald, O.A.; Scheller, E.L.; Rodeheffer, M.S.; Rosen, C.J.; Klibanski, A. Marrow Fat and Bone--New Perspectives. J. Clin. Endocrinol. Metab. 2013, 98, 935–945. [Google Scholar] [CrossRef]
- Schwartz, A.V. Marrow Fat and Bone: Review of Clinical Findings. Front. Endocrinol. 2015, 6, 40. [Google Scholar] [CrossRef]
- Nuttall, M.E.; Gimble, J.M. Controlling the Balance between Osteoblastogenesis and Adipogenesis and the Consequent Therapeutic Implications. Curr. Opin. Pharmacol. 2004, 4, 290–294. [Google Scholar] [CrossRef] [PubMed]
- Almeida, M.; Han, L.; Ambrogini, E.; Weinstein, R.S.; Manolagas, S.C. Glucocorticoids and Tumor Necrosis Factor α Increase Oxidative Stress and Suppress Wnt Protein Signaling in Osteoblasts. J. Biol. Chem. 2011, 286, 44326–44335. [Google Scholar] [CrossRef] [PubMed]
- Handschin, C.; Spiegelman, B.M. The Role of Exercise and PGC1alpha in Inflammation and Chronic Disease. Nature 2008, 454, 463–469. [Google Scholar] [CrossRef]
- Kim, M.S.; Yang, Y.-M.; Son, A.; Tian, Y.S.; Lee, S.-I.; Kang, S.W.; Muallem, S.; Shin, D.M. RANKL-Mediated Reactive Oxygen Species Pathway That Induces Long Lasting Ca2+ Oscillations Essential for Osteoclastogenesis. J. Biol. Chem. 2010, 285, 6913–6921. [Google Scholar] [CrossRef] [PubMed]
- Lee, N.K.; Choi, Y.G.; Baik, J.Y.; Han, S.Y.; Jeong, D.-W.; Bae, Y.S.; Kim, N.; Lee, S.Y. A Crucial Role for Reactive Oxygen Species in RANKL-Induced Osteoclast Differentiation. Blood 2005, 106, 852–859. [Google Scholar] [CrossRef]
- Małkiewicz, A.; Dziedzic, M. Bone Marrow Reconversion—Imaging of Physiological Changes in Bone Marrow. Pol. J. Radiol. 2012, 77, 45–50. [Google Scholar] [CrossRef]
- Bao, X.; Zhang, J.; Huang, G.; Yan, J.; Xu, C.; Dou, Z.; Sun, C.; Zhang, H. The Crosstalk between HIFs and Mitochondrial Dysfunctions in Cancer Development. Cell Death Dis. 2021, 12, 215. [Google Scholar] [CrossRef]
- Yuan, P.; Yang, T.; Mu, J.; Zhao, J.; Yang, Y.; Yan, Z.; Hou, Y.; Chen, C.; Xing, J.; Zhang, H.; et al. Circadian Clock Gene NPAS2 Promotes Reprogramming of Glucose Metabolism in Hepatocellular Carcinoma Cells. Cancer Lett. 2020, 469, 498–509. [Google Scholar] [CrossRef] [PubMed]
- Ishii, S.; Suzuki, T.; Wakahashi, K.; Asada, N.; Kawano, Y.; Kawano, H.; Sada, A.; Minagawa, K.; Nakamura, Y.; Mizuno, S.; et al. FGF-23 from Erythroblasts Promotes Hematopoietic Progenitor Mobilization. Blood 2021, 137, 1457–1467. [Google Scholar] [CrossRef] [PubMed]
- Bacchetta, J.; Sea, J.L.; Chun, R.F.; Lisse, T.S.; Wesseling-Perry, K.; Gales, B.; Adams, J.S.; Salusky, I.B.; Hewison, M. Fibroblast Growth Factor 23 Inhibits Extrarenal Synthesis of 1,25-Dihydroxyvitamin D in Human Monocytes. J. Bone Miner. Res. 2013, 28, 46–55. [Google Scholar] [CrossRef] [PubMed]
- Portales-Castillo, I.; Simic, P. PTH, FGF-23, Klotho and Vitamin D as Regulators of Calcium and Phosphorus: Genetics, Epigenetics and Beyond. Front. Endocrinol. 2022, 13, 992666. [Google Scholar] [CrossRef] [PubMed]
- Mirza, M.A.; Karlsson, M.K.; Mellström, D.; Orwoll, E.; Ohlsson, C.; Ljunggren, O.; Larsson, T.E. Serum Fibroblast Growth Factor-23 (FGF-23) and Fracture Risk in Elderly Men. J. Bone Miner. Res. 2011, 26, 857–864. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Doucet, M.; Tomlinson, R.E.; Han, X.; Quarles, L.D.; Collins, M.T.; Clemens, T.L. The Hypoxia-Inducible Factor-1α Activates Ectopic Production of Fibroblast Growth Factor 23 in Tumor-Induced Osteomalacia. Bone Res. 2016, 4, 16011. [Google Scholar] [CrossRef] [PubMed]
- Gupta, N.; Wish, J.B. Hypoxia-Inducible Factor Prolyl Hydroxylase Inhibitors: A Potential New Treatment for Anemia in Patients with CKD. Am. J. Kidney Dis. 2017, 69, 815–826. [Google Scholar] [CrossRef] [PubMed]
- Haase, V.H. HIF-Prolyl Hydroxylases as Therapeutic Targets in Erythropoiesis and Iron Metabolism. Hemodial. Int. 2017, 21 (Suppl. S1), S110–S124. [Google Scholar] [CrossRef]
- Palermo, A.; Tuccinardi, D.; Defeudis, G.; Watanabe, M.; D’Onofrio, L.; Lauria Pantano, A.; Napoli, N.; Pozzilli, P.; Manfrini, S. BMI and BMD: The Potential Interplay between Obesity and Bone Fragility. Int. J. Environ. Res. Public Health 2016, 13, 544. [Google Scholar] [CrossRef]
All Patients | |
---|---|
N (%) | 217 (100) |
Age (years) | 74 (68–80) |
Height (m) | 1.66 (1.62–1.70) |
BMI (kg/m2) | 23.8 (21.9–26) |
Body weight (kg) | 65 (59.5–72) |
MRI IDEAL-IQ data | |
R2* (s−1) Right | 54.5 (51.9–58.45) |
Left | 54.7 (51.95–58.8) |
PDFF (%) Right | 81.5 (77.45–84.5) |
Left | 82.3 (78.1–85) |
Diabetes (n, %) | 42 (19.3) |
Hypertension (n, %) | 61 (28.1) |
Dyslipidemia (n, %) | 54 (24.9) |
Smoker (n, %) | 54 (24.9) |
Variable | Age | BMI | R2* Right | PDFF Right | Diabetes | Dyslipidemia |
---|---|---|---|---|---|---|
Age | ||||||
corr. | −0.1028 | −0.1597 | −0.0841 | 0.1182 | 0.0335 | |
p-value | 0.1013 | 0.0106 | 0.1807 | 0.0594 | 0.5948 | |
BMI | ||||||
corr. | −0.1028 | 0.1529 | −0.0968 | 0.1393 | 0.0505 | |
p-value | 0.1013 | 0.0145 | 0.1232 | 0.0261 | 0.4220 | |
R2* Right | ||||||
corr. | −0.1597 | 0.1529 | −0.3808 | 0.0187 | −0.0657 | |
p-value | 0.0106 | 0.0145 | <0.0001 | 0.7662 | 0.2957 | |
PDFF Right | ||||||
corr. | −0.0841 | −0.0968 | −0.3808 | 0.0336 | −0.0692 | |
p-value | 0.1807 | 0.1232 | <0.0001 | 0.5938 | 0.2710 | |
Diabetes | ||||||
corr. | 0.1182 | 0.1393 | 0.0187 | 0.0336 | 0.2701 | |
p-value | 0.0594 | 0.0261 | 0.7662 | 0.5938 | <0.0001 | |
Dyslipidemia | ||||||
corr. | 0.0335 | 0.0505 | −0.0657 | −0.0692 | 0.2701 | |
p-value | 0.5948 | 0.4220 | 0.2957 | 0.2710 | <0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goto, K.; Watanabe, D.; Kawae, N.; Nakamura, T.; Yanagida, K.; Yoshida, T.; Kajihara, H.; Mizushima, A. Relationship between Femoral Proximal Bone Quality Assessment by MRI IDEAL-IQ Sequence and Body Mass Index in Elderly Men. Tomography 2024, 10, 816-825. https://doi.org/10.3390/tomography10050062
Goto K, Watanabe D, Kawae N, Nakamura T, Yanagida K, Yoshida T, Kajihara H, Mizushima A. Relationship between Femoral Proximal Bone Quality Assessment by MRI IDEAL-IQ Sequence and Body Mass Index in Elderly Men. Tomography. 2024; 10(5):816-825. https://doi.org/10.3390/tomography10050062
Chicago/Turabian StyleGoto, Kashia, Daisuke Watanabe, Norikazu Kawae, Takahiro Nakamura, Kazuki Yanagida, Takahiro Yoshida, Hajime Kajihara, and Akio Mizushima. 2024. "Relationship between Femoral Proximal Bone Quality Assessment by MRI IDEAL-IQ Sequence and Body Mass Index in Elderly Men" Tomography 10, no. 5: 816-825. https://doi.org/10.3390/tomography10050062
APA StyleGoto, K., Watanabe, D., Kawae, N., Nakamura, T., Yanagida, K., Yoshida, T., Kajihara, H., & Mizushima, A. (2024). Relationship between Femoral Proximal Bone Quality Assessment by MRI IDEAL-IQ Sequence and Body Mass Index in Elderly Men. Tomography, 10(5), 816-825. https://doi.org/10.3390/tomography10050062