A Multi-Strategy Improved Northern Goshawk Optimization Algorithm for Optimizing Engineering Problems
Abstract
:1. Introduction
Category | Algorithms | Authors | Year |
---|---|---|---|
Evolutionary | Genetic Algorithm (GA) [22] | Holland | 1992 |
Genetic Programming (GP) [25] | Koza et al. | 1994 | |
Differential Evolution (DE) [23] | Storn and Price | 1997 | |
Evolutionary Programming (EP) [24] | Yao et al. | 1999 | |
Memetic Algorithms (MAs) [27] | Moscato | 2003 | |
Imperialist Competitive Algorithms (ICAs) [28] | Atashpaz et al. | 2007 | |
Biogeography-Based Optimization (BBO) [26] | Simon | 2008 | |
Swarm | Particle Swarm Optimization (PSO) [29] | Kennedy and Eberhart | 1995 |
Ant Colony Optimization (ACO) [30] | Dorigo et al. | 1999 | |
Cuckoo Search Algorithm (CSA) [32] | Yang and Deb | 2009 | |
Grey Wolf Optimizer (GWO) [33] | Mirjalili et al. | 2014 | |
Moth Flame Optimizer (MFO) [21] | Mirjalili and Seyedali | 2015 | |
Whale Optimization Algorithm (WOA) [31] | Mirjalili et al. | 2016 | |
Seagull Optimization Algorithm (SOA)[52] | Dhiman and Kumar | 2019 | |
Sparrow Search Algorithm (SSA) [34] | Xue et al. | 2020 | |
Red Fox Optimization Algorithm (RFO) [36] | Połap et al. | 2021 | |
Northern Goshawk Optimization (NGO) [53] | Dehghani et al. | 2021 | |
Pelican Optimization Algorithm (POA) [54] | Trojovský and Dehghani | 2022 | |
Golden Jackal Optimization (GJO) [55] | Chopra and Ansari | 2022 | |
Beluga Whale Optimization (BWO) [19] | Zhong et al. | 2022 | |
Sea-horse Optimizer (SHO) [37] | Zhao et al. | 2023 | |
Dung Beetle Optimizer (DBO) [35] | Xue et al. | 2023 | |
Coati Optimization Algorithm (COA) [38] | Dehghani et al. | 2023 | |
Spider Wasp Optimizer (SWO) [39] | Basset et al. | 2023 | |
Cleaner fish optimization (CFO) [40] | Zhang et al. | 2024 | |
Physics and Chemistry | Simulated Annealing (SA) [41] | Kirkpatrick et al. | 1983 |
Magnetic Optimization Algorithm (MOA) [56] | Tayaraniet al. | 2008 | |
Gravitational Search Algorithm (GSA) [42] | Rashedi et al. | 2009 | |
Artificial Chemical Reaction Optimization (ACRO) [43] | Alatas | 2011 | |
Lightning Search Algorithm (LSA) [57] | Mirjalili | 2015 | |
Sine Cosine Optimization (SCA) [44] | Tanyildizi et al. | 2016 | |
Golden Sine Algorithm (GSA) [58] | Kaveh et al. | 2017 | |
Thermal Exchange Optimization (TEO) [45] | Abualigah et al. | 2017 | |
Kepler Optimization Algorithm (KOA) [46] | Basset et al. | 2023 | |
Human | Teaching and Learning Based Optimization (TLBO) [47] | Rao et al. | 2011 |
Cultural Evolution Algorithm (CEA) [48] | Kuo and Lin | 2013 | |
Election Algorithm (EA) [59] | Emami et al. | 2015 | |
Social Learning Optimization Algorithm (SLOA) [49] | Liu et al. | 2017 | |
Socio Evolution and Learning Optimization Algorithm (SELO) [50] | Kumar et al. | 2018 | |
Volleyball Premier League Algorithm (VPL) [51] | Moghdani et al. | 2018 |
- (1)
- To enhance the diversity of the initial population, this paper adds the cubic mapping strategy in the initialization phase of the original NGO algorithm;
- (2)
- To avoid NGO being trapped in local optima, a novel weighted stochastic difference variation strategy is introduced in the exploration phase. It will help NGO jump out of local optima;
- (3)
- To accelerate the convergence speed, a weighted sine and cosine optimization strategy is added in the exploitation phase of the original NGO algorithm;
- (4)
- To evaluate the performance of our improved MSINGO, we compare it with five highly cited and six recently proposed metaheuristic algorithms on CEC2017 test functions and six engineering design problems.
2. Overview of Original NGO
2.1. Initialization
2.2. Exploration Phase
2.3. Exploitation Phase
3. Our Proposed MSINGO
3.1. Cubic Mapping Strategy
3.2. Weighted Stochastic Difference Mutation Strategy
3.3. Weighted Sine and Cosine Optimization Strategy
3.4. The Detail of Our Proposed MSINGO
Algorithm 1. Pseudo-code of the MSINGO algorithm | |
Input: | The initial parameters of MSINGO, including the maximum number of iterations , the number of population members , the dimension of problem variables , the lower bound and upper bound of problem variables , . |
Output: | Optimal fitness value |
1: | Set |
2: | Create initial population using Equation (10) |
3: | While Do |
4: | While Do |
5: | Exploration phase: |
6: | Calculate the position of the th solution using Equation (17) |
7: | Update the position of the th solution using Equation (5) |
8: | Exploitation phase: |
9: | Calculate |
10: | Calculate the position of the th solution using Equation (19) |
11: | Update the position of the th solution using Equation (8) |
12: | End While |
13: | Save best proposed solution so far |
14: | |
15: | End While |
16: | Output the best solution |
3.5. Time Complexity Analysis
4. Experimental Results and Analysis
4.1. Benchmark Functions
4.2. Competitor Algorithms and Parameters Setting
4.3. Influence of the Three Mechanisms
4.4. Qualitative Analysis
4.5. Comparison with 11 Well-Known Metaheuristic Algorithms
4.5.1. Exploitation Ability Analysis
4.5.2. Exploration Ability Analysis
4.5.3. Local Optimal Avoidance Ability Analysis
4.6. Scalability Analysis
4.7. Memory Occupation
5. MSINGO for Engineering Optimization Problems
5.1. Tension/Compression Spring Design Problem (T/CSD)
5.2. Cantilever Beam Design Problem (CBD)
5.3. Pressure Vessel Design Problem (PVD)
5.4. Welded Beam Design Problem (WBD)
5.5. Speed Reducer Design Problem (SRD)
5.6. Three-Bar Truss Design Problem (T-bTD)
6. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Phan, H.D.; Ellis, K.; Barca, J.C.; Dorin, A. A Survey of Dynamic Parameter Setting Methods for Nature-Inspired Swarm Intelligence Algorithms. Neural Comput. Appl. 2020, 32, 567–588. [Google Scholar] [CrossRef]
- Nadimi-Shahraki, M.H.; Zamani, H.; Mirjalili, S. Enhanced Whale Optimization Algorithm for Medical Feature Selection: A COVID-19 Case Study. Comput. Biol. Med. 2022, 148, 105858. [Google Scholar] [CrossRef]
- Guo, X.; Hu, J.; Yu, H.; Wang, M.; Yang, B. A New Population Initialization of Metaheuristic Algorithms Based on Hybrid Fuzzy Rough Set for High-Dimensional Gene Data Feature Selection. Comput. Biol. Med. 2023, 166, 107538. [Google Scholar] [CrossRef]
- Wang, X.; Choi, T.-M.; Liu, H.; Yue, X. A Novel Hybrid Ant Colony Optimization Algorithm for Emergency Transportation Problems During Post-Disaster Scenarios. IEEE Trans. Syst. Man Cybern Syst. 2018, 48, 545–556. [Google Scholar] [CrossRef]
- Beheshtinia, M.A.; Jozi, A.; Fathi, M. Optimizing Disaster Relief Goods Distribution and Transportation: A Mathematical Model and Metaheuristic Algorithms. Appl. Math. Sci. Eng. 2023, 31, 2252980. [Google Scholar] [CrossRef]
- Shen, Y.; Zhang, C.; Soleimanian Gharehchopogh, F.; Mirjalili, S. An Improved Whale Optimization Algorithm Based on Multi-Population Evolution for Global Optimization and Engineering Design Problems. Expert Syst. Appl. 2023, 215, 119269. [Google Scholar] [CrossRef]
- Jiadong, Q.; Ohl, J.P.; Tran, T.-T. Predicting Clay Compressibility for Foundation Design with High Reliability and Safety: A Geotechnical Engineering Perspective Using Artificial Neural Network and Five Metaheuristic Algorithms. Reliab. Eng. Syst. Saf. 2024, 243, 109827. [Google Scholar] [CrossRef]
- Lin, W.-Y. A Novel 3D Fruit Fly Optimization Algorithm and Its Applications in Economics. Neural Comput. Appl. 2016, 27, 1391–1413. [Google Scholar] [CrossRef]
- Ewees, A.A.; Mostafa, R.R.; Ghoniem, R.M.; Gaheen, M.A. Improved Seagull Optimization Algorithm Using Lévy Flight and Mutation Operator for Feature Selection. Neural Comput. Appl. 2022, 34, 7437–7472. [Google Scholar] [CrossRef]
- Dutta, D.; Rath, S. Innovative Hybrid Metaheuristic Algorithms: Exponential Mutation and Dual-Swarm Strategy for Hybrid Feature Selection Problem. Int. J. Inf. Tecnol. 2024, 16, 77–89. [Google Scholar] [CrossRef]
- Yildirim, S.; Kaya, Y.; Kılıç, F. A Modified Feature Selection Method Based on Metaheuristic Algorithms for Speech Emotion Recognition. Appl. Acoust. 2021, 173, 107721. [Google Scholar] [CrossRef]
- Nasruddin; Sholahudin; Satrio, P.; Mahlia, T.M.I.; Giannetti, N.; Saito, K. Optimization of HVAC System Energy Consumption in a Building Using Artificial Neural Network and Multi-Objective Genetic Algorithm. Sustain. Energy Technol. Assess. 2019, 35, 48–57. [Google Scholar] [CrossRef]
- Eker, E.; Kayri, M.; Ekinci, S.; İzci, D. Comparison of Swarm-Based Metaheuristic and Gradient Descent-Based Algorithms in Artificial Neural Network Training. Adv. Distrib. Comput. Artif. Intell. J. 2023, 12, e29969. [Google Scholar] [CrossRef]
- Mirsaeidi, S.; Shang, F.; Ghaffari, K.; He, J.; Said, D.M.; Muttaqi, K.M. An Artificial Neural Network Based Strategy for Commutation Failure Forecasting in LCC-HVDC Transmission Networks. In Proceedings of the 2023 IEEE International Conference on Energy Technologies for Future Grids (ETFG), Wollongong, Australia, 3 December 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1–6. [Google Scholar]
- Zheng, R.; Hussien, A.G.; Qaddoura, R.; Jia, H.; Abualigah, L.; Wang, S.; Saber, A. A Multi-Strategy Enhanced African Vultures Optimization Algorithm for Global Optimization Problems. J. Comput. Des. Eng. 2023, 10, 329–356. [Google Scholar] [CrossRef]
- Hochreiter, S.; Younger, A.S.; Conwell, P.R. Learning to Learn Using Gradient Descent. In Proceedings of the Artificial Neural Networks—ICANN 2001, Vienna, Austria, 21–25 August 2001; Dorffner, G., Bischof, H., Hornik, K., Eds.; Springer: Berlin/Heidelberg, Germany, 2001; pp. 87–94. [Google Scholar]
- Polyak, B.T. Newton’s Method and Its Use in Optimization. Eur. J. Oper. Res. 2007, 181, 1086–1096. [Google Scholar] [CrossRef]
- Fletcher, R. Function Minimization by Conjugate Gradients. Comput. J. 1964, 7, 149–154. [Google Scholar] [CrossRef]
- Zhong, C.; Li, G.; Meng, Z. Beluga Whale Optimization: A Novel Nature-Inspired Metaheuristic Algorithm. Knowl.-Based Syst. 2022, 251, 109215. [Google Scholar] [CrossRef]
- Sahoo, S.K.; Saha, A.K.; Nama, S.; Masdari, M. An Improved Moth Flame Optimization Algorithm Based on Modified Dynamic Opposite Learning Strategy. Artif. Intell. Rev. 2023, 56, 2811–2869. [Google Scholar] [CrossRef]
- Mirjalili, S. Moth-Flame Optimization Algorithm: A Novel Nature-Inspired Heuristic Paradigm. Knowl.-Based Syst. 2015, 89, 228–249. [Google Scholar] [CrossRef]
- Holland, J.H. Genetic Algorithms. Sci. Am. 1992, 267, 66–73. [Google Scholar] [CrossRef]
- Storn, R.; Price, K. Differential Evolution—A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces. J. Glob. Optim. 1997, 11, 341–359. [Google Scholar] [CrossRef]
- Yao, X.; Liu, Y.; Lin, G. Evolutionary Programming Made Faster. IEEE Trans. Evol. Comput. 1999, 3, 82–102. [Google Scholar] [CrossRef]
- Koza, J.R. Genetic Programming as a Means for Programming Computers by Natural Selection. Stat. Comput. 1994, 4, 87–112. [Google Scholar] [CrossRef]
- Simon, D. Biogeography-Based Optimization. IEEE Trans. Evol. Comput. 2008, 12, 702–713. [Google Scholar] [CrossRef]
- Moscato, P.; Cotta Porras, C. An Introduction to Memetic Algorithms. Int. Artif. 2003, 7, 360. [Google Scholar] [CrossRef]
- Atashpaz-Gargari, E.; Lucas, C. Imperialist Competitive Algorithm: An Algorithm for Optimization Inspired by Imperialistic Competition. In Proceedings of the 2007 IEEE Congress on Evolutionary Computation, Singapore, 25–28 September 2007; IEEE: Piscataway, NJ, USA, 2007; pp. 4661–4667. [Google Scholar]
- Kennedy, J.; Eberhart, R. Particle Swarm Optimization. In Proceedings of the ICNN’95—International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; IEEE: Piscataway, NJ, USA, 1995; Volume 4, pp. 1942–1948. [Google Scholar]
- Dorigo, M.; Birattari, M.; Stutzle, T. Ant Colony Optimization. IEEE Comput. Intell. Mag. 2006, 1, 28–39. [Google Scholar] [CrossRef]
- Mirjalili, S.; Lewis, A. The Whale Optimization Algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [Google Scholar] [CrossRef]
- Yang, X.-S.; Deb, S. Cuckoo Search via Lévy Flights. In Proceedings of the 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC), Coimbatore, India, 9–11 December 2009; IEEE: Piscataway, NJ, USA, 2009; pp. 210–214. [Google Scholar]
- Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey Wolf Optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [Google Scholar] [CrossRef]
- Xue, J.; Shen, B. A Novel Swarm Intelligence Optimization Approach: Sparrow Search Algorithm. Syst. Sci. Control Eng. 2020, 8, 22–34. [Google Scholar] [CrossRef]
- Xue, J.; Shen, B. Dung Beetle Optimizer: A New Meta-Heuristic Algorithm for Global Optimization. J. Supercomput. 2023, 79, 7305–7336. [Google Scholar] [CrossRef]
- Połap, D.; Woźniak, M. Red Fox Optimization Algorithm. Expert Syst. Appl. 2021, 166, 114107. [Google Scholar] [CrossRef]
- Zhao, S.; Zhang, T.; Ma, S.; Wang, M. Sea-Horse Optimizer: A Novel Nature-Inspired Meta-Heuristic for Global Optimization Problems. Appl. Intell. 2023, 53, 11833–11860. [Google Scholar] [CrossRef]
- Dehghani, M.; Montazeri, Z.; Trojovská, E.; Trojovský, P. Coati Optimization Algorithm: A New Bio-Inspired Metaheuristic Algorithm for Solving Optimization Problems. Knowl.-Based Syst. 2023, 259, 110011. [Google Scholar] [CrossRef]
- Abdel-Basset, M.; Mohamed, R.; Jameel, M.; Abouhawwash, M. Spider Wasp Optimizer: A Novel Meta-Heuristic Optimization Algorithm. Artif. Intell. Rev. 2023, 56, 11675–11738. [Google Scholar] [CrossRef]
- Zhang, W.; Zhao, J.; Liu, H.; Tu, L. Cleaner Fish Optimization Algorithm: A New Bio-Inspired Meta-Heuristic Optimization Algorithm. J. Supercomput. 2024, 80, 17338–17376. [Google Scholar] [CrossRef]
- Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P. Optimization by Simulated Annealing. Science 1983, 220, 671–680. [Google Scholar] [CrossRef]
- Rashedi, E.; Nezamabadi-pour, H.; Saryazdi, S. GSA: A Gravitational Search Algorithm. Inf. Sci. 2009, 179, 2232–2248. [Google Scholar] [CrossRef]
- Alatas, B. ACROA: Artificial Chemical Reaction Optimization Algorithm for Global Optimization. Expert Syst. Appl. 2011, 38, 13170–13180. [Google Scholar] [CrossRef]
- Mirjalili, S. SCA: A Sine Cosine Algorithm for Solving Optimization Problems. Knowl.-Based Syst. 2016, 96, 120–133. [Google Scholar] [CrossRef]
- Kaveh, A.; Dadras, A. A Novel Meta-Heuristic Optimization Algorithm: Thermal Exchange Optimization. Adv. Eng. Softw. 2017, 110, 69–84. [Google Scholar] [CrossRef]
- Abdel-Basset, M.; Mohamed, R.; Azeem, S.A.A.; Jameel, M.; Abouhawwash, M. Kepler Optimization Algorithm: A New Metaheuristic Algorithm Inspired by Kepler’s Laws of Planetary Motion. Knowl.-Based Syst. 2023, 268, 110454. [Google Scholar] [CrossRef]
- Rao, R.V.; Savsani, V.J.; Vakharia, D.P. Teaching–Learning-Based Optimization: A Novel Method for Constrained Mechanical Design Optimization Problems. Comput.-Aided Des. 2011, 43, 303–315. [Google Scholar] [CrossRef]
- Kuo, H.C.; Lin, C.H. Cultural Evolution Algorithm for Global Optimizations and Its Applications. J. Appl. Res. Technol. 2013, 11, 510–522. [Google Scholar] [CrossRef]
- Liu, Z.; Qin, J.; Peng, W.; Chao, H. Effective Task Scheduling in Cloud Computing Based on Improved Social Learning Optimization Algorithm. Int. J. Online Eng. 2017, 13, 4. [Google Scholar] [CrossRef]
- Kumar, M.; Kulkarni, A.J.; Satapathy, S.C. Socio Evolution & Learning Optimization Algorithm: A Socio-Inspired Optimization Methodology. Future Gener. Comput. Syst. 2018, 81, 252–272. [Google Scholar] [CrossRef]
- Moghdani, R.; Salimifard, K. Volleyball Premier League Algorithm. Appl. Soft Comput. 2018, 64, 161–185. [Google Scholar] [CrossRef]
- Dhiman, G.; Kumar, V. Seagull Optimization Algorithm: Theory and Its Applications for Large-Scale Industrial Engineering Problems. Knowl.-Based Syst. 2019, 165, 169–196. [Google Scholar] [CrossRef]
- Dehghani, M.; Hubalovsky, S.; Trojovsky, P. Northern Goshawk Optimization: A New Swarm-Based Algorithm for Solving Optimization Problems. IEEE Access 2021, 9, 162059–162080. [Google Scholar] [CrossRef]
- Trojovský, P.; Dehghani, M. Pelican Optimization Algorithm: A Novel Nature-Inspired Algorithm for Engineering Applications. Sensors 2022, 22, 855. [Google Scholar] [CrossRef]
- Chopra, N.; Mohsin Ansari, M. Golden Jackal Optimization: A Novel Nature-Inspired Optimizer for Engineering Applications. Expert Syst. Appl. 2022, 198, 116924. [Google Scholar] [CrossRef]
- Tayarani-N, M.H.; Akbarzadeh-T, M.R. Magnetic Optimization Algorithms a New Synthesis. In Proceedings of the 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence), Hong Kong, China, June 1–6 June 2008; IEEE: Piscataway, NJ, USA, 2008; pp. 2659–2664. [Google Scholar]
- Shareef, H.; Ibrahim, A.A.; Mutlag, A.H. Lightning Search Algorithm. Appl. Soft Comput. 2015, 36, 315–333. [Google Scholar] [CrossRef]
- Tanyildizi, E.; Demir, G. Golden Sine Algorithm: A Novel Math-Inspired Algorithm. Adv. Electr. Comput. Eng. 2017, 17, 71–78. [Google Scholar] [CrossRef]
- Emami, H.; Derakhshan, F. Election Algorithm: A New Socio-Politically Inspired Strategy. AI Commun. 2015, 28, 591–603. [Google Scholar] [CrossRef]
- Wolpert, D.H.; Macready, W.G. No Free Lunch Theorems for Optimization. IEEE Trans. Evol. Comput. 1997, 1, 67–82. [Google Scholar] [CrossRef]
- Chang, T.; Ge, Y.; Lin, Q.; Wang, Y.; Chen, R.; Wang, J. Optimal Configuration of Hybrid Energy Storage Capacity Based on Northern Goshawk Optimization. In Proceedings of the 2023 35th Chinese Control and Decision Conference (CCDC), Yichang, China, 20 May 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 301–306. [Google Scholar]
- El-Dabah, M.A.; El-Sehiemy, R.A.; Hasanien, H.M.; Saad, B. Photovoltaic Model Parameters Identification Using Northern Goshawk Optimization Algorithm. Energy 2023, 262, 125522. [Google Scholar] [CrossRef]
- Wu, X.; He, L.; Wu, G.; Liu, B.; Song, D. Optimizing CNN-LSTM Model for Short-Term PV Power Prediction Using Northern Goshawk Optimization. In Proceedings of the 2023 6th International Conference on Power and Energy Applications (ICPEA), Weihai, China, 24 November 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 248–252. [Google Scholar]
- Deng, H.; Liu, L.; Fang, J.; Qu, B.; Huang, Q. A Novel Improved Whale Optimization Algorithm for Optimization Problems with Multi-Strategy and Hybrid Algorithm. Math. Comput. Simul. 2023, 205, 794–817. [Google Scholar] [CrossRef]
- Fan, J.; Li, Y.; Wang, T. An Improved African Vultures Optimization Algorithm Based on Tent Chaotic Mapping and Time-Varying Mechanism. PLoS ONE 2021, 16, e0260725. [Google Scholar] [CrossRef]
- Rogers, T.D.; Whitley, D.C. Chaos in the Cubic Mapping. Math. Model 1983, 4, 9–25. [Google Scholar] [CrossRef]
- Chechkin, A.V.; Metzler, R.; Klafter, J.; Gonchar, V.Y. Introduction to the Theory of Lévy Flights. In Anomalous Transport; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2008; pp. 129–162. ISBN 978-3-527-62297-9. [Google Scholar]
- Belegundu, A.D.; Arora, J.S. A Study of Mathematical Programmingmethods for Structural Optimization. Part II: Numerical Results. Int. J. Numer. Methods Eng. 1985, 21, 1601–1623. [Google Scholar] [CrossRef]
- Chickermane, H.; Gea, H.C. Structural Optimization Using a New Local Approximation Method. Int. J. Numer. Methods Eng. 1996, 39, 829–846. [Google Scholar] [CrossRef]
- Ghasemi, M.; Golalipour, K.; Zare, M.; Mirjalili, S.; Trojovský, P.; Abualigah, L.; Hemmati, R. Flood Algorithm (FLA): An Efficient Inspired Meta-Heuristic for Engineering Optimization. J. Supercomput. 2024, 80, 22913–23017. [Google Scholar] [CrossRef]
- Coello Coello, C.A. Use of a Self-Adaptive Penalty Approach for Engineering Optimization Problems. Comput. Ind. 2000, 41, 113–127. [Google Scholar] [CrossRef]
- Mezura-Montes, E.; Coello, C.A.C. Useful Infeasible Solutions in Engineering Optimization with Evolutionary Algorithms. In Proceedings of the MICAI 2005: Advances in Artificial Intelligence, Monterrey, Mexico, 14–18 November 2005; Gelbukh, A., de Albornoz, Á., Terashima-Marín, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; pp. 652–662. [Google Scholar]
- Ray, T.; Saini, P. Engineering Design Optimization Using a Swarm with an Intelligent Information Sharing among Individuals. Eng. Optim. 2001, 33, 735–748. [Google Scholar] [CrossRef]
Category | ID | Function | Range | |
---|---|---|---|---|
Unimodal functions | C1 | Shifted and Rotated Bent Cigar Function | [−100, 100] | 100 |
C2 | Shifted and Rotated Zakharov Function | [−100, 100] | 200 | |
Multimodal functions | C3 | Shifted and Rotated Rosenbrock’s Function | [−100, 100] | 300 |
C4 | Shifted and Rotated Rastrigin’s Function | [−100, 100] | 400 | |
C5 | Shifted and Rotated Schaffer’s F7 Function | [−100, 100] | 500 | |
C6 | Shifted and Rotated Lunacek Bi-Rastrigin’s Function | [−100, 100] | 600 | |
C7 | Shifted and Rotated Non-Continuous Rastrigin’s Function | [−100, 100] | 700 | |
C8 | Shifted and Rotated Levy Function | [−100, 100] | 800 | |
C9 | Shifted and Rotated Schwefel’s Function | [−100, 100] | 900 | |
Hybrid functions | C10 | Hybrid Function 1 (N= 3) | [−100, 100] | 1000 |
C11 | Hybrid Function 2 (N = 3) | [−100, 100] | 1100 | |
C12 | Hybrid Function 3 (N = 3) | [−100, 100] | 1200 | |
C13 | Hybrid Function 4 (N = 4) | [−100, 100] | 1300 | |
C14 | Hybrid Function 5 (N = 4) | [−100, 100] | 1400 | |
C15 | Hybrid Function 6 (N = 4) | [−100, 100] | 1500 | |
C16 | Hybrid Function 7 (N = 5) | [−100, 100] | 1600 | |
C17 | Hybrid Function 8 (N = 5) | [−100, 100] | 1700 | |
C18 | Hybrid Function 9 (N = 5) | [−100, 100] | 1800 | |
C19 | Hybrid Function 10 (N = 6) | [−100, 100] | 1900 | |
Composition functions | C20 | Composition Function 1 (N = 3) | [−100, 100] | 2000 |
C21 | Composition Function 2 (N = 3) | [−100, 100] | 2100 | |
C22 | Composition Function 3 (N = 4) | [−100, 100] | 2200 | |
C23 | Composition Function 4 (N = 4) | [−100, 100] | 2300 | |
C24 | Composition Function 5 (N = 5) | [−100, 100] | 2400 | |
C25 | Composition Function 6 (N = 5) | [−100, 100] | 2500 | |
C26 | Composition Function 7 (N = 6) | [−100, 100] | 2600 | |
C27 | Composition Function 8 (N = 6) | [−100, 100] | 2700 | |
C28 | Composition Function 9 (N = 3) | [−100, 100] | 2800 | |
C29 | Composition Function 10 (N = 3) | [−100, 100] | 2900 |
Category | Algorithms | Name of the Parameter | Value of the Parameter |
---|---|---|---|
Highly cited | DE | 0.8, 0.85 | |
MFO | 1 | ||
WOA | [0, 2], [−2, −1], 1 | ||
SCA | 2 | ||
SOA | 2 | ||
Recently proposed | SSA | 0.6, 0.7, 0.2 | |
DBO | 0.2, 0.4, 0.2, 0.4, b = 0.3, k = 0.1, S = 0.5 | ||
POA | 0.2 | ||
BWO | [0.1, 0.05] | ||
GJO | 0.5 | ||
NGO | [0, 0.02] | ||
Our proposed | MSINGO | 2.595, 1.5 |
Cubic Mapping (C) | Weighted Stochastic Difference Variation (WS) | Weighted Sine and Cosine Optimization (WSC) | |
---|---|---|---|
NGO | 0 | 0 | 0 |
C_NGO | 1 | 0 | 0 |
WS_NGO | 0 | 1 | 0 |
WSC_NGO | 0 | 0 | 1 |
C_WS_NGO | 1 | 1 | 0 |
C_WSC_NGO | 1 | 0 | 1 |
WS_WSC_NGO | 0 | 1 | 1 |
MSINGO | 1 | 1 | 1 |
ID | NGO | C_NGO | WS_NGO | WSC_NGO | C_WS_NGO | C_WSC_NGO | WS_WSC_NGO | MSINGO | |
---|---|---|---|---|---|---|---|---|---|
C1 | Ave | 1.8025 × 107 | 1.4315 × 108 | 5.5679 × 103 | 3.8139 × 106 | 5.3757 × 103 | 4.0069 × 106 | 8.2264 × 103 | 1.0583 × 104 |
Std | 1.9969 × 107 | 1.8369 × 108 | 4.6062 × 103 | 1.4174 × 106 | 5.1807 × 103 | 1.7799 × 106 | 6.2044 × 103 | 7.6418 × 10 | |
C2 | Ave | 9.5971 × 102 | 2.2737 × 103 | 2.0586 × 102 | 3.3318 × 102 | 2.0162 × 102 | 3.2309 × 102 | 2.1121 × 102 | 2.0902 × 102 |
Std | 4.8997 × 102 | 8.6804 × 102 | 1.3416 × 101 | 5.7545 × 101 | 1.9350 | 5.5625 × 101 | 7.6682 | 5.5120 | |
C3 | Ave | 4.2824 × 102 | 4.7716 × 102 | 3.5739 × 102 | 3.9802 × 102 | 3.7833 × 102 | 3.9686 × 102 | 3.5959 × 102 | 3.5318 × 102 |
Std | 4.6788 × 101 | 5.3148 × 101 | 2.8096 × 101 | 3.1249 × 101 | 4.3003 × 101 | 4.4813 × 101 | 2.9606 × 101 | 2.6328 × 101 | |
C4 | Ave | 1.0209 × 103 | 1.2609 × 103 | 5.7725 × 102 | 7.0194 × 102 | 5.8034 × 102 | 7.0097 × 102 | 6.3334 × 102 | 6.2263 × 102 |
Std | 2.1185 × 102 | 5.0975 × 102 | 3.1176 × 101 | 5.1463 × 101 | 2.9463 × 101 | 3.8466 × 101 | 3.0272 × 101 | 3.0987 × 101 | |
C5 | Ave | 5.0000 × 102 | 5.0000 × 102 | 5.0000 × 102 | 5.0000 × 102 | 5.0000 × 102 | 5.0000 × 102 | 5.0000 × 102 | 5.0000 × 102 |
Std | 1.1436 × 10−3 | 2.5502 × 10−3 | 8.8501 × 10−4 | 3.6425 × 10−4 | 6.3949 × 10−4 | 3.7749 × 10−4 | 4.5111 × 10−4 | 4.1208 × 10−4 | |
C6 | Ave | 3.4794 × 103 | 1.9116 × 104 | 3.2849 × 103 | 1.5336 × 104 | 2.6826 × 103 | 1.4086 × 104 | 8.7875 × 103 | 8.4491 × 103 |
Std | 1.3695 × 103 | 6.3324 × 103 | 1.2963 × 103 | 6.6900 × 103 | 7.8237 × 102 | 5.6652 × 103 | 3.6049 × 103 | 3.9353 × 103 | |
C7 | Ave | 7.0013 × 102 | 7.0103 × 102 | 7.0010 × 102 | 7.0022 × 102 | 7.0011 × 102 | 7.0020 × 102 | 7.0014 × 102 | 7.0015 × 102 |
Std | 6.0608 × 10−2 | 2.6993 × 10−1 | 7.1534 × 10−2 | 8.5846 × 10−2 | 4.2965 × 10−2 | 7.3934 × 10−2 | 6.2216 × 10−2 | 6.1209 × 10−2 | |
C8 | Ave | 8.0554 × 102 | 8.0587 × 102 | 8.0154 × 102 | 8.0425 × 102 | 8.0158 × 102 | 8.0471 × 102 | 8.0199 × 102 | 8.0156 × 102 |
Std | 1.9518 | 1.9525 | 1.4377 | 1.4377 | 1.22370 | 1.5104 | 1.3990 | 1.0497 | |
C9 | Ave | 5.1677 × 103 | 7.7212 × 103 | 5.2430 × 103 | 5.2093 × 103 | 5.2409 × 103 | 5.1227 × 103 | 5.2556 × 103 | 5.0619 × 103 |
Std | 4.5304 × 102 | 3.6230 × 102 | 4.0000 × 102 | 5.7974 × 102 | 4.0613 × 102 | 7.1581 × 102 | 4.8143 × 102 | 5.4751 × 102 | |
C10 | Ave | 3.5772 × 104 | 2.9359 × 104 | 3.8583 × 104 | 1.2361 × 104 | 2.5199 × 104 | 1.3668 × 104 | 2.2557 × 104 | 1.6519 × 104 |
Std | 2.3458 × 104 | 1.6215 × 104 | 2.7401 × 104 | 6.2903 × 103 | 1.5051 × 104 | 6.8203 × 103 | 2.0052 × 104 | 8.7681 × 103 | |
C11 | Ave | 1.9569 × 105 | 3.9197 × 105 | 1.0143 × 105 | 2.6041 × 105 | 1.1863 × 105 | 2.9005 × 105 | 9.7033 × 105 | 8.1669 × 104 |
Std | 1.9607 × 105 | 3.3473 × 105 | 8.6213 × 104 | 2.3087 × 105 | 1.0390 × 105 | 3.2213 × 105 | 8.3390 × 104 | 5.8853 × 104 | |
C12 | Ave | 2.5452 × 104 | 2.3404 × 104 | 5.7697 × 103 | 1.0315 × 105 | 6.2603 × 103 | 4.9563 × 104 | 6.5499 × 103 | 7.6979 × 103 |
Std | 2.6804 × 104 | 1.2787 × 104 | 4.0495 × 103 | 1.1173 × 105 | 5.3015 × 103 | 6.1465 × 104 | 5.3117 × 103 | 5.5292 × 103 | |
C13 | Ave | 2.5841 × 105 | 3.1302 × 105 | 1.1252 × 105 | 3.1334 × 105 | 1.1695 × 105 | 2.5456 × 105 | 1.5680 × 105 | 1.5022 × 105 |
Std | 1.4319 × 105 | 1.3164 × 105 | 3.6354 × 104 | 1.1721 × 105 | 3.9481 × 104 | 1.0037 × 105 | 8.8740 × 104 | 4.4144 × 104 | |
C14 | Ave | 2.6773 × 104 | 2.4840 × 104 | 2.1099 × 104 | 2.7076 × 104 | 2.0208 × 104 | 2.2563 × 104 | 1.6073 × 104 | 1.3331 × 104 |
Std | 1.0410 × 104 | 1.0861 × 104 | 1.0634 × 104 | 1.0504 × 104 | 1.4964 × 104 | 8.0369 × 103 | 5.6588 × 103 | 7.8585 × 103 | |
C15 | Ave | 1.9647 × 103 | 6.3238 × 103 | 1.8444 × 103 | 2.3482 × 103 | 1.7647 × 103 | 3.3227 × 103 | 2.1792 × 103 | 1.9586 × 103 |
Std | 3.4647 × 102 | 6.1986 × 103 | 3.5904 × 102 | 8.2637 × 102 | 2.5106 × 102 | 1.4183 × 103 | 1.2759 × 103 | 3.6559 × 102 | |
C16 | Ave | 7.3627 × 103 | 4.5647 × 103 | 7.2881 × 103 | 3.3705 × 103 | 6.4137 × 103 | 3.4096 × 103 | 5.0775 × 103 | 4.4896 × 103 |
Std | 7.1224 × 103 | 3.0930 × 103 | 6.9245 × 103 | 2.2489 × 103 | 3.8862 × 103 | 1.6588 × 103 | 3.2278 × 103 | 2.6157 × 103 | |
C17 | Ave | 9.2979 × 104 | 1.0940 × 105 | 4.7520 × 104 | 1.0834 × 105 | 5.0553 × 104 | 1.1181 × 105 | 7.8437 × 104 | 8.5337 × 104 |
Std | 4.5633 × 104 | 3.8472 × 104 | 1.6387 × 104 | 2.7706 × 104 | 1.6759 × 104 | 3.6410 × 104 | 2.1293 × 104 | 3.0722 × 104 | |
C18 | Ave | 1.7265 × 104 | 8.2445 × 103 | 2.0264 × 104 | 1.5480 × 104 | 3.7698 × 104 | 1.3146 × 104 | 2.5454 × 104 | 2.2163 × 104 |
Std | 1.7684 × 104 | 1.0789 × 104 | 1.7719 × 104 | 1.7940 × 104 | 2.6475 × 104 | 1.5760 × 104 | 2.1266 × 104 | 1.7829 × 104 | |
C19 | Ave | 2.7377 × 103 | 2.7541 × 103 | 2.4082 × 103 | 2.3599 × 103 | 2.3419 × 103 | 2.3971 × 103 | 2.2661 × 103 | 2.2469 × 103 |
Std | 2.7274 × 102 | 3.4635 × 102 | 2.7271 × 102 | 1.9647 × 102 | 2.8974 × 102 | 2.3299 × 102 | 1.4353 × 102 | 1.6479 × 102 | |
C20 | Ave | 2.6466 × 103 | 2.6348 × 103 | 2.2183 × 103 | 2.3056 × 103 | 2.2987 × 103 | 2.3848 × 103 | 2.2597 × 103 | 2.3231 × 103 |
Std | 4.8847 × 102 | 3.3976 × 102 | 1.3459 × 102 | 1.6827 × 102 | 1.3206 × 102 | 1.5305 × 102 | 1.6844 × 102 | 1.5802 × 102 | |
C21 | Ave | 2.3416 × 103 | 2.3513 × 103 | 2.2794 × 103 | 2.2876 × 103 | 2.2796 × 103 | 2.2742 × 103 | 2.2998 × 103 | 2.2752 × 103 |
Std | 2.7963 × 101 | 4.3453 × 101 | 6.6238 | 7.5533 | 7.8133 | 6.5709 | 1.1813 × 101 | 6.6923 | |
C22 | Ave | 3.0030 × 103 | 3.4859 × 103 | 2.4293 × 103 | 2.6507 × 103 | 2.4026 × 103 | 2.6507 × 103 | 2.4386 × 103 | 2.4422 × 103 |
Std | 5.7231 × 102 | 3.9136 × 102 | 8.0678 × 101 | 1.1595 × 102 | 8.2796 × 10−1 | 1.1331 × 102 | 9.8880 × 101 | 1.1063 × 102 | |
C23 | Ave | 2.8273 × 103 | 3.2852 × 103 | 2.5014 × 103 | 2.6288 × 103 | 2.5012 × 103 | 2.6432 × 103 | 2.5352 × 103 | 2.5146 × 103 |
Std | 4.6000 × 102 | 5.5984 × 102 | 6.0767 × 10−1 | 2.8852 × 101 | 5.1043 × 10−1 | 6.9075 × 101 | 9.7281 × 101 | 6.2048 × 101 | |
C24 | Ave | 2.8767 × 103 | 2.8928 × 103 | 2.8249 × 103 | 2.8460 × 103 | 2.8281 × 103 | 2.8510 × 103 | 2.8305 × 103 | 2.8249 × 103 |
Std | 2.2767 × 101 | 3.8269 × 101 | 7.6830 | 1.3856 × 101 | 8.9261 | 1.5720 × 101 | 9.3798 | 4.6406 | |
C25 | Ave | 3.3543E × 103 | 3.3604 × 103 | 3.3580 × 103 | 3.3287 × 103 | 3.3595 × 103 | 3.3276 × 103 | 3.3310 × 103 | 3.3352 × 103 |
Std | 1.8431 × 101 | 2.2434 × 101 | 1.8335 × 101 | 2.0772 | 1.9466 × 101 | 9.0204 | 4.4104 | 1.3340 × 101 | |
C26 | Ave | 3.1376 × 103 | 3.1378 × 103 | 3.1446 × 103 | 3.1253 × 103 | 3.1450 × 103 | 3.1339 × 103 | 3.1338 × 103 | 3.1284 × 103 |
Std | 2.1172 × 101 | 1.8583 × 101 | 1.8694 × 101 | 1.8782 × 101 | 2.5270 × 101 | 2.5982 × 101 | 2.7872 × 101 | 1.9031 × 101 | |
C27 | Ave | 2.9989 × 103 | 3.0790 × 103 | 2.9391 × 103 | 2.7340 × 103 | 2.8915 × 103 | 2.7611 × 103 | 2.7663 × 103 | 2.7338 × 103 |
Std | 1.3136 × 102 | 8.9258 × 101 | 1.5966 × 102 | 5.3534 × 101 | 1.7577 × 102 | 1.3843 × 102 | 1.1840 × 102 | 4.6613 × 101 | |
C28 | Ave | 3.8901 × 104 | 3.9198 × 104 | 2.7089 × 104 | 2.3630 × 104 | 2.8494 × 104 | 3.7390 × 104 | 2.1817 × 104 | 1.7619 × 104 |
Std | 3.8092 × 104 | 3.4223 × 104 | 2.1814 × 104 | 2.2986 × 104 | 1.6735 × 104 | 9.4507 × 104 | 1.6813 × 104 | 1.5936 × 104 | |
C29 | Ave | 7.7663 × 104 | 4.4846 × 105 | 4.6742 × 105 | 6.5721 × 104 | 1.0671 × 105 | 4.1435 × 104 | 2.5975 × 104 | 4.2697 × 104 |
Std | 7.1995 × 104 | 7.1173 × 105 | 6.3771 × 105 | 5.3622 × 104 | 1.9750 × 105 | 1.8536 × 104 | 1.1253 × 104 | 6.2395 × 104 |
Overall Rank | Average Rank | +/−/= | |
---|---|---|---|
NGO | 7 | 6.034 | 26/3/0 |
C_NGO | 8 | 7.276 | 28/1/0 |
WS_NGO | 2 | 3.449 | 15/14/0 |
WSC_NGO | 6 | 4.759 | 22/7/0 |
C_WS_NGO | 3 | 3.552 | 17/12/0 |
C_WSC_NGO | 5 | 4.552 | 23/6/0 |
WS_WSC_NGO | 4 | 3.621 | 20/9/0 |
MSINGO | 1 | 2.793 | ~ |
DE | SSA | SCA | MFO | WOA | DBO | ||
---|---|---|---|---|---|---|---|
C1 | Avg | 7.1157 × 109 | 1.8983 × 1010 | 2.1073 × 1010 | 2.0367 × 1010 | 1.6594 × 1010 | 6.5809 × 109 |
Std | 1.7525 × 109 | 4.9407 × 109 | 4.1159 × 109 | 1.5291 × 1010 | 3.1904 × 109 | 4.6532 × 109 | |
Rank | 4 | 8 | 10 | 9 | 7 | 3 | |
C2 | Avg | 5.2832 × 104 | 5.5643 × 104 | 4.5035 × 104 | 6.5401 × 104 | 5.2580 × 104 | 5.0283 × 104 |
Std | 9.5379 × 103 | 1.3621 × 104 | 9.9155 × 103 | 2.8648 × 104 | 9.9181 × 103 | 2.0199 × 104 | |
Rank | 7 | 6 | 3 | 10 | 5 | 4 | |
POA | SOA | BWO | GJO | NGO | MSINGO | ||
C1 | Avg | 6.2347 × 1010 | 5.4888 × 1010 | 7.5221 × 109 | 1.3628 × 1010 | 1.8025 × 107 | 1.0583 × 104 |
Std | 5.2900 × 109 | 5.5611 × 109 | 1.8633 × 109 | 2.3413 × 109 | 1.9969 × 107 | 7.6416 × 103 | |
Rank | 12 | 11 | 5 | 6 | 2 | 1 | |
C2 | Avg | 1.2412 × 105 | 1.1839 × 105 | 5.5750 × 104 | 5.6468 × 104 | 9.5971 × 102 | 2.0902 × 102 |
Std | 3.7176 × 104 | 2.2784 × 104 | 1.1262 × 104 | 7.0274 × 103 | 4.8997 × 102 | 5.5120 | |
Rank | 12 | 11 | 8 | 9 | 2 | 1 |
Ours vs. | DE | SSA | SCA | MFO | WOA | DBO | POA | SOA | BWO | GJO | NGO |
---|---|---|---|---|---|---|---|---|---|---|---|
C1 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 |
C2 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 |
DE | SSA | SCA | MFO | WOA | DBO | ||
---|---|---|---|---|---|---|---|
C3 | Avg | 1.0418 × 103 | 2.9128 × 103 | 2.9573 × 103 | 4.2844 × 103 | 1.7357 × 103 | 1.3672 × 103 |
Std | 1.8976 × 102 | 1.1603 × 103 | 9.5803 × 102 | 3.0445 × 103 | 6.9362 × 102 | 9.3724 × 102 | |
Rank | 3 | 8 | 9 | 10 | 7 | 6 | |
C4 | Avg | 6.9329 × 103 | 2.7862 × 104 | 2.5376 × 104 | 2.7085 × 104 | 1.7964 × 104 | 1.9735 × 104 |
Std | 1.2039 × 103 | 7.4911 × 103 | 5.2626 × 103 | 1.4029 × 104 | 6.8852 × 103 | 1.1157 × 104 | |
Rank | 3 | 10 | 8 | 9 | 6 | 7 | |
C5 | Avg | 5.0003 × 102 | 5.0001 × 102 | 5.0003 × 102 | 5.0001 × 102 | 5.0001 × 102 | 5.0001 × 102 |
Std | 4.9406 × 10−3 | 5.5137 × 10−3 | 9.6118 × 10−3 | 5.6648 × 10−3 | 4.7371 × 10−3 | 7.4612 × 10−3 | |
Rank | 9 | 5 | 11 | 6 | 4 | 8 | |
C6 | Avg | 4.5943 × 104 | 1.5106 × 104 | 5.3867 × 104 | 1.0947 × 104 | 3.3083 × 104 | 3.9703 × 104 |
Std | 9.3287 × 103 | 4.8363 × 103 | 1.6393 × 104 | 7.4864 × 103 | 8.3105 × 103 | 1.5718 × 104 | |
Rank | 9 | 4 | 11 | 3 | 6 | 7 | |
C7 | Avg | 7.0337 × 102 | 7.0074 × 102 | 7.0281 × 102 | 7.0071 × 102 | 7.0108 × 102 | 7.0221 × 102 |
Std | 8.1562 × 10−1 | 6.9344 × 10−1 | 7.3905 × 10−1 | 6.6394 × 10−1 | 4.6689 × 10−1 | 8.8467 × 10−1 | |
Rank | 11 | 4 | 10 | 3 | 6 | 8 | |
C8 | Avg | 8.1667 × 102 | 8.1785 × 102 | 8.1640 × 102 | 8.2556 × 102 | 8.1415 × 102 | 8.1363 × 102 |
Std | 4.2145 | 4.2574 | 4.3496 | 8.1639 | 6.1010 | 7.5496 | |
Rank | 8 | 9 | 7 | 10 | 6 | 5 | |
C9 | Avg | 8.5354 × 103 | 6.0192 × 103 | 8.6150 × 103 | 5.6357 × 103 | 6.9107 × 103 | 7.6447 × 103 |
Std | 3.5466 × 102 | 6.8392 × 102 | 2.4630 × 102 | 8.1562 × 102 | 5.5922 × 102 | 6.0268 × 102 | |
Rank | 10 | 4 | 11 | 3 | 5 | 7 | |
POA | SOA | BWO | GJO | NGO | MSINGO | ||
C3 | Avg | 1.7796 × 104 | 1.5998 × 104 | 1.1487 × 103 | 1.3002 × 103 | 4.2824 × 102 | 3.5319 × 102 |
Std | 2.9417 × 103 | 4.9858 × 103 | 2.6341 × 102 | 3.9099 × 102 | 4.6788 × 101 | 2.6328 × 101 | |
Rank | 12 | 11 | 4 | 5 | 2 | 1 | |
C4 | Avg | 8.7121 × 104 | 7.2960 × 104 | 9.1229 × 103 | 1.1006 × 104 | 1.0209 × 103 | 6.2263 × 102 |
Std | 1.1259 × 104 | 1.1609 × 104 | 2.5040 × 103 | 3.8440 × 103 | 2.1185 × 102 | 3.0987 × 101 | |
Rank | 12 | 11 | 4 | 5 | 2 | 1 | |
C5 | Avg | 5.0004 × 102 | 5.0003 × 102 | 5.0001 × 102 | 5.0001 × 102 | 5.0000 × 102 | 5.0000 × 102 |
Std | 1.1975 × 10−2 | 8.2257 × 10−3 | 6.4051 × 10−3 | 3.9437 × 10−3 | 1.1436 × 10−3 | 4.1208 × 10−4 | |
Rank | 12 | 10 | 7 | 3 | 2 | 1 | |
C6 | Avg | 7.5547 × 104 | 5.3641 × 104 | 4.3028 × 104 | 2.5471 × 104 | 3.4794 × 103 | 8.4491 × 103 |
Std | 1.5711 × 104 | 1.5298 × 104 | 8.0718 × 103 | 7.4351 × 103 | 1.3695 × 103 | 3.9353 × 103 | |
Rank | 12 | 10 | 8 | 5 | 1 | 2 | |
C7 | Avg | 7.0428 × 102 | 7.0256 × 102 | 7.0171 × 102 | 7.0100 × 102 | 7.0013 × 102 | 7.0015 × 102 |
Std | 9.5099 × 10−1 | 8.0624 × 10−1 | 7.5813 × 10−1 | 3.4868 × 10−1 | 6.0608 × 10−2 | 6.1209 × 10−2 | |
Rank | 12 | 9 | 7 | 5 | 1 | 2 | |
C8 | Avg | 8.3070 × 102 | 8.3700 × 102 | 8.0984 × 102 | 8.0862 × 102 | 8.0554 × 102 | 8.0156 × 102 |
Std | 6.7501 | 8.5159 | 3.1223 | 2.1307 | 1.9519 | 1.0497 | |
Rank | 11 | 12 | 4 | 3 | 2 | 1 | |
C9 | Avg | 8.1098 × 103 | 9.1949 × 103 | 7.9685 × 103 | 7.3134 × 103 | 5.1677 × 103 | 5.0619 × 103 |
Std | 3.7913 × 102 | 6.8997 × 102 | 4.3993 × 102 | 4.2661 × 102 | 4.5304 × 102 | 5.4751 × 102 | |
Rank | 9 | 12 | 8 | 6 | 2 | 1 |
Ours vs. | DE | SSA | SCA | MFO | WOA | DBO | POA | SOA | BWO | GJO | NGO |
---|---|---|---|---|---|---|---|---|---|---|---|
C3 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 |
C4 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 |
C5 | 2.87 × 10−11 | 3.66 × 10−9 | 2.87 × 10−11 | 2.49 × 10−8 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 6.80 × 10−8 |
C6 | 2.87 × 10−11 | 1.93 × 10−6 | 2.87 × 10−11 | 3.75 × 10−1 | 2.87 × 10−11 | 1.39 × 10−10 | 2.87 × 10−11 | 3.18 × 10−11 | 2.87 × 10−11 | 3.88 × 10−11 | 3.39 × 10−7 |
C7 | 2.87 × 10−11 | 8.51 × 10−7 | 2.87 × 10−11 | 3.21 × 10−6 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 3.16 × 10−11 | 2.87 × 10−11 | 2.04 × 10−1 |
C8 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 5.23 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 1.06 × 10−8 |
C9 | 2.87 × 10−11 | 7.32 × 10−7 | 2.87 × 10−11 | 1.56 × 10−3 | 4.29 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 3.18 × 10−11 | 4.25 × 10−1 |
DE | SSA | SCA | MFO | WOA | DBO | ||
---|---|---|---|---|---|---|---|
C10 | Ave | 2.3824 × 105 | 2.5356 × 105 | 3.8235 × 106 | 7.4495 × 105 | 3.0101 × 105 | 1.9390 × 106 |
Std | 7.5769 × 104 | 2.5043 × 105 | 3.1173 × 106 | 9.0509 × 105 | 4.3615 × 105 | 1.8982 × 106 | |
Rank | 3 | 4 | 10 | 8 | 5 | 9 | |
C11 | Ave | 4.1393 × 108 | 5.3388 × 108 | 3.1337 × 109 | 1.9391 × 109 | 1.0405 × 109 | 4.3244 × 108 |
Std | 1.2903 × 108 | 5.4696 × 108 | 9.8563 × 108 | 1.7738 × 109 | 8.5502 × 108 | 8.5984 × 108 | |
Rank | 3 | 5 | 11 | 9 | 7 | 4 | |
C12 | Ave | 1.3180 × 108 | 1.0432 × 109 | 2.2508 × 109 | 1.2072 × 109 | 8.6726 × 108 | 1.3450 × 109 |
Std | 9.0952 × 107 | 1.2250 × 109 | 8.3328 × 108 | 1.4706 × 109 | 4.8556 × 108 | 2.6294 × 109 | |
Rank | 3 | 6 | 10 | 7 | 5 | 9 | |
C13 | Ave | 6.0983 × 105 | 3.7275 × 106 | 2.7138 × 106 | 1.4532 × 106 | 1.9689 × 106 | 1.3957 × 106 |
Std | 3.0735 × 105 | 3.8287 × 106 | 1.4229 × 106 | 1.9387 × 106 | 1.2815 × 106 | 1.3469 × 106 | |
Rank | 3 | 11 | 9 | 6 | 7 | 5 | |
C14 | Ave | 5.2572 × 107 | 3.1892 × 108 | 7.2280 × 108 | 1.2978 × 108 | 2.0984 × 108 | 1.4844 × 108 |
Std | 4.1440 × 107 | 4.0858 × 108 | 3.4740 × 108 | 3.3414 × 108 | 2.0304 × 108 | 5.0534 × 108 | |
Rank | 3 | 9 | 10 | 5 | 7 | 6 | |
C15 | Ave | 2.4606 × 104 | 2.4629 × 107 | 2.7235 × 107 | 8.1481 × 107 | 1.0801 × 107 | 9.4404 × 107 |
Std | 1.0443 × 104 | 8.9424 × 107 | 3.0023 × 107 | 1.3306 × 108 | 1.2275 × 107 | 1.6710 × 108 | |
Rank | 3 | 6 | 7 | 9 | 5 | 10 | |
C16 | Ave | 1.2704 × 107 | 2.9113 × 1012 | 5.8732 × 109 | 1.3321 × 108 | 4.6590 × 107 | 2.9759 × 108 |
Std | 2.7267 × 107 | 1.0842 × 1013 | 1.0318 × 1010 | 7.1205 × 108 | 1.1157 × 108 | 1.4980 × 109 | |
Rank | 3 | 11 | 9 | 6 | 5 | 8 | |
C17 | Ave | 2.5583 × 105 | 1.2008 × 105 | 8.7192 × 105 | 8.7138 × 105 | 4.0092 × 105 | 2.7430 × 106 |
Std | 7.7286 × 104 | 4.9587 × 104 | 6.1177 × 105 | 2.1572 × 106 | 4.0770 × 105 | 5.9845 × 106 | |
Rank | 4 | 3 | 8 | 7 | 6 | 12 | |
C18 | Ave | 2.6120 × 107 | 1.1889 × 1011 | 1.0677 × 1011 | 6.0959 × 1010 | 2.1192 × 1010 | 3.3961 × 1011 |
Std | 1.7854 × 107 | 5.5510 × 1011 | 2.9388 × 1011 | 5.2927 × 1010 | 2.3646 × 1010 | 6.6162 × 1011 | |
Rank | 3 | 8 | 7 | 6 | 5 | 10 | |
C19 | Ave | 4.4672 × 103 | 1.1472 × 104 | 5.8916 × 103 | 4.4471 × 103 | 5.2497 × 103 | 4.9749 × 103 |
Std | 5.6679 × 102 | 2.8782 × 103 | 1.0770 × 103 | 2.9891 × 103 | 9.9786 × 102 | 1.3788 × 103 | |
Rank | 4 | 11 | 8 | 3 | 9 | 7 | |
POA | SOA | BWO | GJO | NGO | MSINGO | ||
C10 | Ave | 1.2174 × 107 | 4.5419 × 107 | 6.5171 × 105 | 4.7743 × 105 | 3.5772 × 104 | 1.6519 × 104 |
Std | 2.0078 × 107 | 4.9249 × 107 | 3.6771 × 105 | 1.2237 × 106 | 2.3458 × 104 | 8.7681 × 103 | |
Rank | 11 | 12 | 7 | 6 | 2 | 1 | |
C11 | Ave | 1.4374 × 1010 | 8.3053 × 109 | 6.8625 × 108 | 1.0873 × 109 | 1.9569 × 105 | 8.1669 × 104 |
Std | 4.3551 × 109 | 3.2900 × 109 | 2.3423 × 108 | 8.3723 × 108 | 1.9607 × 105 | 5.8853 × 104 | |
Rank | 12 | 10 | 6 | 8 | 2 | 1 | |
C12 | Ave | 1.6366 × 1010 | 1.0709 × 1010 | 2.4212 × 108 | 1.2453 × 109 | 2.5452 × 104 | 7.6979 × 103 |
Std | 2.5142 × 109 | 5.2024 × 109 | 9.0134 × 107 | 8.0927 × 108 | 2.6804 × 104 | 5.5292 × 103 | |
Rank | 12 | 11 | 4 | 8 | 2 | 1 | |
C13 | Ave | 1.0717 × 106 | 2.0740 × 107 | 2.4878 × 106 | 3.6762 × 106 | 2.5841 × 105 | 1.5022 × 105 |
Std | 7.0693 × 105 | 2.4172 × 107 | 1.8788 × 106 | 1.8478 × 106 | 1.4319 × 105 | 4.4144 × 104 | |
Rank | 4 | 12 | 8 | 10 | 2 | 1 | |
C14 | Ave | 7.1133 × 109 | 5.8169 × 109 | 5.6701 × 107 | 2.8762 × 108 | 2.6773 × 104 | 1.3331 × 104 |
Std | 2.3403 × 109 | 3.2930 × 109 | 2.7721 × 107 | 2.2670 × 108 | 1.0410 × 104 | 7.8585 × 103 | |
Rank | 12 | 11 | 4 | 8 | 2 | 1 | |
C15 | Ave | 1.9921 × 109 | 1.7567 × 109 | 1.7753 × 106 | 3.3905 × 107 | 1.9647 × 103 | 1.9586 × 103 |
Std | 2.2691 × 109 | 2.2460 × 109 | 1.3368 × 106 | 2.2802 × 107 | 3.4647 × 102 | 3.6559 × 102 | |
Rank | 12 | 11 | 4 | 8 | 2 | 1 | |
C16 | Ave | 3.0927 × 1011 | 1.3140 × 1015 | 3.7858 × 107 | 1.7921 × 108 | 7.3627 × 103 | 4.4896 × 103 |
Std | 8.1938 × 1011 | 3.2889 × 1015 | 6.9027 × 107 | 4.1231 × 108 | 7.1224 × 103 | 2.6157 × 103 | |
Rank | 10 | 12 | 4 | 7 | 2 | 1 | |
C17 | Ave | 3.8567 × 105 | 1.2542 × 106 | 1.9249 × 106 | 1.1930 × 106 | 9.2979 × 104 | 8.5337 × 104 |
Std | 2.8337 × 105 | 6.3729 × 105 | 2.4965 × 106 | 1.2711 × 106 | 4.5633 × 104 | 3.0722 × 104 | |
Rank | 5 | 10 | 11 | 9 | 2 | 1 | |
C18 | Ave | 3.2735 × 1012 | 6.7178 × 1014 | 2.1412 × 109 | 1.6957 × 1011 | 1.7265 × 104 | 2.2163 × 104 |
Std | 1.3036 × 1013 | 1.5232 × 1015 | 1.1168 × 109 | 3.3946 × 1011 | 1.7684 × 104 | 1.7829 × 104 | |
Rank | 11 | 12 | 4 | 9 | 1 | 2 | |
C19 | Ave | 1.3295 × 104 | 1.0568 × 104 | 4.4772 × 103 | 4.9503 × 103 | 2.7377 × 103 | 2.2469 × 103 |
Std | 3.0948 × 103 | 2.6512 × 103 | 6.9120 × 102 | 7.2511 × 102 | 2.7274 × 102 | 1.6479 × 102 | |
Rank | 12 | 10 | 5 | 6 | 2 | 1 |
DE | SSA | SCA | MFO | WOA | DBO | ||
---|---|---|---|---|---|---|---|
C20 | Ave | 6.0889 × 103 | 2.2039 × 104 | 1.5167 × 104 | 1.6832 × 104 | 1.0976 × 104 | 1.0256 × 104 |
Std | 2.3964 × 103 | 9.6740 × 103 | 6.1198 × 103 | 1.3998 × 104 | 4.6101 × 103 | 6.2115 × 103 | |
Rank | 3 | 10 | 8 | 9 | 7 | 5 | |
C21 | Ave | 2.3752 × 103 | 4.2211 × 103 | 2.6210 × 103 | 2.5464 × 103 | 2.4818 × 103 | 2.6688 × 103 |
Std | 1.4146 × 101 | 6.4724 × 102 | 8.0512 × 101 | 1.0171 × 102 | 5.4961 × 101 | 1.6943 × 102 | |
Rank | 3 | 10 | 8 | 7 | 6 | 9 | |
C22 | Ave | 1.1479 × 104 | 3.3571 × 104 | 2.6421 × 104 | 2.1697 × 104 | 1.8355 × 104 | 1.8080 × 104 |
Std | 8.7594 × 102 | 8.7025 × 103 | 3.8245 × 103 | 8.7977 × 103 | 3.0176 × 103 | 5.0424 × 103 | |
Rank | 3 | 10 | 9 | 8 | 7 | 6 | |
C23 | Ave | 8.0055 × 103 | 2.1791 × 104 | 1.7674 × 104 | 1.2769 × 104 | 1.3186 × 104 | 1.0497 × 104 |
Std | 5.3995 × 102 | 4.8587 × 103 | 2.6056 × 103 | 3.4069 × 103 | 2.7605 × 103 | 2.5129 × 103 | |
Rank | 3 | 10 | 9 | 7 | 8 | 4 | |
C24 | Ave | 3.1773 × 103 | 3.9174 × 103 | 3.8390 × 103 | 3.9923 × 103 | 3.4682 × 103 | 3.2048 × 103 |
Std | 1.1303 × 102 | 3.3045 × 102 | 2.4359 × 102 | 9.2974 × 102 | 2.3489 × 102 | 3.8471 × 102 | |
Rank | 4 | 9 | 8 | 10 | 7 | 5 | |
C25 | Ave | 3.3657 × 103 | 6.1522 × 103 | 4.4970 × 103 | 3.4268 × 103 | 3.6861 × 103 | 3.8545 × 103 |
Std | 1.4826 × 101 | 1.3863 × 103 | 4.1089 × 102 | 4.1888 × 101 | 1.2616 × 102 | 5.3122 × 102 | |
Rank | 3 | 10 | 9 | 5 | 6 | 8 | |
C26 | Ave | 3.1445 × 103 | 4.1549 × 103 | 3.4964 × 103 | 3.1968 × 103 | 3.3498 × 103 | 3.2549 × 103 |
Std | 1.2613 × 101 | 5.5968 × 102 | 7.2717 × 101 | 4.2376 × 101 | 5.9534 × 101 | 9.5293 × 101 | |
Rank | 3 | 10 | 9 | 4 | 8 | 6 | |
C27 | Ave | 3.3147 × 103 | 4.1378 × 103 | 3.9593 × 103 | 3.8085 × 103 | 3.5068 × 103 | 4.1153 × 103 |
Std | 3.6930 × 101 | 5.1463 × 102 | 2.1656 × 102 | 1.6789 × 102 | 1.4454 × 102 | 4.6185 × 102 | |
Rank | 3 | 10 | 8 | 7 | 5 | 9 | |
C28 | Ave | 3.9188 × 108 | 4.1002 × 109 | 8.4025 × 109 | 1.8019 × 1010 | 1.0726 × 109 | 8.3308 × 108 |
Std | 4.2525 × 108 | 6.3386 × 109 | 9.6860 × 109 | 9.5223 × 1010 | 7.2428 × 108 | 1.4082 × 109 | |
Rank | 3 | 8 | 9 | 10 | 6 | 5 | |
C29 | Ave | 3.1419 × 108 | 1.2640 × 1010 | 6.0558 × 109 | 8.6999 × 109 | 2.9297 × 109 | 8.0939 × 1010 |
Std | 1.6203 × 108 | 4.0154 × 1010 | 3.2377 × 109 | 1.1304 × 1010 | 1.9782 × 109 | 2.8023 × 1011 | |
Rank | 3 | 9 | 7 | 8 | 5 | 10 | |
POA | SOA | BWO | GJO | NGO | MSINGO | ||
C20 | Ave | 3.0832 × 104 | 5.1253 × 104 | 6.4274 × 103 | 1.0731 × 104 | 2.6466 × 103 | 2.3231 × 103 |
Std | 1.2701 × 104 | 8.9562 × 103 | 2.5167 × 103 | 3.1797 × 103 | 4.8847 × 102 | 1.5802 × 102 | |
Rank | 11 | 12 | 4 | 6 | 2 | 1 | |
C21 | Ave | 4.9915 × 103 | 5.1938 × 103 | 2.4040 × 103 | 2.4158 × 103 | 2.3416 × 103 | 2.2752 × 103 |
Std | 1.3506 × 103 | 9.4591 × 102 | 2.6864 × 101 | 2.6154 × 101 | 2.7963 × 101 | 6.6923 | |
Rank | 11 | 12 | 4 | 5 | 2 | 1 | |
C22 | Ave | 5.7229 × 104 | 6.3209 × 104 | 1.3620 × 104 | 1.7769 × 104 | 3.0030 × 103 | 2.4422 × 103 |
Std | 9.2948 × 103 | 6.3493 × 103 | 1.5893 × 103 | 1.9906 × 103 | 5.7231 × 102 | 1.1063 × 102 | |
Rank | 11 | 12 | 4 | 5 | 2 | 1 | |
C23 | Ave | 3.2591 × 104 | 3.3602 × 104 | 1.0588 × 104 | 1.2191 × 104 | 2.8273 × 103 | 2.5146 × 103 |
Std | 3.7133 × 103 | 2.8012 × 103 | 1.7990 × 103 | 1.2763 × 103 | 4.6000 × 102 | 6.2048 × 101 | |
Rank | 11 | 12 | 5 | 6 | 2 | 1 | |
C24 | Ave | 7.3834 × 103 | 7.5119 × 103 | 3.1730 × 103 | 3.3755 × 103 | 2.8767 × 103 | 2.8249 × 103 |
Std | 1.0436 × 103 | 9.2234 × 102 | 7.6243 × 101 | 8.6234 × 101 | 2.2767 × 101 | 4.6406 | |
Rank | 11 | 12 | 3 | 6 | 2 | 1 | |
C25 | Ave | 9.1076 × 103 | 1.2374 × 104 | 3.4414 × 103 | 3.7395 × 103 | 3.3543 × 103 | 3.3352 × 103 |
Std | 2.6356 × 103 | 6.2058 × 103 | 5.6777 × 101 | 1.1559 × 102 | 1.8431 × 101 | 1.3340 × 101 | |
Rank | 11 | 12 | 4 | 7 | 2 | 1 | |
C26 | Ave | 3.5546 × 103 | 4.3146 × 103 | 3.1969 × 103 | 3.3483 × 103 | 3.1376 × 103 | 3.1284 × 103 |
Std | 1.6801 × 102 | 3.8833 × 102 | 1.9053 × 101 | 4.3705 × 101 | 2.1172 × 101 | 1.9031 × 101 | |
Rank | 11 | 12 | 5 | 7 | 2 | 1 | |
C27 | Ave | 7.8579 × 103 | 6.3553 × 103 | 3.3934 × 103 | 3.5350 × 103 | 2.9989 × 103 | 2.7338 × 103 |
Std | 1.4815 × 103 | 1.5897 × 103 | 6.9237 × 101 | 1.2377 × 102 | 1.3136 × 102 | 4.6613 × 101 | |
Rank | 12 | 11 | 4 | 6 | 2 | 1 | |
C28 | Ave | 4.0327 × 1011 | 7.0928 × 1012 | 4.2329 × 108 | 2.8629 × 109 | 3.8901 × 104 | 1.7619 × 104 |
Std | 7.4454 × 1011 | 1.6879 × 1013 | 4.7836 × 108 | 1.5993 × 109 | 3.8092 × 104 | 1.5936 × 104 | |
Rank | 11 | 12 | 4 | 7 | 2 | 1 | |
C29 | Ave | 1.6043 × 1011 | 1.5796 × 1012 | 4.9480 × 108 | 3.4954 × 109 | 7.7663 × 104 | 4.2697 × 104 |
Std | 2.5786 × 1011 | 3.7520 × 1012 | 3.0719 × 108 | 1.0517 × 109 | 7.1995 × 104 | 6.2395 × 104 | |
Rank | 11 | 12 | 4 | 6 | 2 | 1 |
Ours vs. | DE | SSA | SCA | MFO | WOA | DBO | POA | SOA | BWO | GJO | NGO |
---|---|---|---|---|---|---|---|---|---|---|---|
C10 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 3.51 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 4.58 × 10−4 |
C11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 7.13 × 10−4 |
C12 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.98 × 10−6 |
C13 | 3.51 × 10−11 | 3.51 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 1.54 × 10−4 |
C14 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.58 × 10−6 |
C15 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 8.59 × 10−1 |
C16 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 4.51 × 10−1 |
C17 | 3.51 × 10−11 | 4.97 × 10−11 | 2.87 × 10−11 | 2.13 × 10−9 | 3.13 × 10−7 | 7.03 × 10−11 | 3.88 × 10−11 | 5.23 × 10−11 | 3.88 × 10−11 | 2.05 × 10−11 | 6.68 × 10−1 |
C18 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 3.08 × 10−1 |
C19 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 7.44 × 10−9 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 1.94 × 10−9 |
C20 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.19 × 10-2 |
C21 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 3.18 × 10−11 |
C22 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 3.06 × 10−9 |
C23 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.74 × 10−10 |
C24 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 |
C25 | 8.86 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 1.67 × 10−6 |
C26 | 1.07 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 6.37 × 10−11 | 2.87 × 10−11 | 7.13 × 10−2 |
C27 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 1.54 × 10−10 |
C28 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 3.26 × 10−5 |
C29 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 2.87 × 10−11 | 5.79 × 10−5 |
DE | SSA | SCA | MFO | WOA | DBO | ||
---|---|---|---|---|---|---|---|
C1 | Ave | 1.8714 × 1011 | 2.2451 × 1011 | 2.1794 × 1011 | 2.0379 × 1011 | 1.5912 × 1011 | 8.9114 × 1010 |
Std | 3.3258 × 1010 | 1.9344 × 1010 | 1.3744 × 1010 | 5.5019 × 1010 | 1.7294 × 1010 | 1.9767 × 1010 | |
Rank | 7 | 10 | 9 | 8 | 6 | 3 | |
C2 | Ave | 5.8117 × 105 | 3.4224 × 105 | 2.9727 × 105 | 4.6114 × 105 | 2.3816 × 105 | 3.6726 × 105 |
Std | 5.0427 × 104 | 1.5552 × 104 | 2.4056 × 104 | 1.0256 × 105 | 1.8431 × 104 | 9.1226 × 104 | |
Rank | 12 | 7 | 5 | 11 | 3 | 8 | |
C3 | Ave | 3.1431 × 104 | 8.7861 × 104 | 5.8632 × 104 | 5.0840 × 104 | 2.7590 × 104 | 2.2050 × 104 |
Std | 6.0826 × 103 | 1.6582 × 104 | 9.8769 × 103 | 2.8771 × 104 | 6.0483 × 103 | 1.2966 × 104 | |
Rank | 7 | 10 | 9 | 8 | 5 | 4 | |
C4 | Ave | 1.7912 × 105 | 2.8037 × 105 | 2.3375 × 105 | 2.3947 × 105 | 1.6200 × 105 | 9.1679 × 104 |
Std | 2.0952 × 104 | 2.3223 × 104 | 1.6550 × 104 | 6.1382 × 104 | 1.8946 × 104 | 2.0503 × 104 | |
Rank | 7 | 10 | 8 | 9 | 6 | 3 | |
C5 | Ave | 5.0013 × 102 | 5.0004 × 102 | 5.0008 × 102 | 5.0002 × 102 | 5.0003 × 102 | 5.0007 × 102 |
Std | 1.6821 × 10−2 | 1.1768 × 10−2 | 1.1816 × 10−2 | 7.0367 × 10−3 | 7.7224 × 10−3 | 2.1163 × 10−2 | |
Rank | 12 | 7 | 11 | 3 | 5 | 10 | |
C6 | Ave | 1.8110 × 105 | 5.2966 × 104 | 1.2772 × 105 | 4.9471 × 104 | 7.0580 × 104 | 1.0061 × 105 |
Std | 2.1493 × 104 | 1.1622 × 104 | 1.5073 × 104 | 1.5183 × 104 | 1.1143 × 104 | 1.5069 × 104 | |
Rank | 12 | 3 | 10 | 2 | 6 | 8 | |
C7 | Ave | 7.1334 × 102 | 7.0367 × 102 | 7.0846 × 102 | 7.0264 × 102 | 7.0420 × 102 | 7.0682 × 102 |
Std | 1.6047 | 1.1108 | 1.2550 | 9.0368 × 10−1 | 8.9731 × 10−1 | 1.5332 | |
Rank | 12 | 4 | 10 | 3 | 6 | 8 | |
C8 | Ave | 1.0631 × 103 | 1.0415 × 103 | 1.0859 × 103 | 1.0263 × 103 | 9.8904 × 102 | 1.0028 × 103 |
Std | 3.5307 × 101 | 3.3135 × 101 | 3.9201 × 101 | 3.6753 × 101 | 1.8707 × 101 | 3.0361 × 101 | |
Rank | 9 | 8 | 11 | 7 | 5 | 6 | |
C9 | Ave | 3.3469 × 104 | 2.5666 × 104 | 3.3485 × 104 | 2.3548 × 104 | 2.9961 × 104 | 3.1757 × 104 |
Std | 6.3076 × 102 | 1.3784 × 103 | 6.2937 × 102 | 1.3766 × 103 | 1.3469 × 103 | 1.2608 × 103 | |
Rank | 11 | 3 | 12 | 2 | 6 | 7 | |
C10 | Ave | 1.0950 × 108 | 5.2412 × 109 | 9.6620 × 108 | 1.7408 × 109 | 3.9623 × 108 | 1.0114 × 109 |
Std | 4.6414 × 107 | 2.6803 × 109 | 4.1832 × 108 | 2.2862 × 109 | 3.6290 × 108 | 1.7108 × 109 | |
Rank | 3 | 10 | 7 | 9 | 6 | 8 | |
C11 | Ave | 3.9643 × 1010 | 1.6110 × 1011 | 9.8334 × 1010 | 6.6192 × 1010 | 5.7521 × 1010 | 4.5170 × 1010 |
Std | 6.0463 × 109 | 1.6734 × 1010 | 9.9422 × 109 | 2.3068 × 1010 | 1.5850 × 1010 | 1.4588 × 1010 | |
Rank | 3 | 10 | 9 | 8 | 7 | 4 | |
C12 | Ave | 6.3041 × 1010 | 2.5220 × 1011 | 1.6476 × 1011 | 1.2474 × 1011 | 8.8210 × 1010 | 5.2968 × 1010 |
Std | 1.3926 × 1010 | 3.9817 × 1010 | 2.5106 × 1010 | 7.7464 × 1010 | 2.5571 × 1010 | 2.5852 × 1010 | |
Rank | 4 | 10 | 9 | 8 | 7 | 3 | |
C13 | Ave | 9.0632 × 107 | 1.5284 × 108 | 1.0641 × 108 | 3.6619 × 107 | 3.2953 × 107 | 3.9380 × 107 |
Std | 1.8954 × 107 | 9.4472 × 107 | 3.5987 × 107 | 2.9756 × 107 | 1.3111 × 107 | 2.9826 × 107 | |
Rank | 8 | 10 | 9 | 5 | 3 | 6 | |
C14 | Ave | 1.7157 × 1010 | 4.1575 × 1010 | 6.4363 × 109 | 2.1118 × 1010 | 1.3052 × 1010 | 5.3754 × 109 |
Std | 4.6542 × 109 | 6.4363 × 109 | 5.5286 × 109 | 1.5106 × 1010 | 3.5989 × 109 | 7.7236 × 109 | |
Rank | 7 | 10 | 9 | 8 | 6 | 3 | |
C15 | Ave | 2.7372 × 108 | 9.3648 × 109 | 3.5003 × 109 | 1.3216 × 109 | 1.6270 × 109 | 5.6257 × 108 |
Std | 1.6406 × 108 | 3.1402 × 109 | 1.2131 × 109 | 1.5564 × 109 | 1.1732 × 109 | 1.1270 × 109 | |
Rank | 3 | 10 | 9 | 7 | 8 | 4 | |
C16 | Ave | 1.6080 × 1013 | 2.1785 × 1015 | 1.5784 × 1014 | 3.4409 × 1012 | 1.7698 × 1013 | 8.0268 × 1012 |
Std | 1.4585 × 1013 | 2.1762 × 1015 | 1.4949 × 1014 | 6.3994 × 1012 | 2.7751 × 1013 | 2.4554 × 1013 | |
Rank | 7 | 10 | 9 | 4 | 8 | 6 | |
C17 | Ave | 4.7197 × 107 | 3.5049 × 108 | 7.8418 × 107 | 2.3595 × 107 | 2.5945 × 107 | 3.7904 × 107 |
Std | 1.4321 × 107 | 4.1373 × 108 | 3.1270 × 107 | 1.4758 × 107 | 1.5739 × 107 | 3.1630 × 107 | |
Rank | 7 | 11 | 9 | 3 | 4 | 6 | |
C18 | Ave | 1.2987 × 1011 | 1.5637 × 1015 | 5.4805 × 1013 | 3.4544 × 1013 | 2.3872 × 1013 | 4.9242 × 1013 |
Std | 4.8343 × 1010 | 1.1323 × 1015 | 5.6232 × 1013 | 6.7410 × 1013 | 4.6587 × 1013 | 1.7240 × 1014 | |
Rank | 3 | 10 | 9 | 7 | 6 | 8 | |
C19 | Ave | 1.4185 × 104 | 4.0968 × 104 | 2.0195 × 104 | 1.8634 × 104 | 1.8613 × 104 | 1.5225 × 104 |
Std | 1.2408 × 103 | 4.6721 × 103 | 2.9459 × 103 | 9.0316 × 103 | 3.1425 × 103 | 3.2202 × 103 | |
Rank | 4 | 12 | 9 | 8 | 7 | 6 | |
C20 | Ave | 1.8601 × 104 | 2.3097 × 104 | 2.1652 × 105 | 1.9596 × 105 | 1.5790 × 105 | 1.0071 × 105 |
Std | 2.9660 × 104 | 1.3891 × 104 | 1.4003 × 104 | 4.3676 × 104 | 1.9050 × 104 | 2.1569 × 104 | |
Rank | 7 | 10 | 9 | 8 | 6 | 3 | |
C21 | Ave | 4.2211 × 103 | 2.4411 × 104 | 1.4136 × 104 | 1.5069 × 104 | 7.1533 × 103 | 1.2942 × 104 |
Std | 4.8456 × 103 | 2.6404 × 103 | 2.4611 × 103 | 9.0638 × 103 | 1.6881 × 103 | 1.0667 × 104 | |
Rank | 2 | 10 | 8 | 9 | 6 | 7 | |
C22 | Ave | 6.2058 × 104 | 1.2499 × 105 | 1.2821 × 105 | 8.1417 × 104 | 1.1296 × 105 | 7.5481 × 104 |
Std | 6.4505 × 103 | 2.8138 × 103 | 5.0529 × 103 | 1.9281 × 104 | 2.7483 × 103 | 1.5720 × 104 | |
Rank | 2 | 9 | 10 | 5 | 8 | 3 | |
C23 | Ave | 7.9316 × 104 | 1.6838 × 105 | 1.6689 × 105 | 1.1732 × 105 | 1.4457 × 105 | 9.0111 × 104 |
Std | 9.7544 × 103 | 4.7708 × 103 | 9.1002 × 103 | 4.5696 × 104 | 1.0299 × 104 | 2.1932 × 104 | |
Rank | 2 | 10 | 9 | 6 | 8 | 3 | |
C24 | Ave | 1.9742 × 104 | 2.8569 × 104 | 2.5740 × 104 | 2.3018 × 104 | 1.3254 × 104 | 9.1553 × 103 |
Std | 3.6475 × 103 | 4.3503 × 103 | 3.5689 × 103 | 1.0784 × 104 | 1.9038 × 103 | 1.9815 × 103 | |
Rank | 7 | 10 | 9 | 8 | 5 | 3 | |
C25 | Ave | 7.8815 × 103 | 1.9336 × 105 | 8.1783 × 104 | 9.6644 × 103 | 3.6022 × 104 | 1.7992 × 104 |
Std | 5.4080 × 102 | 7.4500 × 104 | 1.2994 × 104 | 1.7413 × 103 | 8.9004 × 103 | 6.0362 × 103 | |
Rank | 2 | 10 | 9 | 4 | 7 | 6 | |
C26 | Ave | 4.1844 × 103 | 1.0527 × 104 | 7.4291 × 103 | 4.3089 × 103 | 5.7508 × 103 | 4.7032 × 103 |
Std | 2.1289 × 102 | 1.3710 × 103 | 4.7861 × 102 | 3.2853 × 102 | 3.4251 × 102 | 5.9115 × 102 | |
Rank | 3 | 11 | 10 | 4 | 7 | 5 | |
C27 | Ave | 7.8695 × 103 | 2.1520 × 104 | 1.5464 × 104 | 9.5747 × 103 | 8.9684 × 103 | 8.2506 × 103 |
Std | 6.5597 × 102 | 2.9496 × 103 | 1.8744 × 103 | 1.2426 × 103 | 1.3524 × 103 | 2.6792 × 103 | |
Rank | 3 | 10 | 9 | 8 | 6 | 4 | |
C28 | Ave | 4.2680 × 1012 | 1.8533 × 1015 | 1.2952 × 1014 | 1.2616 × 1015 | 9.7234 × 1013 | 4.9022 × 1013 |
Std | 4.7020 × 1012 | 1.9674 × 1015 | 1.1273 × 1014 | 3.3475 × 1015 | 1.2558 × 1014 | 1.5075 × 1014 | |
Rank | 3 | 10 | 8 | 9 | 7 | 6 | |
C29 | Ave | 4.5676 × 1012 | 9.1778 × 1014 | 8.3903 × 1013 | 9.0060 × 1014 | 6.5671 × 1013 | 4.3255 × 1013 |
Std | 3.7867 × 1012 | 8.7941 × 1014 | 8.0805 × 1013 | 1.6666 × 1015 | 6.8414 × 1013 | 1.3850 × 1014 | |
Rank | 4 | 10 | 8 | 9 | 7 | 6 | |
POA | SOA | BWO | GJO | NGO | MSINGO | ||
C1 | Ave | 2.7197 × 1011 | 2.6571 × 1011 | 1.4584 × 1011 | 1.4130 × 1011 | 5.4890 × 1010 | 8.4928 × 108 |
Std | 6.9345 × 109 | 1.1789 × 1010 | 1.3582 × 1010 | 1.1035 × 1010 | 9.7426 × 109 | 1.6473 × 108 | |
Rank | 12 | 11 | 5 | 4 | 2 | 1 | |
C2 | Ave | 4.4141 × 105 | 4.4752 × 105 | 3.3394 × 105 | 2.4770 × 105 | 1.0009 × 105 | 5.5465 × 104 |
Std | 9.2720 × 104 | 9.7072 × 104 | 2.5787 × 104 | 2.0284 × 104 | 1.0894 × 104 | 8.4001 × 103 | |
Rank | 9 | 10 | 6 | 4 | 2 | 1 | |
C3 | Ave | 1.3761 × 105 | 1.2197 × 105 | 2.8413 × 104 | 2.0899 × 104 | 5.5971 × 103 | 1.0925 × 103 |
Std | 1.3293 × 104 | 1.7944 × 104 | 5.0326 × 103 | 3.4556 × 103 | 1.3988 × 103 | 1.0775 × 102 | |
Rank | 12 | 11 | 6 | 3 | 2 | 1 | |
C4 | Ave | 3.4659 × 105 | 3.3982 × 105 | 1.4924 × 105 | 1.3076 × 105 | 5.4008 × 104 | 2.5471 × 103 |
Std | 1.2819 × 104 | 1.7820 × 104 | 1.4383 × 104 | 1.4710 × 104 | 8.0657 × 103 | 2.2091 × 102 | |
Rank | 12 | 11 | 5 | 4 | 2 | 1 | |
C5 | Ave | 5.0007 × 102 | 5.0007 × 102 | 5.0004 × 102 | 5.0003 × 102 | 5.0001 × 102 | 5.0001 × 102 |
Std | 1.6995 × 10−2 | 1.0127 × 10−2 | 7.9461 × 10−3 | 5.4425 × 10−3 | 5.8196 × 10−3 | 3.2887 × 10−3 | |
Rank | 9 | 8 | 6 | 4 | 2 | 1 | |
C6 | Ave | 1.3280 × 105 | 1.0459 × 105 | 9.5042 × 104 | 5.9436 × 104 | 2.1376 × 104 | 6.0034 × 104 |
Std | 1.0984 × 104 | 1.1421 × 104 | 8.8743 × 103 | 1.1377 × 104 | 3.1109 × 103 | 1.0923 × 104 | |
Rank | 11 | 9 | 7 | 4 | 1 | 5 | |
C7 | Ave | 7.0894 × 102 | 7.0714 × 102 | 7.0615 × 102 | 7.0381 × 102 | 7.0154 × 102 | 7.0214 × 102 |
Std | 1.2956 | 7.6338 × 10−1 | 8.9235 × 10−1 | 8.1803 × 10−1 | 2.9539 × 10−1 | 3.1753 × 10−1 | |
Rank | 11 | 9 | 7 | 5 | 1 | 2 | |
C8 | Ave | 1.0757 × 103 | 1.1257 × 103 | 9.8844 × 102 | 9.5851 × 102 | 8.8063 × 102 | 8.3947 × 102 |
Std | 2.6452 × 101 | 3.1883 × 101 | 2.9761 × 101 | 1.4760 × 101 | 9.2242 | 8.9618 | |
Rank | 10 | 12 | 4 | 3 | 2 | 1 | |
C9 | Ave | 3.2439 × 104 | 3.2912 × 104 | 3.2839 × 104 | 2.9635 × 104 | 2.3546 × 104 | 2.6675 × 104 |
Std | 4.4694 × 102 | 9.2632 × 102 | 8.8386 × 102 | 1.6070 × 103 | 8.4292 × 102 | 9.3004 × 102 | |
Rank | 8 | 10 | 9 | 5 | 1 | 4 | |
C10 | Ave | 1.3643 × 1010 | 1.2385 × 1010 | 1.1090 × 108 | 3.8427 × 108 | 3.2330 × 105 | 1.4126 × 105 |
Std | 4.1704 × 109 | 4.2609 × 109 | 6.2048 × 107 | 1.9565 × 108 | 6.8403 × 104 | 4.7198 × 104 | |
Rank | 12 | 11 | 4 | 5 | 2 | 1 | |
C11 | Ave | 2.1603 × 1011 | 2.0048 × 1011 | 4.9144 × 1010 | 5.2750 × 1010 | 3.5261 × 109 | 9.0874 × 107 |
Std | 1.8518 × 1010 | 2.2306 × 1010 | 7.7498 × 109 | 9.9203 × 109 | 1.3724 × 109 | 2.6935 × 107 | |
Rank | 12 | 11 | 5 | 6 | 2 | 1 | |
C12 | Ave | 3.9166 × 1011 | 3.6647 × 1011 | 7.4745 × 1010 | 6.9642 × 1010 | 5.2550 × 109 | 2.2443 × 107 |
Std | 3.8587 × 1010 | 4.1229 × 1010 | 1.4011 × 1010 | 1.7967 × 1010 | 3.3866 × 109 | 1.2996 × 107 | |
Rank | 12 | 11 | 6 | 5 | 2 | 1 | |
C13 | Ave | 1.8003 × 108 | 5.5452 × 108 | 4.6331 × 107 | 3.3962 × 107 | 3.1420 × 106 | 2.2309 × 106 |
Std | 7.2055 × 107 | 2.7697 × 108 | 1.8832 × 107 | 1.8692 × 107 | 1.3169 × 106 | 1.2777 × 106 | |
Rank | 11 | 12 | 7 | 4 | 2 | 1 | |
C14 | Ave | 6.3373 × 1010 | 5.6712 × 1010 | 9.3942 × 109 | 9.8012 × 109 | 1.5295 × 108 | 5.9354 × 105 |
Std | 4.9593 × 109 | 7.4869 × 109 | 2.4456 × 109 | 2.3664 × 109 | 1.0588 × 108 | 8.2288 × 105 | |
Rank | 11 | 12 | 4 | 5 | 2 | 1 | |
C15 | Ave | 1.9384 × 1010 | 1.4827 × 1010 | 5.9723 × 108 | 6.6147 × 108 | 2.0594 × 105 | 1.0052 × 104 |
Std | 4.0925 × 109 | 4.1885 × 109 | 2.9038 × 108 | 5.6126 × 108 | 2.6539 × 105 | 4.0463 × 103 | |
Rank | 12 | 11 | 5 | 6 | 2 | 1 | |
C16 | Ave | 1.0971 × 1016 | 1.2848 × 1016 | 4.4153 × 1012 | 2.4385 × 1012 | 3.4450 × 105 | 1.8396 × 104 |
Std | 6.4344 × 1015 | 8.5564 × 1015 | 5.6616 × 1012 | 3.5274 × 1012 | 1.0012 × 106 | 1.2462 × 104 | |
Rank | 11 | 12 | 5 | 3 | 2 | 1 | |
C17 | Ave | 8.7034 × 107 | 9.1846 × 108 | 5.4226 × 107 | 3.1966 × 107 | 2.8924 × 106 | 1.7515 × 106 |
Std | 4.4478 × 107 | 8.0554 × 108 | 2.5658 × 107 | 2.5626 × 107 | 1.6674 × 106 | 8.3470 × 105 | |
Rank | 10 | 12 | 8 | 5 | 2 | 1 | |
C18 | Ave | 5.3588 × 1015 | 5.4466 × 1015 | 9.2231 × 1011 | 1.8409 × 1012 | 1.6219 × 109 | 8.0681 × 104 |
Std | 2.3777 × 1015 | 3.3979 × 1015 | 1.0244 × 1012 | 3.1529 × 1012 | 1.6709 × 109 | 3.9072 × 104 | |
Rank | 11 | 12 | 4 | 5 | 2 | 1 | |
C19 | Ave | 3.9360 × 104 | 3.5902 × 104 | 1.4653 × 104 | 1.2227 × 104 | 1.0594 × 104 | 3.6227 × 103 |
Std | 2.7796 × 103 | 4.5031 × 103 | 2.4324 × 103 | 2.0835 × 103 | 2.4325 × 103 | 6.7418 × 102 | |
Rank | 11 | 12 | 5 | 3 | 2 | 1 | |
C20 | Ave | 2.6774 × 105 | 2.5812 × 105 | 1.5194 × 105 | 1.3359 × 105 | 6.6361 × 104 | 4.3931 × 103 |
Std | 6.9321 × 103 | 1.0314 × 104 | 1.1221 × 104 | 1.0917 × 104 | 1.5980 × 104 | 2.6209 × 102 | |
Rank | 12 | 11 | 5 | 4 | 2 | 1 | |
C21 | Ave | 3.0604 × 104 | 2.8400 × 104 | 4.9006 × 103 | 5.3387 × 103 | 4.2665 × 103 | 2.4277 × 103 |
Std | 1.8045 × 103 | 1.4014 × 103 | 4.8344 × 102 | 6.1843 × 102 | 1.2618 × 103 | 1.9240 × 101 | |
Rank | 12 | 11 | 4 | 5 | 3 | 1 | |
C22 | Ave | 1.2974 × 105 | 1.2954 × 105 | 1.0658 × 105 | 7.8477 × 104 | 8.1696 × 104 | 5.9174 × 103 |
Std | 1.1120 × 103 | 2.1654 × 103 | 2.2259 × 103 | 7.6809 × 103 | 8.4532 × 103 | 1.0142 × 103 | |
Rank | 12 | 11 | 7 | 4 | 6 | 1 | |
C23 | Ave | 1.8700 × 105 | 1.8323 × 105 | 1.3544 × 105 | 1.0518 × 105 | 9.2968 × 104 | 1.0313 × 104 |
Std | 2.9026 × 103 | 6.8315 × 103 | 4.7580 × 103 | 1.1031 × 104 | 1.1393 × 104 | 2.3948 × 103 | |
Rank | 12 | 11 | 7 | 5 | 4 | 1 | |
C24 | Ave | 4.7859 × 104 | 4.1915 × 104 | 1.4354 × 104 | 1.2213 × 104 | 6.6933 × 103 | 3.9888 × 103 |
Std | 4.0259 × 103 | 5.9832 × 103 | 1.6802 × 103 | 1.2759 × 103 | 6.2752 × 102 | 1.0340 × 102 | |
Rank | 12 | 11 | 6 | 4 | 2 | 1 | |
C25 | Ave | 2.0646 × 105 | 2.9442 × 105 | 1.0520 × 104 | 4.2624 × 104 | 8.6799 × 103 | 6.0679 × 103 |
Std | 6.2660 × 104 | 9.8789 × 104 | 2.7744 × 103 | 6.6328 × 103 | 2.3094 × 103 | 6.1890 × 101 | |
Rank | 11 | 12 | 5 | 8 | 3 | 1 | |
C26 | Ave | 6.7638 × 103 | 1.1428 × 104 | 4.9680 × 103 | 6.0710 × 103 | 3.9788 × 103 | 3.4510 × 103 |
Std | 5.5201 × 102 | 1.2443 × 103 | 3.2669 × 102 | 3.3254 × 102 | 2.1108 × 102 | 6.4330 × 101 | |
Rank | 9 | 12 | 6 | 8 | 2 | 1 | |
C27 | Ave | 3.2399 × 104 | 2.9115 × 104 | 9.1847 × 103 | 8.4986 × 103 | 4.5246 × 103 | 3.2770 × 103 |
Std | 2.8213 × 103 | 2.5432 × 103 | 1.0138 × 103 | 8.4867 × 102 | 2.6381 × 102 | 4.9362 × 101 | |
Rank | 12 | 11 | 7 | 5 | 2 | 1 | |
C28 | Ave | 1.5165 × 1016 | 1.1634 × 1016 | 5.0930 × 1012 | 2.3691 × 1013 | 1.2282 × 109 | 3.0941 × 106 |
Std | 1.0569 × 1016 | 1.0278 × 1016 | 7.2343 × 1012 | 8.2516 × 1013 | 1.4546 × 109 | 3.4823 × 106 | |
Rank | 12 | 11 | 4 | 5 | 2 | 1 | |
C29 | Ave | 5.1701 × 1015 | 6.1968 × 1015 | 2.4814 × 1012 | 2.0838 × 1013 | 3.3664 × 109 | 6.8307 × 106 |
Std | 3.6081 × 1015 | 5.4952 × 1015 | 2.9205 × 1012 | 2.7394 × 1013 | 2.0573 × 109 | 4.7809 × 106 | |
Rank | 11 | 12 | 3 | 5 | 2 | 1 |
Algorithms | C1 | C4 | C15 | C27 | Average Memory Occupation | Rank |
---|---|---|---|---|---|---|
DE | 2.992MB | 3.277 MB | 3.812 MB | 3.176 MB | 3.314 MB | 7 |
SSA | 2.949 MB | 2.906 MB | 3.738 MB | 3.484 MB | 3.269 MB | 4 |
SCA | 3.242 MB | 3.145 MB | 3.559 MB | 3.614 MB | 3.390 MB | 11 |
MFO | 2.918 MB | 3.211 MB | 3.469 MB | 3.079 MB | 3.169 MB | 1 |
WOA | 2.992 MB | 2.898 MB | 3.758 MB | 3.699 MB | 3.337 MB | 10 |
DBO | 3.020 MB | 3.156 MB | 3.492 MB | 3.367 MB | 3.259 MB | 2 |
POA | 2.891 MB | 2.895 MB | 3.725 MB | 3.559 MB | 3.267 MB | 3 |
SOA | 2.848 MB | 3.125 MB | 3.516 MB | 3.738 MB | 3.307 MB | 6 |
BWO | 3.270 MB | 2.965 MB | 3.492 MB | 3.594 MB | 3.330 MB | 9 |
GJO | 3.098 MB | 3.227 MB | 3.539 MB | 3.852 MB | 3.429 MB | 12 |
NGO | 2.984 MB | 2.891 MB | 3.266 MB | 3.988 MB | 3.282 MB | 5 |
MSINGO | 2.988 MB | 3.172 MB | 3.441 MB | 3.707 MB | 3.327 MB | 8 |
Algorithm | Optimal Values of Variable | Optimal Value | Rank | ||
---|---|---|---|---|---|
d | D | p | |||
MSINGO | 0.05166107 | 0.35617546 | 11.36666667 | 1.2673687 × 10−2 | 1 |
NGO | 0.05187427 | 0.36129583 | 11.06666667 | 1.2674502 × 10−2 | 2 |
DE | 0.05181379 | 0.35957038 | 11.16666667 | 1.2684364 × 10−2 | 3 |
SSA | 0.05060498 | 0.32639958 | 13.86666667 | 1.3146121 × 10−2 | 7 |
SCA | 0.05077799 | 0.33174986 | 14.03333333 | 1.3273039 × 10−2 | 10 |
MFO | 0.05057397 | 0.32630009 | 13.86666667 | 1.3048161 × 10−2 | 6 |
WOA | 0.05220499 | 0.36931603 | 11.36666667 | 1.2988707 × 10−2 | 5 |
DBO | 0.05541281 | 0.4763829 | 10.3 | 1.4084970 × 10−2 | 11 |
POA | 0.05203765 | 0.05203765 | 11.03333333 | 1.2751105 × 10−2 | 4 |
SOA | 0.05826311 | 0.53740755 | 6.03333333 | 1.4125533 × 10−2 | 12 |
BWO | 0.05109965 | 0.34071944 | 13.56666667 | 1.3256904 × 10−2 | 9 |
GJO | 0.0542935 | 0.42723403 | 9.3 | 1.3172539 × 10−2 | 8 |
Algorithm | Optimal Values for Variable | Optimal Value | Rank | ||||
---|---|---|---|---|---|---|---|
MSINGO | 6.01657085 | 5.3096501 | 4.49375284 | 3.50112914 | 2.15260674 | 1.3399595 × 100 | 1 |
NGO | 6.01503616 | 5.3111729 | 4.49155737 | 3.50361648 | 2.15242352 | 1.3399655 × 100 | 2 |
DE | 6.01600697 | 5.30935665 | 4.49684451 | 3.49909257 | 2.15264729 | 1.3399744 × 100 | 3 |
SSA | 5.98316931 | 5.34544619 | 4.486311 | 3.52788932 | 2.1950092 | 1.3439603 × 100 | 7 |
SCA | 6.32362784 | 5.46814471 | 4.75418554 | 3.78577415 | 2.19996678 | 1.4059780 × 100 | 10 |
MFO | 6.06815902 | 5.20953467 | 4.68780796 | 3.52243504 | 2.20412934 | 1.3535849 × 100 | 8 |
WOA | 6.00676534 | 5.33296728 | 4.50572794 | 3.52452514 | 2.16214472 | 1.3436049 × 100 | 6 |
DBO | 5.99704925 | 5.31424301 | 4.47630367 | 3.51815414 | 2.18458645 | 1.3409970 × 100 | 5 |
POA | 7.91371491 | 8.03542057 | 6.69820596 | 5.82551409 | 4.01106876 | 2.0269969 × 100 | 11 |
SOA | 9.95270722 | 8.45674586 | 8.00232444 | 7.41729296 | 7.59498781 | 2.5848612 × 100 | 12 |
BWO | 6.18643737 | 5.33534609 | 4.5406274 | 3.50471167 | 2.19537516 | 1.3579799 × 100 | 9 |
GJO | 6.00710951 | 5.32070619 | 4.50851846 | 3.49083636 | 2.15950187 | 1.3407684 × 100 | 4 |
Algorithm | Optimal Values for Variable | Optimal Value | Rank | |||
---|---|---|---|---|---|---|
MSINGO | 0.77837747 | 0.38476523 | 40.32807677 | 199.89104391 | 5.8862290 × 10₊3 | 2 |
NGO | 0.7985807 | 0.40136672 | 41.34128664 | 188.15374517 | 5.9514389 × 10₊3 | 3 |
DE | 0.77818553 | 0.38466527 | 40.32013235 | 199.99420876 | 5.8854618 × 10₊3 | 1 |
SSA | 1.0757963 | 0.55534384 | 54.70469246 | 73.84185279 | 6.9301306 × 10₊3 | 7 |
SCA | 1.12202045 | 0.6128027 | 54.85201213 | 82.4779741 | 7.6979528 × 10₊3 | 10 |
MFO | 1.00113629 | 0.49486844 | 51.87208913 | 100.97244603 | 6.4884200× 10₊3 | 4 |
WOA | 1.01597595 | 0.54615418 | 50.65441508 | 108.48255737 | 6.9998825 × 10₊3 | 8 |
DBO | 0.9185633 | 3.74627255 | 47.31901688 | 139.1836773 | 1.5813270 × 10₊4 | 11 |
POA | 1.20890241 | 0.61547165 | 62.40219771 | 25.59088007 | 7.2397050 × 10₊3 | 9 |
SOA | 3.58181582 | 14.21070275 | 57.06407472 | 56.44188856 | 1.4362201 × 10₊5 | 12 |
BWO | 0.9268719 | 0.51659367 | 46.16063784 | 150.31386398 | 6.7770451 × 10₊3 | 6 |
GJO | 1.03472148 | 0.52319187 | 53.3258698 | 85.35882201 | 6.6726795 × 10₊3 | 5 |
Algorithm | Optimal Values for Variable | Optimal Value | Rank | |||
---|---|---|---|---|---|---|
MSINGO | 0.19883231 | 3.33736532 | 9.19202432 | 0.19883231 | 1.6702177 × 100 | 1 |
NGO | 0.19883228 | 3.33736578 | 9.19202436 | 0.19883231 | 1.6702178 × 100 | 2 |
DE | 0.1988319 | 3.33737493 | 9.19202659 | 0.19883236 | 1.6702192 × 100 | 3 |
SSA | 0.20228294 | 3.97160609 | 8.96072583 | 0.22009406 | 1.8715148 × 100 | 7 |
SCA | 0.18381673 | 4.07243877 | 9.33506699 | 0.21005482 | 1.8504610 × 100 | 6 |
MFO | 0.13257496 | 5.96536894 | 9.44693237 | 0.19852796 | 1.9021302 × 100 | 8 |
WOA | 0.18998614 | 3.56385495 | 9.2142258 | 0.20062402 | 1.7032059 × 100 | 5 |
DBO | 0.17553749 | 5.41072847 | 9.37121339 | 0.3164207 | 2.1657368 × 100 | 11 |
POA | 0.13799674 | 7.04317317 | 8.63542248 | 0.24363732 | 2.1635826 × 100 | 10 |
SOA | 0.3204752 | 4.45095148 | 5.2948073 | 0.72813159 | 3.4197885 × 100 | 12 |
BWO | 0.14684037 | 5.61671156 | 9.3375609 | 0.21199649 | 1.9755729 × 100 | 9 |
GJO | 0.19090334 | 3.52253955 | 9.19913179 | 0.19909769 | 1.6855842 × 100 | 4 |
Algorithm | Optimal Values for Variable | Optimal Value | Rank | ||||||
---|---|---|---|---|---|---|---|---|---|
b | m | p | |||||||
MSINGO | 3.5 | 0.7 | 17 | 8.171 | 8.252 | 3.9 | 5.5 | 1.3415265 × 10₊3 | 1 |
NGO | 3.5 | 0.7 | 17 | 8.174 | 8.265 | 3.9 | 5.5 | 1.3415265 × 10₊3 | 1 |
DE | 3.5 | 0.7 | 17 | 8.134 | 8.180 | 3.9 | 5.5 | 1.3415265 × 10₊3 | 1 |
SSA | 3.548 | 0.701 | 19.131 | 8.012 | 8.010 | 3.741 | 5.363 | 1.7946432 × 10₊3 | 10 |
SCA | 3.535 | 0.7 | 17 | 8.173 | 8.286 | 3.849 | 5.497 | 1.3569351 × 10₊3 | 8 |
MFO | 3.503 | 0.7 | 17 | 8.234 | 8.240 | 3.9 | 5.5 | 1.3428041 × 10₊3 | 5 |
WOA | 3.505 | 0.7 | 17 | 8.189 | 8.237 | 3.878 | 5.493 | 1.3447225 × 10₊3 | 6 |
DBO | 3.557 | 0.7 | 17.733 | 8.015 | 8.277 | 3.850 | 5.5 | 1.5282107 × 10₊3 | 9 |
POA | 3.526 | 0.703 | 20.834 | 7.844 | 8.027 | 3.651 | 5.389 | 3.8108706 × 10₊17 | 11 |
SOA | 3.567. | 0.756 | 24.152 | 8.053 | 8.1004 | 3.776 | 5.414 | 9.8846695 × 10₊18 | 12 |
BWO | 3.5 | 0.7 | 17 | 8.201 | 8.259 | 3.9 | 5.5 | 1.3415265 × 10₊3 | 1 |
GJO | 3.505 | 0.7 | 17 | 8.151 | 8.183 | 3.871 | 5.495 | 1.3448399 × 10₊3 | 7 |
Algorithm | Optimal Values for Variable | Optimal Value | Rank | |
---|---|---|---|---|
MSINGO | 0.78866778 | 0.4082692 | 2.6389586 × 10₊2 | 2 |
NGO | 0.78871489 | 0.40813758 | 2.6389602 × 10₊2 | 3 |
DE | 0.78867514 | 0.40824829 | 2.6389584 × 10₊2 | 1 |
SSA | 0.78884713 | 0.41517572 | 2.6463723 × 10₊2 | 8 |
SCA | 0.79453751 | 0.40020516 | 2.6474966 × 10₊2 | 9 |
MFO | 0.78737985 | 0.41270683 | 2.6397534 × 10₊2 | 6 |
WOA | 0.82522025 | 0.36892016 | 2.7029955 × 10₊2 | 12 |
DBO | 0.79085504 | 0.40224642 | 2.6391223 × 10₊2 | 5 |
POA | 0.78794119 | 0.41042386 | 2.6390581 × 10₊2 | 4 |
SOA | 0.79690303 | 0.41399512 | 2.6679773 × 10₊2 | 10 |
BWO | 0.78871128 | 0.40914414 | 2.6399565 × 10₊2 | 7 |
GJO | 0.83065798 | 0.36955195 | 2.7190075 × 10₊2 | 11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Xiao, J.; Yao, Y.; Zhu, S.; Chen, Y.; Zhou, R.; Ma, Y.; Wang, M.; Zhang, K. A Multi-Strategy Improved Northern Goshawk Optimization Algorithm for Optimizing Engineering Problems. Biomimetics 2024, 9, 561. https://doi.org/10.3390/biomimetics9090561
Liu H, Xiao J, Yao Y, Zhu S, Chen Y, Zhou R, Ma Y, Wang M, Zhang K. A Multi-Strategy Improved Northern Goshawk Optimization Algorithm for Optimizing Engineering Problems. Biomimetics. 2024; 9(9):561. https://doi.org/10.3390/biomimetics9090561
Chicago/Turabian StyleLiu, Haijun, Jian Xiao, Yuan Yao, Shiyi Zhu, Yi Chen, Rui Zhou, Yan Ma, Maofa Wang, and Kunpeng Zhang. 2024. "A Multi-Strategy Improved Northern Goshawk Optimization Algorithm for Optimizing Engineering Problems" Biomimetics 9, no. 9: 561. https://doi.org/10.3390/biomimetics9090561
APA StyleLiu, H., Xiao, J., Yao, Y., Zhu, S., Chen, Y., Zhou, R., Ma, Y., Wang, M., & Zhang, K. (2024). A Multi-Strategy Improved Northern Goshawk Optimization Algorithm for Optimizing Engineering Problems. Biomimetics, 9(9), 561. https://doi.org/10.3390/biomimetics9090561