An Adaptive Spiral Strategy Dung Beetle Optimization Algorithm: Research and Applications
Abstract
:1. Introduction
- The Gaussian Chaos strategy, a powerful method for population initialization, enhances various optimization algorithms by imparting the initial population with diversity, continuity, stability, and controllable parameters. These attributes significantly improve the search process efficiency, reduce the likelihood of local optima entrapment, and enhance global search capabilities, aiding in the discovery of superior solutions. This strategy is versatile, finding application in a wide range of optimization problems, especially complex static and dynamic scenarios. In our research, we have successfully integrated the Gaussian Chaos strategy into the DBO algorithm, further enhancing its performance.
- Inspired by the WOA, we have incorporated the Whale Spiral Search Strategy [24] into the DBO algorithm. This integration leverages whales’ remarkable navigational skills, characterized by intricate spiral patterns during hunting. By incorporating this approach into the DBO algorithm, we aim to enhance its exploration and exploitation capabilities, addressing existing limitations and improving performance in terms of convergence speed, solution quality, and global search efficiency. This integration underscores our commitment to advancing the DBO algorithm and pushing the boundaries of swarm intelligence optimization technology.
- We have introduced an adaptive weight factor into the DBO algorithm, resulting in several advantages. Firstly, it dynamically adjusts the weight factor, enhancing the algorithm’s search efficiency by better balancing global exploration and local exploitation, thereby improving the efficiency of finding optimal solutions. Secondly, this enhancement improves the algorithm’s robustness, making it more adaptable to various problem characteristics and reducing the likelihood of local optima convergence. Most importantly, this improvement boosts the algorithm’s global search capability, leading to more effective resolutions of complex optimization problems and increasing the likelihood of identifying the global optimum.
2. DBO
2.1. Rollerball Dung Beetle
2.2. Spawning Dung Beetles
2.3. Foraging Dung Beetles
2.4. Stealing Dung Beetles
2.5. DBO Algorithm Implementation Steps
Algorithm 1 Framework of the DBO Algorithm |
|
2.6. The Time Complexity of DBO
3. Improving the Dung Beetle Optimization Algorithm (ADBO)
3.1. Motivation
3.2. Initialize the Population Using Chaotic Mapping
- Uneven distribution of dung beetle individuals’ positions.
- Limited global exploration capability.
- Low population diversity, making it susceptible to local optima.
3.3. The Spiral Search Strategy
3.4. Optimal Value-Guided Strategy
3.5. Nonlinear Weighting
3.6. ADBO Algorithm Implementation Steps
Algorithm 2 Framework of the ADBO Algorithm |
|
3.7. The Time Complexity of ADBO
- Initializing dung beetle positions using Gaussian chaotic mapping: .
- Updating the weight factors: .
- Updating the rolling, spawning, foraging, and stealing dung beetles, each with a complexity of , , , and , respectively, where .
4. Experimental Results and Discussion
4.1. Results and Analysis of Cec2017 Benchmark Functions
Dim = 30 | |||||||||
---|---|---|---|---|---|---|---|---|---|
SSA | HHO | BOA | OMA | WOA | SCA | DBO | ADBO | ||
F1 | min | 1.11E+02 | 1.50E+08 | 5.11E+10 | 3.31E+08 | 1.52E+06 | 1.38E+10 | 7.71E+04 | 4.06E+04 |
mean | 4.75E+03 | 4.23E+08 | 7.75E+10 | 2.22E+09 | 4.33E+08 | 2.05E+10 | 2.23E+08 | 6.37E+04 | |
std | 2.74E+07 | 6.18E+16 | 7.23E+19 | 4.47E+18 | 6.31E+17 | 1.62E+19 | 1.65E+16 | 2.31E+14 | |
degree | 1 | 4 | 8 | 6 | 5 | 7 | 3 | 2 | |
F2 | min | 3.23E+04 | 3.49E+04 | 7.68E+04 | 3.98E+04 | 4.83E+03 | 6.20E+04 | 5.93E+04 | 3.42E+04 |
mean | 4.70E+04 | 5.74E+04 | 8.68E+05 | 6.41E+04 | 1.28E+04 | 8.75E+04 | 9.09E+04 | 6.30E+04 | |
std | 3.74E+07 | 5.75E+07 | 1.09E+13 | 1.94E+08 | 2.48E+07 | 2.99E+08 | 3.49E+08 | 1.86E+08 | |
degree | 2 | 3 | 8 | 5 | 1 | 6 | 7 | 4 | |
F3 | min | 4.69E+02 | 5.82E+02 | 6.10E+03 | 5.87E+02 | 4.76E+02 | 1.71E+03 | 5.24E+02 | 4.23E+02 |
mean | 4.96E+02 | 7.36E+02 | 1.62E+04 | 7.93E+02 | 5.75E+02 | 2.70E+03 | 6.43E+02 | 4.56E+02 | |
std | 4.58E+02 | 1.46E+04 | 3.60E+07 | 2.38E+04 | 2.59E+03 | 6.11E+05 | 5.46E+03 | 2.65E+03 | |
degree | 2 | 5 | 8 | 6 | 3 | 7 | 4 | 1 | |
F4 | min | 6.25E+02 | 7.21E+02 | 8.81E+02 | 6.28E+02 | 6.25E+02 | 7.78E+02 | 6.52E+02 | 5.95E+02 |
mean | 7.62E+02 | 7.82E+02 | 9.83E+02 | 7.06E+02 | 6.91E+02 | 8.31E+02 | 7.53E+02 | 6.87E+02 | |
std | 2.68E+03 | 6.11E+02 | 1.98E+03 | 1.56E+03 | 1.00E+03 | 7.08E+02 | 1.75E+03 | 2.48E+03 | |
degree | 5 | 6 | 8 | 3 | 2 | 7 | 4 | 1 | |
F5 | min | 6.20E+02 | 6.52E+02 | 6.84E+02 | 6.16E+02 | 6.32E+02 | 6.55E+02 | 6.28E+02 | 6.25E+02 |
mean | 6.47E+02 | 6.69E+02 | 7.09E+02 | 6.30E+02 | 6.49E+02 | 6.63E+02 | 6.52E+02 | 6.24E+02 | |
std | 1.95E+02 | 3.87E+01 | 2.08E+02 | 7.84E+01 | 6.57E+01 | 4.60E+01 | 1.18E+02 | 1.28E+02 | |
degree | 3 | 7 | 8 | 2 | 4 | 6 | 5 | 1 | |
F6 | min | 1.03E+03 | 1.16E+03 | 1.40E+03 | 1.00E+03 | 9.20E+02 | 1.13E+03 | 8.48E+02 | 9.17E+02 |
mean | 1.23E+03 | 1.32E+03 | 1.55E+03 | 1.19E+03 | 1.06E+03 | 1.25E+03 | 1.02E+03 | 9.85E+02 | |
std | 9.94E+03 | 4.83E+03 | 5.86E+03 | 8.02E+03 | 6.85E+03 | 7.10E+03 | 6.00E+03 | 5.69E+03 | |
degree | 5 | 7 | 8 | 4 | 3 | 6 | 2 | 1 | |
F7 | min | 9.36E+02 | 9.62E+02 | 1.16E+03 | 9.36E+02 | 8.90E+02 | 1.06E+03 | 9.14E+02 | 8.80E+02 |
mean | 9.81E+02 | 9.89E+02 | 1.23E+03 | 9.81E+02 | 9.42E+02 | 1.10E+03 | 1.03E+03 | 9.21E+02 | |
std | 1.07E+03 | 2.07E+02 | 1.53E+03 | 6.28E+02 | 4.25E+02 | 4.76E+02 | 2.57E+03 | 1.40E+03 | |
degree | 3 | 5 | 8 | 4 | 2 | 7 | 6 | 1 | |
F8 | min | 3.85E+03 | 6.65E+03 | 1.31E+04 | 1.87E+03 | 1.93E+03 | 5.11E+03 | 2.94E+03 | 2.40E+03 |
mean | 5.27E+03 | 8.51E+03 | 1.71E+04 | 3.83E+03 | 4.00E+03 | 8.65E+03 | 7.23E+03 | 3.53E+03 | |
std | 1.54E+05 | 1.18E+06 | 3.30E+06 | 1.27E+06 | 7.36E+05 | 3.29E+06 | 6.98E+06 | 2.27E+06 | |
degree | 4 | 6 | 8 | 2 | 3 | 7 | 5 | 1 | |
F9 | min | 3.57E+03 | 4.88E+03 | 9.22E+03 | 6.72E+03 | 3.67E+03 | 8.15E+03 | 4.57E+03 | 3.65E+03 |
mean | 5.39E+03 | 6.36E+03 | 1.03E+04 | 8.35E+03 | 5.24E+03 | 8.81E+03 | 6.67E+03 | 4.18E+03 | |
std | 6.63E+05 | 4.39E+05 | 1.86E+05 | 4.01E+05 | 9.30E+05 | 1.39E+05 | 1.40E+06 | 1.07E+06 | |
degree | 3 | 4 | 8 | 6 | 2 | 7 | 5 | 1 | |
F10 | min | 1.16E+03 | 1.32E+03 | 5.63E+03 | 1.21E+03 | 1.16E+03 | 2.27E+03 | 1.31E+03 | 1.14E+03 |
mean | 1.29E+03 | 1.63E+03 | 2.63E+04 | 1.37E+03 | 1.27E+03 | 3.68E+03 | 1.91E+03 | 1.35E+03 | |
std | 5.28E+03 | 5.31E+04 | 1.65E+08 | 7.55E+03 | 6.75E+03 | 1.03E+06 | 2.90E+05 | 6.55E+03 | |
degree | 2 | 5 | 8 | 4 | 1 | 7 | 6 | 3 | |
F11 | min | 3.06E+04 | 1.12E+07 | 1.08E+10 | 2.00E+06 | 2.17E+05 | 1.52E+09 | 1.65E+06 | 1.42E+05 |
mean | 1.21E+06 | 8.91E+07 | 2.05E+10 | 2.08E+07 | 2.04E+06 | 2.84E+09 | 5.65E+07 | 8.71E+06 | |
std | 7.83E+11 | 5.84E+15 | 2.91E+19 | 4.16E+14 | 3.92E+12 | 5.68E+17 | 6.26E+15 | 1.44E+14 | |
degree | 1 | 6 | 8 | 4 | 2 | 7 | 5 | 3 | |
F12 | min | 3.61E+03 | 4.75E+05 | 4.33E+09 | 1.15E+04 | 5.20E+03 | 5.71E+08 | 2.46E+04 | 7.43E+03 |
mean | 3.22E+04 | 1.37E+06 | 1.89E+10 | 2.33E+05 | 1.82E+04 | 1.07E+09 | 5.03E+06 | 1.95E+05 | |
std | 8.01E+08 | 1.33E+12 | 5.57E+19 | 5.38E+11 | 2.62E+08 | 9.26E+16 | 1.03E+14 | 3.83E+11 | |
degree | 2 | 5 | 8 | 4 | 1 | 7 | 6 | 3 | |
F13 | min | 9.77E+03 | 3.87E+04 | 2.45E+06 | 2.56E+03 | 1.61E+03 | 8.34E+04 | 6.42E+03 | 2.29E+03 |
mean | 6.49E+04 | 1.45E+06 | 2.21E+07 | 3.62E+04 | 5.06E+03 | 8.72E+05 | 4.70E+05 | 2.55E+05 | |
std | 1.61E+09 | 1.57E+12 | 2.23E+14 | 1.81E+09 | 4.70E+07 | 4.06E+11 | 1.13E+12 | 5.99E+10 | |
degree | 3 | 7 | 8 | 2 | 1 | 6 | 5 | 4 | |
F14 | min | 2.15E+03 | 3.63E+04 | 5.21E+08 | 2.22E+03 | 1.87E+03 | 2.02E+06 | 1.07E+04 | 1.96E+03 |
mean | 1.29E+04 | 1.26E+05 | 3.21E+09 | 9.53E+03 | 4.18E+03 | 6.64E+07 | 1.17E+05 | 1.24E+04 | |
std | 1.25E+08 | 4.63E+09 | 2.82E+18 | 8.79E+07 | 6.84E+06 | 2.37E+15 | 4.67E+10 | 1.35E+08 | |
degree | 4 | 6 | 8 | 2 | 1 | 7 | 5 | 3 | |
F15 | min | 2.20E+03 | 2.78E+03 | 4.11E+03 | 2.74E+03 | 2.16E+03 | 3.52E+03 | 2.25E+03 | 1.80E+03 |
mean | 2.94E+03 | 3.59E+03 | 5.51E+03 | 3.40E+03 | 2.75E+03 | 4.20E+03 | 3.27E+03 | 2.61E+03 | |
std | 6.92E+04 | 2.34E+05 | 6.02E+05 | 9.44E+04 | 9.39E+04 | 8.97E+04 | 1.75E+05 | 6.74E+04 | |
degree | 3 | 6 | 8 | 5 | 2 | 7 | 4 | 1 | |
F16 | min | 1.87E+03 | 2.17E+03 | 2.93E+03 | 1.97E+03 | 1.91E+03 | 2.09E+03 | 2.12E+03 | 1.70E+03 |
mean | 2.37E+03 | 2.69E+03 | 3.88E+03 | 2.24E+03 | 2.43E+03 | 2.82E+03 | 2.62E+03 | 2.57E+03 | |
std | 6.54E+04 | 1.06E+05 | 2.22E+05 | 2.64E+04 | 8.66E+04 | 6.99E+04 | 5.54E+04 | 9.51E+04 | |
degree | 2 | 6 | 8 | 1 | 3 | 7 | 5 | 4 | |
F17 | min | 5.11E+04 | 8.62E+04 | 5.57E+07 | 7.25E+04 | 1.43E+04 | 2.74E+06 | 1.39E+05 | 2.30E+04 |
mean | 7.09E+05 | 4.78E+06 | 4.24E+08 | 4.14E+05 | 1.13E+05 | 1.18E+07 | 3.27E+06 | 1.22E+06 | |
std | 8.66E+11 | 3.90E+13 | 8.91E+16 | 2.48E+11 | 1.38E+10 | 4.65E+13 | 6.13E+13 | 4.21E+12 | |
degree | 3 | 6 | 8 | 2 | 1 | 7 | 5 | 4 | |
F18 | min | 2.05E+03 | 1.10E+05 | 9.23E+08 | 2.73E+03 | 2.06E+03 | 2.61E+07 | 4.77E+03 | 2.08E+03 |
mean | 1.42E+04 | 1.68E+06 | 3.62E+09 | 1.57E+04 | 7.17E+03 | 8.52E+07 | 1.78E+07 | 1.21E+04 | |
std | 2.02E+08 | 2.31E+12 | 3.37E+18 | 1.28E+08 | 2.80E+07 | 2.24E+15 | 4.33E+15 | 1.40E+08 | |
degree | 3 | 5 | 8 | 4 | 1 | 7 | 6 | 2 | |
F19 | min | 2.47E+03 | 2.42E+03 | 3.03E+03 | 2.43E+03 | 2.27E+03 | 2.55E+03 | 2.49E+03 | 2.03E+03 |
mean | 2.75E+03 | 2.89E+03 | 3.57E+03 | 2.64E+03 | 2.52E+03 | 2.95E+03 | 2.81E+03 | 2.41E+03 | |
std | 3.84E+04 | 6.51E+04 | 4.86E+04 | 1.31E+04 | 2.05E+04 | 2.48E+04 | 2.43E+04 | 5.07E+04 | |
degree | 4 | 6 | 8 | 3 | 2 | 7 | 5 | 1 | |
F20 | min | 2.42E+03 | 2.46E+03 | 2.59E+03 | 2.41E+03 | 2.38E+03 | 2.57E+03 | 2.35E+03 | 2.19E+03 |
mean | 2.51E+03 | 2.58E+03 | 2.77E+03 | 2.49E+03 | 2.47E+03 | 2.62E+03 | 2.55E+03 | 2.47E+03 | |
std | 2.55E+03 | 2.75E+03 | 4.45E+03 | 1.01E+03 | 2.08E+03 | 7.59E+02 | 4.28E+03 | 4.30E+03 | |
degree | 4 | 6 | 8 | 3 | 2 | 7 | 5 | 1 | |
F21 | min | 2.30E+03 | 2.75E+03 | 6.67E+03 | 2.46E+03 | 2.32E+03 | 3.94E+03 | 2.39E+03 | 2.22E+03 |
mean | 5.50E+03 | 7.68E+03 | 1.11E+04 | 2.76E+03 | 2.96E+03 | 9.92E+03 | 5.00E+03 | 2.98E+03 | |
std | 4.89E+06 | 1.19E+06 | 1.35E+06 | 4.87E+04 | 1.48E+06 | 2.41E+06 | 5.51E+06 | 2.27E+06 | |
degree | 5 | 6 | 8 | 1 | 2 | 7 | 4 | 3 | |
F22 | min | 2.76E+03 | 3.03E+03 | 3.09E+03 | 2.82E+03 | 2.82E+03 | 2.99E+03 | 2.82E+03 | 2.54E+03 |
mean | 2.91E+03 | 3.30E+03 | 3.42E+03 | 2.90E+03 | 2.95E+03 | 3.07E+03 | 3.03E+03 | 2.97E+03 | |
std | 8.61E+03 | 2.38E+04 | 2.36E+04 | 1.83E+03 | 6.68E+03 | 2.37E+03 | 6.73E+03 | 5.91E+03 | |
degree | 2 | 7 | 8 | 1 | 3 | 6 | 5 | 4 | |
F23 | min | 2.92E+03 | 3.27E+03 | 3.25E+03 | 2.99E+03 | 2.93E+03 | 3.17E+03 | 3.00E+03 | 2.82E+03 |
mean | 3.05E+03 | 3.52E+03 | 3.50E+03 | 3.10E+03 | 3.11E+03 | 3.26E+03 | 3.18E+03 | 2.79E+03 | |
std | 6.07E+03 | 2.42E+04 | 3.39E+04 | 2.86E+03 | 7.32E+03 | 1.24E+03 | 1.06E+04 | 9.22E+03 | |
degree | 2 | 8 | 7 | 3 | 4 | 6 | 5 | 1 | |
F24 | min | 2.88E+03 | 2.95E+03 | 4.23E+03 | 3.00E+03 | 2.90E+03 | 3.29E+03 | 2.89E+03 | 2.61E+03 |
mean | 2.90E+03 | 3.01E+03 | 5.69E+03 | 3.08E+03 | 2.96E+03 | 3.54E+03 | 2.99E+03 | 2.96E+03 | |
std | 1.95E+02 | 1.01E+03 | 6.06E+05 | 3.48E+03 | 1.23E+03 | 3.82E+04 | 4.49E+03 | 1.14E+03 | |
degree | 1 | 5 | 8 | 6 | 2 | 7 | 4 | 3 | |
F25 | min | 5.12E+03 | 3.92E+03 | 9.34E+03 | 5.43E+03 | 3.37E+03 | 7.22E+03 | 5.38E+03 | 3.38E+03 |
mean | 6.46E+03 | 7.93E+03 | 1.15E+04 | 6.38E+03 | 6.59E+03 | 7.92E+03 | 7.12E+03 | 6.31E+03 | |
std | 5.91E+05 | 1.80E+06 | 1.10E+06 | 2.09E+05 | 1.84E+06 | 2.84E+05 | 4.68E+05 | 1.16E+06 | |
degree | 3 | 7 | 8 | 2 | 4 | 6 | 5 | 1 | |
F26 | min | 3.22E+03 | 3.28E+03 | 3.57E+03 | 3.28E+03 | 3.23E+03 | 3.41E+03 | 3.25E+03 | 3.10E+03 |
mean | 3.26E+03 | 3.63E+03 | 4.08E+03 | 3.34E+03 | 3.36E+03 | 3.56E+03 | 3.32E+03 | 3.33E+03 | |
std | 1.57E+03 | 3.74E+04 | 1.38E+05 | 1.43E+03 | 8.02E+03 | 9.12E+03 | 3.28E+03 | 6.02E+03 | |
degree | 1 | 7 | 8 | 4 | 5 | 6 | 2 | 3 | |
F27 | min | 3.20E+03 | 3.32E+03 | 5.79E+03 | 3.38E+03 | 3.24E+03 | 3.94E+03 | 3.29E+03 | 3.29E+03 |
mean | 3.23E+03 | 3.49E+03 | 7.21E+03 | 3.52E+03 | 3.34E+03 | 4.48E+03 | 3.51E+03 | 3.37E+03 | |
std | 5.08E+02 | 1.12E+04 | 6.92E+05 | 1.22E+04 | 2.27E+03 | 8.16E+04 | 1.47E+05 | 2.81E+03 | |
degree | 1 | 4 | 8 | 6 | 2 | 7 | 5 | 3 | |
F28 | min | 3.45E+03 | 4.37E+03 | 5.52E+03 | 3.84E+03 | 3.96E+03 | 4.50E+03 | 3.82E+03 | 3.49E+03 |
mean | 4.15E+03 | 5.02E+03 | 7.39E+03 | 4.23E+03 | 4.45E+03 | 5.15E+03 | 4.44E+03 | 4.43E+03 | |
std | 1.31E+05 | 2.08E+05 | 9.72E+05 | 3.79E+04 | 5.99E+04 | 1.12E+05 | 1.46E+05 | 2.09E+05 | |
degree | 1 | 6 | 8 | 2 | 5 | 7 | 4 | 3 | |
F29 | min | 5.67E+03 | 6.28E+05 | 8.11E+08 | 3.66E+04 | 6.02E+03 | 8.47E+07 | 2.19E+04 | 1.99E+04 |
mean | 1.73E+04 | 1.32E+07 | 2.74E+09 | 2.67E+05 | 3.91E+04 | 1.97E+08 | 3.85E+06 | 2.77E+05 | |
std | 9.47E+07 | 2.24E+14 | 2.34E+18 | 5.95E+10 | 2.98E+09 | 5.65E+15 | 1.83E+13 | 5.11E+11 | |
degree | 1 | 6 | 8 | 3 | 2 | 7 | 5 | 4 |
Dim = 30 | |||||||||
---|---|---|---|---|---|---|---|---|---|
SSA | HHO | BOA | OMA | WOA | SCA | DBO | ADBO | ||
F1 | min | 1.83E+08 | 3.14E+10 | 2.75E+11 | 7.68E+10 | 2.70E+10 | 1.87E+11 | 2.24E+10 | 1.33E+10 |
mean | 3.83E+08 | 4.95E+10 | 2.95E+11 | 1.18E+11 | 6.48E+10 | 2.17E+11 | 7.86E+10 | 3.76E+10 | |
std | 1.07E+16 | 6.42E+19 | 2.20E+19 | 4.76E+20 | 1.95E+20 | 2.38E+20 | 4.78E+21 | 1.34E+20 | |
degree | 1 | 3 | 8 | 6 | 4 | 7 | 5 | 2 | |
F2 | min | 3.48E+05 | 3.15E+05 | 8.62E+05 | 3.56E+05 | 1.75E+05 | 4.74E+05 | 3.56E+05 | 3.27E+05 |
mean | 7.35E+05 | 3.61E+05 | 1.88E+10 | 4.17E+05 | 2.43E+05 | 6.01E+05 | 7.75E+05 | 4.00E+05 | |
std | 1.43E+10 | 6.12E+09 | 3.30E+21 | 1.13E+09 | 4.18E+08 | 5.73E+09 | 9.76E+10 | 1.24E+10 | |
degree | 6 | 2 | 8 | 4 | 1 | 5 | 7 | 3 | |
F3 | min | 8.59E+02 | 6.66E+03 | 9.04E+04 | 1.06E+04 | 2.01E+03 | 3.79E+04 | 3.75E+03 | 1.01E+03 |
mean | 1.01E+03 | 8.99E+03 | 1.18E+05 | 1.74E+04 | 7.45E+03 | 5.11E+04 | 1.56E+04 | 2.97E+03 | |
std | 9.17E+03 | 1.62E+06 | 1.59E+08 | 1.76E+07 | 9.11E+06 | 4.62E+07 | 3.00E+08 | 2.87E+06 | |
degree | 1 | 4 | 8 | 6 | 3 | 7 | 5 | 2 | |
F4 | min | 1.29E+03 | 1.56E+03 | 2.20E+03 | 1.46E+03 | 1.33E+03 | 1.97E+03 | 1.19E+03 | 1.14E+03 |
mean | 1.37E+03 | 1.67E+03 | 2.29E+03 | 1.72E+03 | 1.46E+03 | 2.07E+03 | 1.70E+03 | 1.31E+03 | |
std | 1.78E+03 | 2.69E+03 | 3.29E+03 | 1.32E+04 | 3.95E+03 | 3.14E+03 | 5.44E+04 | 5.53E+03 | |
degree | 2 | 4 | 8 | 6 | 3 | 7 | 5 | 1 | |
F5 | min | 6.62E+02 | 6.85E+02 | 7.09E+02 | 6.72E+02 | 6.64E+02 | 6.95E+02 | 6.62E+02 | 6.07E+02 |
mean | 6.66E+02 | 6.91E+02 | 7.27E+02 | 6.87E+02 | 6.71E+02 | 7.02E+02 | 6.77E+02 | 6.51E+02 | |
std | 7.00E+00 | 1.84E+01 | 7.51E+01 | 6.23E+01 | 1.14E+01 | 1.07E+01 | 1.15E+02 | 3.18E+01 | |
degree | 2 | 6 | 8 | 5 | 3 | 7 | 4 | 1 | |
F6 | min | 2.58E+03 | 3.46E+03 | 4.05E+03 | 3.33E+03 | 2.96E+03 | 3.57E+03 | 2.55E+03 | 2.73E+03 |
mean | 3.19E+03 | 3.75E+03 | 4.27E+03 | 4.25E+03 | 3.20E+03 | 4.05E+03 | 2.98E+03 | 3.14E+03 | |
std | 2.80E+04 | 1.67E+04 | 6.47E+03 | 1.82E+05 | 1.35E+04 | 4.95E+04 | 4.38E+04 | 3.08E+04 | |
degree | 3 | 5 | 8 | 7 | 4 | 6 | 1 | 2 | |
F7 | min | 1.64E+03 | 2.00E+03 | 2.62E+03 | 1.81E+03 | 1.77E+03 | 2.29E+03 | 1.75E+03 | 1.69E+03 |
mean | 1.84E+03 | 2.13E+03 | 2.77E+03 | 2.02E+03 | 1.89E+03 | 2.43E+03 | 2.10E+03 | 1.79E+03 | |
std | 2.58E+03 | 3.14E+03 | 7.42E+03 | 1.65E+04 | 5.02E+03 | 4.60E+03 | 6.04E+04 | 1.47E+04 | |
degree | 2 | 6 | 8 | 4 | 3 | 7 | 5 | 1 | |
F8 | min | 2.42E+04 | 6.06E+04 | 8.96E+04 | 6.11E+04 | 2.59E+04 | 6.99E+04 | 4.75E+04 | 3.95E+04 |
mean | 2.53E+04 | 6.95E+04 | 1.08E+05 | 7.36E+04 | 3.04E+04 | 8.98E+04 | 7.60E+04 | 4.96E+04 | |
std | 3.99E+05 | 2.19E+07 | 7.46E+07 | 7.56E+07 | 8.36E+06 | 9.74E+07 | 1.03E+08 | 1.45E+08 | |
degree | 1 | 4 | 8 | 5 | 2 | 7 | 6 | 3 | |
F9 | min | 1.40E+04 | 2.05E+04 | 3.33E+04 | 2.82E+04 | 1.75E+04 | 3.09E+04 | 1.94E+04 | 1.70E+04 |
mean | 1.73E+04 | 2.47E+04 | 3.51E+04 | 3.21E+04 | 1.94E+04 | 3.31E+04 | 2.84E+04 | 1.79E+04 | |
std | 1.25E+06 | 5.18E+06 | 9.98E+05 | 8.34E+05 | 1.52E+06 | 4.17E+05 | 2.36E+07 | 1.58E+07 | |
degree | 1 | 4 | 8 | 6 | 3 | 7 | 5 | 2 | |
F10 | min | 3.08E+04 | 7.34E+04 | 6.10E+05 | 6.63E+04 | 1.26E+04 | 1.34E+05 | 1.40E+05 | 4.26E+04 |
mean | 7.62E+04 | 1.41E+05 | 9.69E+06 | 1.03E+05 | 3.57E+04 | 1.85E+05 | 2.30E+05 | 5.47E+04 | |
std | 5.12E+08 | 1.10E+09 | 1.40E+15 | 2.89E+08 | 9.99E+07 | 9.62E+08 | 3.30E+09 | 8.87E+08 | |
degree | 3 | 5 | 8 | 4 | 1 | 6 | 7 | 2 | |
F11 | min | 7.17E+07 | 5.31E+09 | 2.11E+11 | 1.01E+10 | 1.19E+09 | 7.93E+10 | 2.95E+09 | 2.48E+08 |
mean | 1.88E+08 | 1.14E+10 | 2.51E+11 | 2.05E+10 | 8.44E+09 | 1.03E+11 | 7.34E+09 | 2.64E+09 | |
std | 4.75E+15 | 2.29E+19 | 2.12E+20 | 3.51E+19 | 4.61E+19 | 1.32E+20 | 4.52E+18 | 1.02E+19 | |
degree | 1 | 5 | 8 | 6 | 4 | 7 | 3 | 2 | |
F12 | min | 2.24E+04 | 6.36E+07 | 5.08E+10 | 3.47E+08 | 4.79E+05 | 9.56E+09 | 1.81E+07 | 7.67E+04 |
mean | 6.46E+04 | 2.32E+08 | 6.25E+10 | 1.21E+09 | 1.52E+08 | 1.69E+10 | 3.22E+08 | 2.89E+06 | |
std | 9.55E+09 | 3.62E+16 | 1.52E+19 | 9.75E+17 | 7.87E+16 | 1.83E+19 | 4.87E+16 | 3.46E+13 | |
degree | 1 | 4 | 8 | 6 | 3 | 7 | 5 | 2 | |
F13 | min | 8.28E+05 | 4.89E+06 | 1.09E+08 | 1.18E+06 | 5.08E+05 | 1.76E+07 | 2.85E+06 | 1.01E+06 |
mean | 2.10E+06 | 1.12E+07 | 4.40E+08 | 3.96E+06 | 1.72E+06 | 6.25E+07 | 2.00E+07 | 2.05E+06 | |
std | 7.27E+11 | 1.19E+13 | 5.79E+16 | 4.22E+12 | 8.34E+11 | 8.33E+14 | 1.68E+14 | 1.39E+13 | |
degree | 3 | 5 | 8 | 4 | 1 | 7 | 6 | 2 | |
F14 | min | 9.59E+03 | 6.90E+06 | 1.99E+10 | 6.79E+06 | 1.22E+04 | 3.10E+09 | 1.81E+05 | 2.64E+04 |
mean | 2.21E+04 | 2.13E+07 | 3.56E+10 | 4.96E+07 | 6.13E+06 | 5.94E+09 | 1.02E+08 | 3.88E+05 | |
std | 1.44E+08 | 6.13E+14 | 3.00E+19 | 2.08E+15 | 4.57E+14 | 2.93E+18 | 2.48E+16 | 1.05E+12 | |
degree | 1 | 4 | 8 | 5 | 3 | 7 | 6 | 2 | |
F15 | min | 4.61E+03 | 7.96E+03 | 1.61E+04 | 7.59E+03 | 5.48E+03 | 1.30E+04 | 7.13E+03 | 4.05E+03 |
mean | 6.17E+03 | 1.03E+04 | 2.39E+04 | 9.97E+03 | 7.40E+03 | 1.48E+04 | 9.34E+03 | 5.75E+03 | |
std | 6.19E+05 | 1.42E+06 | 9.70E+06 | 1.57E+06 | 1.09E+06 | 6.51E+05 | 1.82E+06 | 1.14E+06 | |
degree | 2 | 6 | 8 | 5 | 3 | 7 | 4 | 1 | |
F16 | min | 4.82E+03 | 6.14E+03 | 3.10E+06 | 4.64E+03 | 5.02E+03 | 1.41E+04 | 7.59E+03 | 3.02E+03 |
mean | 5.98E+03 | 9.17E+03 | 3.43E+07 | 6.61E+03 | 6.80E+03 | 9.06E+04 | 9.58E+03 | 5.74E+03 | |
std | 4.71E+05 | 6.12E+07 | 1.25E+15 | 7.55E+05 | 1.18E+06 | 9.13E+09 | 4.03E+06 | 1.09E+06 | |
degree | 2 | 5 | 8 | 3 | 4 | 7 | 6 | 1 | |
F17 | min | 3.81E+05 | 2.54E+06 | 1.92E+08 | 1.05E+06 | 1.05E+06 | 4.79E+07 | 3.84E+06 | 1.58E+06 |
mean | 2.68E+06 | 9.22E+06 | 7.52E+08 | 6.05E+06 | 2.94E+06 | 1.34E+08 | 1.97E+07 | 1.79E+06 | |
std | 1.42E+12 | 1.84E+13 | 1.27E+17 | 1.23E+13 | 3.39E+12 | 2.90E+15 | 1.11E+14 | 1.24E+13 | |
degree | 2 | 5 | 8 | 4 | 3 | 7 | 6 | 1 | |
F18 | min | 2.88E+03 | 1.33E+07 | 2.44E+10 | 4.57E+06 | 7.51E+04 | 3.14E+09 | 1.43E+07 | 4.15E+04 |
mean | 2.87E+04 | 3.92E+07 | 3.44E+10 | 4.83E+07 | 1.26E+07 | 5.30E+09 | 1.48E+08 | 1.46E+06 | |
std | 5.28E+09 | 3.32E+14 | 2.75E+19 | 1.31E+15 | 2.93E+15 | 1.81E+18 | 1.43E+16 | 1.33E+12 | |
degree | 1 | 4 | 8 | 5 | 3 | 7 | 6 | 2 | |
F19 | min | 4.58E+03 | 4.92E+03 | 8.72E+03 | 6.65E+03 | 4.16E+03 | 7.41E+03 | 5.45E+03 | 4.02E+03 |
mean | 6.06E+03 | 6.12E+03 | 9.26E+03 | 7.45E+03 | 5.25E+03 | 8.14E+03 | 7.28E+03 | 5.25E+03 | |
std | 3.60E+05 | 2.69E+05 | 6.94E+04 | 1.10E+05 | 3.39E+05 | 1.11E+05 | 6.12E+05 | 5.82E+05 | |
degree | 3 | 4 | 8 | 6 | 2 | 7 | 5 | 1 | |
F20 | min | 3.35E+03 | 4.03E+03 | 4.46E+03 | 3.18E+03 | 3.33E+03 | 3.99E+03 | 3.73E+03 | 3.03E+03 |
mean | 3.66E+03 | 4.40E+03 | 4.96E+03 | 3.45E+03 | 3.58E+03 | 4.21E+03 | 4.04E+03 | 3.39E+03 | |
std | 4.69E+04 | 3.34E+04 | 4.69E+04 | 2.00E+04 | 2.36E+04 | 1.18E+04 | 3.73E+04 | 4.87E+04 | |
degree | 4 | 7 | 8 | 2 | 3 | 6 | 5 | 1 | |
F21 | min | 1.40E+04 | 2.45E+04 | 3.54E+04 | 3.31E+04 | 1.85E+04 | 3.38E+04 | 2.07E+04 | 2.01E+04 |
mean | 1.94E+04 | 2.78E+04 | 3.76E+04 | 3.48E+04 | 2.35E+04 | 3.53E+04 | 2.82E+04 | 2.73E+04 | |
std | 2.89E+06 | 2.01E+06 | 1.30E+06 | 4.72E+05 | 2.94E+06 | 6.16E+05 | 2.46E+07 | 9.05E+06 | |
degree | 1 | 4 | 8 | 6 | 2 | 7 | 5 | 3 | |
F22 | min | 3.75E+03 | 5.43E+03 | 5.55E+03 | 3.93E+03 | 3.98E+03 | 5.05E+03 | 4.49E+03 | 3.75E+03 |
mean | 4.24E+03 | 5.95E+03 | 6.53E+03 | 4.20E+03 | 4.59E+03 | 5.26E+03 | 4.81E+03 | 4.17E+03 | |
std | 3.78E+04 | 1.33E+05 | 4.27E+05 | 2.43E+04 | 8.34E+04 | 1.69E+04 | 3.07E+04 | 1.15E+05 | |
degree | 3 | 7 | 8 | 2 | 4 | 6 | 5 | 1 | |
F23 | min | 4.56E+03 | 7.05E+03 | 7.35E+03 | 5.23E+03 | 5.43E+03 | 6.93E+03 | 5.28E+03 | 4.91E+03 |
mean | 5.23E+03 | 8.57E+03 | 9.45E+03 | 5.92E+03 | 5.98E+03 | 7.43E+03 | 6.30E+03 | 5.19E+03 | |
std | 1.26E+05 | 2.61E+05 | 3.70E+06 | 1.86E+05 | 9.61E+04 | 8.67E+04 | 2.40E+05 | 2.54E+05 | |
degree | 2 | 7 | 8 | 3 | 4 | 6 | 5 | 1 | |
F24 | min | 3.54E+03 | 5.91E+03 | 2.47E+04 | 9.14E+03 | 5.46E+03 | 1.82E+04 | 5.20E+03 | 4.73E+03 |
mean | 3.69E+03 | 6.78E+03 | 3.22E+04 | 1.23E+04 | 7.67E+03 | 2.28E+04 | 1.15E+04 | 5.72E+03 | |
std | 6.90E+03 | 2.15E+05 | 9.35E+06 | 5.86E+06 | 1.12E+06 | 5.41E+06 | 5.86E+07 | 7.73E+05 | |
degree | 1 | 3 | 8 | 6 | 4 | 7 | 5 | 2 | |
F25 | min | 4.86E+03 | 2.83E+04 | 5.06E+04 | 2.95E+04 | 2.64E+04 | 3.46E+04 | 1.97E+04 | 2.01E+04 |
mean | 2.10E+04 | 3.23E+04 | 5.81E+04 | 3.65E+04 | 3.18E+04 | 4.16E+04 | 2.63E+04 | 2.61E+04 | |
std | 5.17E+07 | 6.15E+06 | 1.33E+07 | 1.43E+07 | 6.10E+06 | 8.64E+06 | 1.29E+07 | 1.64E+07 | |
degree | 1 | 5 | 8 | 6 | 4 | 7 | 3 | 2 | |
F26 | min | 3.62E+03 | 5.85E+03 | 8.14E+03 | 4.71E+03 | 4.34E+03 | 7.44E+03 | 4.02E+03 | 3.70E+03 |
mean | 3.89E+03 | 7.65E+03 | 1.16E+04 | 5.47E+03 | 5.41E+03 | 8.70E+03 | 4.63E+03 | 4.59E+03 | |
std | 6.25E+04 | 2.59E+06 | 2.17E+06 | 2.16E+05 | 3.44E+05 | 4.26E+05 | 2.51E+05 | 2.80E+05 | |
degree | 1 | 6 | 8 | 5 | 4 | 7 | 3 | 2 | |
F27 | min | 3.65E+03 | 7.61E+03 | 3.03E+04 | 1.09E+04 | 6.81E+03 | 2.19E+04 | 7.03E+03 | 4.87E+03 |
mean | 3.80E+03 | 9.27E+03 | 3.70E+04 | 1.47E+04 | 9.63E+03 | 2.66E+04 | 1.93E+04 | 7.56E+03 | |
std | 9.55E+03 | 7.57E+05 | 6.98E+06 | 3.79E+06 | 2.39E+06 | 4.12E+06 | 3.80E+07 | 2.37E+06 | |
degree | 1 | 3 | 8 | 5 | 4 | 7 | 6 | 2 | |
F28 | min | 6.75E+03 | 1.04E+04 | 2.25E+05 | 9.23E+03 | 8.58E+03 | 2.14E+04 | 9.10E+03 | 5.66E+03 |
mean | 7.73E+03 | 1.31E+04 | 1.41E+06 | 1.27E+04 | 1.05E+04 | 4.15E+04 | 1.23E+04 | 9.81E+03 | |
std | 2.41E+05 | 2.52E+06 | 1.07E+12 | 3.18E+06 | 8.00E+05 | 6.38E+08 | 2.55E+06 | 8.13E+05 | |
degree | 1 | 6 | 8 | 5 | 3 | 7 | 4 | 2 | |
F29 | min | 1.89E+05 | 3.34E+08 | 4.47E+10 | 3.43E+08 | 8.25E+06 | 6.19E+09 | 6.66E+07 | 5.10E+06 |
mean | 6.18E+05 | 7.95E+08 | 5.66E+10 | 2.09E+09 | 1.36E+08 | 1.33E+10 | 2.66E+08 | 7.45E+07 | |
std | 1.28E+11 | 1.03E+17 | 2.23E+19 | 2.76E+18 | 3.09E+16 | 9.88E+18 | 1.95E+16 | 6.57E+16 | |
degree | 1 | 5 | 8 | 6 | 3 | 7 | 4 | 2 |
4.2. Analysis of Statistical Results for Cec2017
- In the 30-dimensional and 100-dimensional tests, ADBO’s performance on F1 and F2 is just slightly below that of SSA, but it significantly outperforms DBO.
- In the 30-dimensional tests, the ADBO algorithm consistently secures top rankings in both mean and minimum values among the F3–F9 functions. However, in the 100-dimensional tests, ADBO’s performance slightly falls behind the SSA in functions F3, F6, and F9. Nevertheless, it is worth noting that ADBO continues to outperform the SSA in other functions. This underscores the exceptional performance of the ADBO algorithm, particularly in lower dimensions, where it consistently leads in both mean and minimum values, showcasing its robust capabilities for global search and optimization. These findings further emphasize the competitive edge and adaptability of the ADBO algorithm, solidifying its position as a versatile and powerful tool across diverse problem domains and complexities.
- Similarly, ADBO excels in addressing mixed problems, as evidenced by its performance. Specifically, in 30-dimensional experiments focused on test functions F15, F19, and F20, ADBO establishes a significant lead. Additionally, across various other test functions, ADBO’s performance is comparable to that of SSA, showcasing its impressive competitiveness. Even when confronted with more challenging 100-dimensional experiments, ADBO consistently upholds its outstanding performance. Notably, in test functions F15 through F17, F19, and F20, it outperforms other optimization algorithms by a substantial margin. These results underscore the substantial competitive advantage of the ADBO algorithm in tackling high-dimensional problems, making it a valuable solution for practical engineering challenges such as drone and robot path planning.
- Similarly, when tackling composite problems, ADBO proves its formidable competitiveness in experimental results involving functions F21–F29. In all 30-dimensional experiments, the ADBO algorithm consistently delivers competent performance. However, it truly distinguishes itself in the 100-dimensional experiments. Across all remaining functions, it outperforms other comparative algorithms, demonstrating exceptional capabilities. The sole exception to this pattern is in comparison to the SSA, where ADBO falls slightly short. These findings unequivocally underline the ADBO algorithm’s unique strengths and adaptability in addressing intricate composite problems. ADBO’s performance highlights its ability to efficiently navigate and optimize complex search spaces, positioning it as a promising solution for real-world challenges spanning diverse domains, from engineering to data analysis and beyond. Its capacity to excel in both 30-dimensional and 100-dimensional experiments underscores the algorithm’s versatility and potential to address a wide spectrum of complex optimization problems.
4.3. Comparison of Convergence Curves for Cec2017 Benchmark Functions
- The experimental results for the single-peaked problem F1 highlight ADBO’s strong performance in locating the global optimum and its efficiency. In the 30-dimensional experiments, ADBO slightly trails behind SSA on F1 but outperforms DBO by a significant margin. Notably, in the 100-dimensional experiments, ADBO exhibits exceptional performance on the F1 function, indicating its enhanced capability to discover and converge toward the global optimum in the context of single-peaked problems. This affirms its robust global exploration and exploitation potential. In the case of F2, while differences among the comparative algorithms are less pronounced, ADBO still demonstrates superiority over several other approaches.
- The experiment results clearly demonstrate that the ADBO algorithm excels in solving straightforward multimodal problems (F3 to F10). In the 30-dimensional trials, ADBO shows a slight delay compared to other methods in functions F3, F4, F7, F8, F9, and F10. Nevertheless, it eventually overtakes SSA and WOA by rapidly discovering the best solution. ADBO consistently maintains a leading position in functions F5 and F6, swiftly reaching the optimum and securing the top rank. In the 100-dimensional experiments, ADBO continues to outperform other methods in functions F4, F5, and F6, albeit with a minor lag behind SSA in other functions. These outcomes further confirm the outstanding performance and resilience of the ADBO algorithm in tackling complex problems. Its robust abilities for global exploration and exploitation establish it as a formidable tool for addressing a wide array of intricate problems.
- ADBO delivers impressive performance when tackling mixed problems, as indicated by the experimental outcomes spanning F11 to F20. In the 30-dimensional experiments, ADBO emerges as a clear frontrunner in functions such as F11, F15, F19, and F20, while maintaining competitive performance comparable to SSA in other functions. In the 100-dimensional experiments, ADBO outperforms its counterparts with remarkable efficiency in specific functions within F13, F15, F16, F19, and F20, establishing a significant lead. This remarkable performance can be attributed to its diverse solution search strategies. Its robust global search capabilities position it as a standout performer in addressing mixed problems.
- In the realm of tackling composite problems, the experimental findings for ADBO concerning functions F21 through F29 undeniably underscore its compelling competitive edge. Within the domain of 30-dimensional experiments, ADBO showcases consistent superiority over alternative algorithms, with a notable surge in performance observed in the context of function F21. Transitioning to the 100-dimensional experiments, ADBO steadfastly maintains its supremacy in functions F21, F22, and F23 when compared to rival algorithms. These discoveries serve as a prominent testament to the distinctive advantages and adaptability inherent to ADBO for addressing composite problems. ADBO stands as an exceptional performer, solidifying its pivotal role in effectively navigating and optimizing intricate search spaces, making it an indispensable and potent tool for a diverse array of composite problems.
4.4. Wilcoxon Rank Sum Test
SSA | HHO | BOA | OMA | WOA | SCA | DBO | |
---|---|---|---|---|---|---|---|
F1 | 3.02E-11 < 0.05 | 2.19E-08 < 0.05 | 2.95E-11 < 0.05 | 8.99E-11 < 0.05 | 1.34E-05 < 0.05 | 3.02E-11 < 0.05 | 4.11E-07 < 0.05 |
F2 | 3.99E-04 < 0.05 | 8.42E-01 | 3.34E-11 < 0.05 | 1.15E-01 | 3.02E-11 < 0.05 | 4.18E-09 < 0.05 | 1.41E-09 < 0.05 |
F3 | 8.20E-07 < 0.05 | 3.16E-10 < 0.05 | 3.02E-11 < 0.05 | 4.62E-10 < 0.05 | 5.01E-02 | 3.02E-11 < 0.05 | 4.42E-06 < 0.05 |
F4 | 4.03E-03 < 0.05 | 5.19E-07 < 0.05 | 3.02E-11 < 0.05 | 7.96E-01 | 6.79E-02 | 8.15E-11 < 0.05 | 5.97E-05 < 0.05 |
F5 | 1.30E-01 | 2.37E-10 < 0.05 | 3.02E-11 < 0.05 | 9.53E-07 < 0.05 | 3.33E-01 < 0.05 | 1.17E-09 < 0.05 | 1.77E-03 < 0.05 |
F6 | 1.11E-06 < 0.05 | 8.89E-10 < 0.05 | 3.02E-11 < 0.05 | 1.06E-03 < 0.05 | 7.24E-02 | 2.20E-07 < 0.05 | 3.51E-02 < 0.05 |
F7 | 3.64E-02 < 0.05 | 7.30E-04 < 0.05 | 3.02E-11 < 0.05 | 4.68E-02 < 0.05 | 6.20E-04 < 0.05 | 4.08E-11 < 0.05 | 2.28E-05 < 0.05 |
F8 | 5.20E-01 | 4.20E-10 < 0.05 | 3.02E-11 < 0.05 | 2.61E-02 < 0.05 | 1.22E-02 < 0.05 | 6.28E-06 < 0.05 | 1.44E-02 < 0.05 |
F9 | 6.28E-06 < 0.05 | 4.21E-02 < 0.05 | 3.02E-11 < 0.05 | 3.50E-09 < 0.05 | 1.16E-07 < 0.05 | 2.87E-10 < 0.05 | 9.35E-01 |
F10 | 2.16E-03 < 0.05 | 6.12E-10 < 0.05 | 3.02E-11 < 0.05 | 1.37E-01 | 4.03E-03 < 0.05 | 3.02E-11 < 0.05 | 1.31E-08 < 0.05 |
F11 | 2.39E-08 < 0.05 | 1.69E-09 < 0.05 | 3.02E-11 < 0.05 | 2.15E-02 < 0.05 | 1.04E-04 < 0.05 | 3.02E-11 < 0.05 | 8.56E-04 < 0.05 |
F12 | 5.75E-02 | 1.43E-08 < 0.05 | 3.02E-11 < 0.05 | 6.20E-01 | 2.25E-04 < 0.05 | 3.02E-11 < 0.05 | 8.48E-09 < 0.05 |
F13 | 1.49E-04 < 0.05 | 8.15E-05 < 0.05 | 3.02E-11 < 0.05 | 8.20E-07 < 0.05 | 8.15E-11 < 0.05 | 6.53E-08 < 0.05 | 6.00E-01 |
F14 | 6.35E-02 | 8.15E-11 < 0.05 | 3.02E-11 < 0.05 | 2.17E-01 | 6.20E-04 < 0.05 | 3.02E-11 < 0.05 | 6.01E-08 < 0.05 |
F15 | 5.55E-02 | 4.57E-09 < 0.05 | 3.02E-11 < 0.05 | 3.09E-06 < 0.05 | 1.27E-02 < 0.05 | 4.50E-11 < 0.05 | 3.59E-05 < 0.05 |
F16 | 6.41E-01 | 1.17E-02 < 0.05 | 3.69E-11 < 0.05 | 5.97E-05 < 0.05 | 1.44E-03 < 0.05 | 1.06E-03 < 0.05 | 3.39E-02 < 0.05 |
F17 | 4.64E-01 | 1.29E-06 < 0.05 | 3.02E-11 < 0.05 | 1.27E-02 < 0.05 | 1.73E-07 < 0.05 | 3.34E-11 < 0.05 | 1.44E-03 < 0.05 |
F18 | 3.27E-02 | 3.02E-11 < 0.05 | 3.02E-11 < 0.05 | 6.52E-01 | 1.44E-02 < 0.05 | 3.02E-11 < 0.05 | 4.31E-08 < 0.05 |
F19 | 5.27E-05 < 0.05 | 6.77E-05 < 0.05 | 3.34E-11 < 0.05 | 7.01E-02 | 1.33E-01 | 1.31E-08 < 0.05 | 6.10E-03 < 0.05 |
F20 | 9.47E-01 | 7.77E-09 < 0.05 | 3.02E-11 < 0.05 | 3.78E-02 < 0.05 | 6.97E-03 < 0.05 | 1.29E-09 < 0.05 | 5.27E-05 < 0.05 |
F21 | 2.07E-02 < 0.05 | 3.82E-09 < 0.05 | 4.98E-11 < 0.05 | 1.87E-05 < 0.05 | 1.50E-02 < 0.05 | 1.78E-10 < 0.05 | 3.01E-04 < 0.05 |
F22 | 1.70E-02 < 0.05 | 7.39E-11 < 0.05 | 3.69E-11 < 0.05 | 4.98E-04 < 0.05 | 4.73E-01 | 1.60E-07 < 0.05 | 9.33E-02 |
F23 | 5.19E-02 | 1.17E-09 < 0.05 | 1.46E-10 < 0.05 | 1.91E-01 | 3.63E-01 | 6.53E-07 < 0.05 | 1.91E-01 |
F24 | 8.99E-11 < 0.05 | 4.11E-07 < 0.05 | 3.02E-11 < 0.05 | 6.07E-11 < 0.05 | 7.06E-01 | 3.02E-11 < 0.05 | 7.98E-02 |
F25 | 5.01E-02 < 0.05 | 2.19E-08 < 0.05 | 4.98E-11 < 0.05 | 4.92E-01 | 5.49E-01 | 7.04E-07 < 0.05 | 4.64E-03 < 0.05 |
F26 | 1.78E-04 < 0.05 | 2.92E-09 < 0.05 | 3.02E-11 < 0.05 | 9.12E-01 | 3.95E-01 | 1.55E-09 < 0.05 | 9.47E-01 |
F27 | 1.61E-10 < 0.05 | 1.61E-06 < 0.05 | 3.02E-11 < 0.05 | 2.03E-09 < 0.05 | 4.12E-01 | 3.02E-11 < 0.05 | 2.13E-05 < 0.05 |
F28 | 8.31E-03 < 0.05 | 1.25E-05 < 0.05 | 3.02E-11 < 0.05 | 9.33E-02 | 6.41E-01 | 1.70E-08 < 0.05 | 8.24E-02 |
F29 | 2.15E-10 < 0.05 | 1.09E-10 < 0.05 | 3.02E-11 < 0.05 | 7.06E-01 < 0.05 | 2.15E-10 < 0.05 | 3.02E-11 < 0.05 | 3.83E-06 < 0.05 |
SSA | HHO | BOA | OMA | WOA | SCA | DBO | |
---|---|---|---|---|---|---|---|
F1 | 9.47E-01 | 3.02E-11 < 0.05 | 3.02E-11 < 0.05 | 3.02E-11 < 0.05 | 9.12E-01 | 3.02E-11 < 0.05 | 1.21E-10 < 0.05 |
F2 | 1.87E-05 < 0.05 | 2.24E-02 < 0.05 | 3.02E-11 < 0.05 | 4.94E-05 < 0.05 | 3.02E-11 < 0.05 | 5.00E-09 < 0.05 | 3.34E-11 < 0.05 |
F3 | 4.73E-01 | 2.03E-07 < 0.05 | 3.02E-11 < 0.05 | 2.03E-09 < 0.05 | 4.73E-01 | 3.02E-11 < 0.05 | 1.87E-05 < 0.05 |
F4 | 1.29E-06 < 0.05 | 6.01E-08 < 0.05 | 3.02E-11 < 0.05 | 2.17E-01 | 1.00E+00 | 1.21E-10 < 0.05 | 2.51E-02 < 0.05 |
F5 | 4.62E-10 < 0.05 | 3.34E-11 < 0.05 | 3.02E-11 < 0.05 | 9.76E-10 < 0.05 | 2.68E-06 < 0.05 | 4.50E-11 < 0.05 | 6.20E-01 |
F6 | 3.69E-11 < 0.05 | 3.02E-11 < 0.05 | 3.02E-11 < 0.05 | 3.01E-07 < 0.05 | 1.32E-04 < 0.05 | 3.02E-11 < 0.05 | 2.71E-01 |
F7 | 6.91E-04 < 0.05 | 1.22E-02 < 0.05 | 3.02E-11 < 0.05 | 6.10E-01 | 1.12E-02 < 0.05 | 8.99E-11 < 0.05 | 2.84E-04 < 0.05 |
F8 | 4.98E-11 < 0.05 | 4.08E-11 < 0.05 | 3.02E-11 < 0.05 | 1.39E-06 < 0.05 | 9.12E-01 | 6.07E-11 < 0.05 | 2.15E-06 < 0.05 |
F9 | 8.19E-01 | 1.17E-02 < 0.05 | 3.02E-11 < 0.05 | 4.08E-11 < 0.05 | 6.91E-04 < 0.05 | 3.02E-11 < 0.05 | 9.82E-01 |
F10 | 1.44E-03 < 0.05 | 3.26E-01 | 3.02E-11 < 0.05 | 3.67E-03 < 0.05 | 3.83E-05 < 0.05 | 3.02E-11 < 0.05 | 6.53E-08 < 0.05 |
F11 | 8.31E-03 < 0.05 | 1.21E-10 < 0.05 | 3.02E-11 < 0.05 | 2.53E-04 < 0.05 | 3.37E-05 < 0.05 | 3.02E-11 < 0.05 | 5.97E-09 < 0.05 |
F12 | 4.94E-05 < 0.05 | 1.36E-07 < 0.05 | 3.02E-11 < 0.05 | 9.47E-03 < 0.05 | 2.49E-06 < 0.05 | 3.02E-11 < 0.05 | 1.43E-05 < 0.05 |
F13 | 8.77E-02 | 5.09E-08 < 0.05 | 3.02E-11 < 0.05 | 3.34E-03 < 0.05 | 3.02E-11 < 0.05 | 8.99E-11 < 0.05 | 1.54E-01 |
F14 | 5.08E-03 < 0.05 | 2.20E-07 < 0.05 | 3.02E-11 < 0.05 | 1.05E-01 | 1.17E-05 < 0.05 | 3.02E-11 < 0.05 | 1.68E-04 < 0.05 |
F15 | 5.49E-01 | 3.77E-04 < 0.05 | 3.02E-11 < 0.05 | 1.12E-02 < 0.05 | 3.59E-05 < 0.05 | 1.09E-10 < 0.05 | 3.26E-01 |
SSA | HHO | BOA | OMA | WOA | SCA | DBO | |
---|---|---|---|---|---|---|---|
F16 | 3.18E-04 < 0.05 | 9.79E-05 < 0.05 | 3.02E-11 < 0.05 | 2.16E-03 < 0.05 | 2.42E-02 < 0.05 | 2.32E-06 < 0.05 | 7.62E-03 < 0.05 |
F17 | 4.36E-02 < 0.05 | 8.66E-05 < 0.05 | 3.02E-11 < 0.05 | 9.23E-01 | 2.03E-09 < 0.05 | 3.34E-11 < 0.05 | 2.89E-03 < 0.05 |
F18 | 2.58E-01 | 2.44E-09 < 0.05 | 3.02E-11 < 0.05 | 4.84E-02 < 0.05 | 1.99E-02 < 0.05 | 3.02E-11 < 0.05 | 3.34E-03 < 0.05 |
F19 | 2.71E-01 | 2.51E-02 < 0.05 | 3.02E-11 < 0.05 | 4.68E-02 < 0.05 | 2.28E-05 < 0.05 | 4.71E-04 < 0.05 | 9.93E-02 |
F20 | 5.11E-01 | 2.13E-05 < 0.05 | 3.02E-11 < 0.05 | 7.60E-07 < 0.05 | 8.88E-06 < 0.05 | 1.46E-10 < 0.05 | 8.42E-01 |
F21 | 3.67E-03 < 0.05 | 8.12E-04 < 0.05 | 4.50E-11 < 0.05 | 6.79E-02 | 1.37E-03 < 0.05 | 1.73E-07 < 0.05 | 4.23E-03 < 0.05 |
F22 | 1.81E-01 | 8.15E-11 < 0.05 | 3.02E-11 < 0.05 | 9.21E-05 < 0.05 | 2.12E-01 | 4.62E-10 < 0.05 | 5.30E-01 |
F23 | 1.68E-04 < 0.05 | 3.34E-11 < 0.05 | 3.02E-11 < 0.05 | 3.48E-01 | 1.67E-01 | 5.49E-11 < 0.05 | 5.55E-02 |
F24 | 3.63E-01 | 1.25E-07 < 0.05 | 3.02E-11 < 0.05 | 3.34E-11 < 0.05 | 2.42E-02 < 0.05 | 3.02E-11 < 0.05 | 1.47E-07 < 0.05 |
F25 | 1.54E-01 | 3.59E-05 < 0.05 | 3.02E-11 < 0.05 | 1.06E-03 < 0.05 | 3.33E-01 | 5.60E-07 < 0.05 | 2.97E-01 |
F26 | 3.18E-01 | 1.78E-10 < 0.05 | 3.02E-11 < 0.05 | 2.27E-03 < 0.05 | 3.16E-05 < 0.05 | 3.02E-11 < 0.05 | 1.81E-01 |
F27 | 2.23E-01 | 9.76E-10 < 0.05 | 3.02E-11 < 0.05 | 4.62E-10 < 0.05 | 2.58E-01 | 3.02E-11 < 0.05 | 2.03E-09 < 0.05 |
F28 | 4.86E-03 < 0.05 | 2.03E-09 < 0.05 | 3.02E-11 < 0.05 | 5.49E-01 | 2.77E-01 | 3.69E-11 < 0.05 | 7.06E-01 |
F29 | 2.89E-03 < 0.05 | 8.15E-11 < 0.05 | 3.02E-11 < 0.05 | 1.12E-01 | 1.34E-05 < 0.05 | 3.02E-11 < 0.05 | 5.56E-04 < 0.05 |
4.5. ADBO vs. Other Improved DBO Algorithms
5. Engineering Optimization Issues
5.1. Optimization of Robotic Gripper Performance
5.2. Three-Bar Truss Design Problem
5.3. Unmanned Aerial Vehicle Path Planning
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yu, X.; Jiang, N.; Wang, X.; Li, M. A hybrid algorithm based on grey wolf optimizer and differential evolution for UAV path planning. Expert Syst. Appl. 2023, 215, 119327. [Google Scholar] [CrossRef]
- Luo, X.; Du, B.; Gui, P.; Zhang, D.; Hu, W. A Hunger Games Search algorithm with opposition-based learning for solving multimodal medical image registration. Neurocomputing 2023, 540, 126204. [Google Scholar] [CrossRef]
- Shen, Y.; Zhang, C.; Gharehchopogh, F.S.; Mirjalili, S. An improved whale optimization algorithm based on multi-population evolution for global optimization and engineering design problems. Expert Syst. Appl. 2023, 215, 119269. [Google Scholar] [CrossRef]
- Yildirim, G. A novel grid-based many-objective swarm intelligence approach for sentiment analysis in social media. Neurocomputing 2022, 503, 173–188. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95-International Conference On Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948. [Google Scholar]
- Heidari, A.A.; Mirjalili, S.; Faris, H.; Aljarah, I.; Mafarja, M.; Chen, H. Harris hawks optimization: Algorithm and applications. Future Gener. Comput. Syst. 2019, 97, 849–872. [Google Scholar] [CrossRef]
- Mirjalili, S. Dragonfly algorithm: A new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput. Appl. 2016, 27, 1053–1073. [Google Scholar] [CrossRef]
- Xue, J.; Shen, B. Dung beetle optimizer: A new meta-heuristic algorithm for global optimization. J. Supercomput. 2023, 79, 7305–7336. [Google Scholar] [CrossRef]
- Zhu, F.; Li, G.; Tang, H.; Li, Y.; Lv, X.; Wang, X. Dung beetle optimization algorithm based on quantum computing and multi-strategy fusion for solving engineering problems. Expert Syst. Appl. 2024, 236, 121219. [Google Scholar] [CrossRef]
- Alamgeer, M.; Alruwais, N.; Alshahrani, H.M.; Mohamed, A.; Assiri, M. Dung Beetle Optimization with Deep Feature Fusion Model for Lung Cancer Detection and Classification. Cancers 2023, 15, 3982. [Google Scholar] [CrossRef]
- Storn, R.; Price, K. Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 1997, 11, 341–359. [Google Scholar] [CrossRef]
- Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey wolf optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [Google Scholar] [CrossRef]
- Mirjalili, S.; Lewis, A. The whale optimization algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [Google Scholar] [CrossRef]
- Arora, S.; Singh, S. Butterfly optimization algorithm: A novel approach for global optimization. Soft Comput. 2019, 23, 715–734. [Google Scholar] [CrossRef]
- Xue, J.; Shen, B. A novel swarm intelligence optimization approach: Sparrow search algorithm. Syst. Sci. Control. Eng. 2020, 8, 22–34. [Google Scholar] [CrossRef]
- Khishe, M.; Mosavi, M.R. Chimp optimization algorithm. Expert Syst. Appl. 2020, 149, 113338. [Google Scholar] [CrossRef]
- Abualigah, L.; Diabat, A.; Mirjalili, S.; Abd Elaziz, M.; Gandomi, A.H. The arithmetic optimization algorithm. Comput. Methods Appl. Mech. Eng. 2021, 376, 113609. [Google Scholar] [CrossRef]
- Chou, J.S.; Truong, D.N. A novel metaheuristic optimizer inspired by behavior of jellyfish in ocean. Appl. Math. Comput. 2021, 389, 125535. [Google Scholar] [CrossRef]
- Gobashy, M.; Abdelazeem, M. Metaheuristics inversion of self-potential anomalies. In Self-Potential Method: Theoretical Modeling and Applications in Geosciences; Springer: Berlin/Heidelberg, Germany, 2021; pp. 35–103. [Google Scholar]
- Wang, X.; Wei, Y.; Guo, Z.; Wang, J.; Yu, H.; Hu, B. A Sinh–Cosh-Enhanced DBO Algorithm Applied to Global Optimization Problems. Biomimetics 2024, 9, 271. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Huang, L.; Yang, S.; Li, D.; He, D.; Chan, S. A quasi-oppositional learning of updating quantum state and Q-learning based on the dung beetle algorithm for global optimization. Alex. Eng. J. 2023, 81, 469–488. [Google Scholar] [CrossRef]
- Chang, Z.; Luo, J.; Zhang, Y.; Teng, Z. A mixed strategy improved dung beetle optimization algorithm and its application. 2023; preprint. [Google Scholar] [CrossRef]
- Wolpert, D.H.; Macready, W.G. No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1997, 1, 67–82. [Google Scholar] [CrossRef]
- Abdelazeem, M.; Gobashy, M.; Khalil, M.H.; Abdrabou, M. A complete model parameter optimization from self-potential data using Whale algorithm. J. Appl. Geophys. 1997, 170, 103825. [Google Scholar] [CrossRef]
- Gharehchopogh, F.S.; Gholizadeh, H. A comprehensive survey: Whale Optimization Algorithm and its applications. Swarm Evol. Comput. 2019, 48, 1–24. [Google Scholar] [CrossRef]
- Pan, J.; Li, S.; Zhou, P. Improved Sin Algorithm Guided Dung Beetle Optimization Algorithm. Comput. Eng. Appl. 2023, 22, 92–110. [Google Scholar]
- Li, Y.; Sun, K.; Yao, Q.; Wang, L. A dual-optimization wind speed forecasting model based on deep learning and improved dung beetle optimization algorithm. Energy 2024, 286, 129604. [Google Scholar] [CrossRef]
- Kong, Q. NLOS Identification for UWB Positioning Based on IDBO and Convolutional Neural Networks. IEEE Access 2023, 11, 144705–144721. [Google Scholar] [CrossRef]
- Zilong, W.; Peng, S. A multi-strategy dung beetle optimization algorithm for optimizing constrained engineering problems. IEEE Access 2023, 11, 98805–98817. [Google Scholar] [CrossRef]
- Zhao, K.; Guo, D.; Sun, M.; Zhao, C.; Shuai, H. Short-term traffic flow prediction based on VMD and IDBO-LSTM. IEEE Access 2023, 11, 97072–97088. [Google Scholar] [CrossRef]
- Savsani, P.; Savsani, V. Passing vehicle search (PVS): A novel metaheuristic algorithm. Appl. Math. Model. 2016, 40, 3951–3978. [Google Scholar] [CrossRef]
- Phung, M.D.; Ha, Q.P. Safety-enhanced UAV path planning with spherical vector-based particle swarm optimization. Appl. Soft Comput. 2021, 107, 107376. [Google Scholar] [CrossRef]
Type | No. | Function | Minimum Value |
---|---|---|---|
Unimodal functions | 1 | Shifted and Rotated Bent Cigar Function | 100 |
2 | Shifted and Rotated Zakharov Function | 200 | |
3 | Shifted and Rotated Rosenbrock’s Function | 300 | |
4 | Shifted and Rotated Rastrigin’s Function | 400 | |
5 | Shifted and Rotated Expanded Scaffer’s F6 Function | 500 | |
Simple multimodal functions | 6 | Shifted and Rotated Lunacek Bi_Rastrigin Function | 600 |
7 | Shifted and Rotated Non-Continuous Rastrigin’s Function | 700 | |
8 | Shifted and Rotated Levy Function | 800 | |
9 | Shifted and Rotated Schwefel’s Function | 900 | |
Hybrid functions | 10 | Hybrid Function 1 (N=3) | 1000 |
11 | Hybrid Function 2 (N = 3) | 1100 | |
12 | Hybrid Function 3 (N = 3) | 1200 | |
13 | Hybrid Function 4 (N = 4) | 1300 | |
14 | Hybrid Function 5 (N = 4) | 1400 | |
15 | Hybrid Function 6 (N = 4) | 1500 | |
16 | Hybrid Function 6 (N = 5) | 1600 | |
17 | Hybrid Function 6 (N = 5) | 1700 | |
18 | Hybrid Function 6 (N = 5) | 1800 | |
19 | Hybrid Function 6 (N = 6) | 1900 | |
Composition functions | 20 | Composition Function 1 (N = 3) | 2000 |
21 | Composition Function 2 (N = 3) | 2100 | |
22 | Composition Function 3 (N = 4) | 2200 | |
23 | Composition Function 4 (N = 4) | 2300 | |
24 | Composition Function 5 (N = 5) | 2400 | |
25 | Composition Function 6 (N = 5) | 2500 | |
26 | Composition Function 7 (N = 6) | 2600 | |
27 | Composition Function 7 (N = 6) | 2700 | |
28 | Composition Function 9 (N = 3) | 2800 | |
29 | Composition Function 10 (N = 3) | 2900 | |
Search range: |
Algorithm | Population | Size Number of Iterations | Parameters |
---|---|---|---|
SSA | 30 | 500 | |
HHO | 30 | 500 | |
BOA | 30 | 500 | |
OMA | 30 | 500 | |
WOA | 30 | 500 | |
SCA | 30 | 500 | |
DBO | 30 | 500 | |
ADBO | 30 | 500 |
Algorithms | Optimum Variables | Force Difference | Ranking | ||||||
---|---|---|---|---|---|---|---|---|---|
SSA | 1.50E+02 | 1.31E+02 | 1.00E+02 | 1.92E+01 | 3.38E+01 | 1.00E+02 | 1.97E+00 | 5.35E+00 | 7 |
HHO | 9.95E+01 | 3.77E+01 | 1.01E+02 | 0.00E+00 | 1.00E+01 | 1.00E+02 | 1.20E+00 | 1.51E-16 | 4 |
BOA | 1.50E+02 | 1.50E+02 | 1.00E+02 | 0.00E+00 | 1.50E+02 | 1.00E+02 | 3.14E+00 | 8.58E+00 | 8 |
OMA | 1.49E+02 | 1.42E+02 | 2.09E+02 | 6.35E+00 | 1.76E+02 | 1.29E+02 | 2.66E+00 | 3.33E+00 | 6 |
WOA | 1.00E+02 | 3.82E+01 | 1.00E+02 | 0.00E+00 | 1.03E+01 | 1.00E+02 | 1.08E+00 | 1.45E-16 | 3 |
SCA | 9.10E+01 | 2.56E+01 | 1.60E+02 | 0.00E+00 | 1.81E+01 | 1.00E+02 | 1.75E+00 | 2.54E-16 | 5 |
DBO | 9.37E+01 | 3.19E+01 | 2.00E+02 | 0.00E+00 | 1.00E+01 | 1.00E+02 | 1.70E+00 | 1.19E-16 | 2 |
ADBO | 1.00E+02 | 3.82E+01 | 2.00E+02 | 0.00E+00 | 1.96E+01 | 1.00E+02 | 1.61E+00 | 6.54E-19 | 1 |
SSA | HHO | BOA | OMA | WOA | SCA | DBO | ADBO | |
---|---|---|---|---|---|---|---|---|
Mean | 2.90E+00 | 1.11E+01 | 2.64E+104 | 3.67E+00 | 9.20E-02 | 2.29E-16 | 1.81E-16 | 1.36E-16 |
Std | 4.12E+00 | 3.99E+02 | 2.19E+209 | 5.02E-01 | 2.54E-01 | 7.14E-33 | 1.80E-32 | 5.62E+00 |
Min | 7.27E-17 | 1.61E-16 | 8.58E+00 | 4.78E-01 | 7.27E-17 | 9.03E-17 | 7.27E-17 | 4.37E-19 |
Max | 6.67E+00 | 7.91E+01 | 2.19E+105 | 4.53E+00 | 2.76E+00 | 4.97E-16 | 5.43E-16 | 6.90E+00 |
Algorithms | Optimum Variables | Best Value | Ranking | |
---|---|---|---|---|
Variable 1 | Variable 2 | |||
SSA | 0.76273 | 0.47885 | 264.3961 | 7 |
HHO | 0.7771 | 0.44198 | 263.9982 | 3 |
BOA | 0.76705 | 0.45301 | 264.2257 | 5 |
OMA | 0.78825 | 0.40944 | 263.8959 | 2 |
WOA | 0.76578 | 0.4768 | 264.3125 | 6 |
SCA | 0.77043 | 0.46517 | 264.4205 | 8 |
DBO | 0.77599 | 0.44236 | 264.0209 | 4 |
ADBO | 0.78867 | 0.40824 | 263.8958 | 1 |
SSA | HHO | BOA | OMA | WOA | SCA | DBO | ADBO | |
---|---|---|---|---|---|---|---|---|
Mean | 264.1369 | 264.0372 | 274.8986 | 263.8959 | 263.9758 | 268.5568 | 263.8994 | 263.8959 |
Std | 1.53E-06 | 2.99E-02 | 4.09E+01 | 2.79E-08 | 6.69E-08 | 6.43E+01 | 1.86E-05 | 1.96E-04 |
Min | 263.8958 | 263.8963 | 265.7236 | 263.8958 | 263.8958 | 263.964 | 263.8958 | 263.8958 |
Max | 264.4213 | 264.6211 | 282.8427 | 263.8967 | 264.4157 | 282.8425 | 264.1727 | 263.9175 |
SSA | HHO | BOA | OMA | WOA | SCA | DBO | ADBO | ||
---|---|---|---|---|---|---|---|---|---|
Scene1 | Mean | 1.80E+11 | 7.20E+11 | 8.40E+11 | 8.40E+11 | 1.35E+04 | 7.80E+11 | 1.35E+04 | 1.33E+04 |
Std | 1.34E+23 | 1.34E+23 | 5.21E+22 | 5.21E+22 | 3.39E+06 | 9.68E+22 | 2.84E+06 | 1.64E+06 | |
Min | 1.07E+04 | 1.15E+04 | 1.70E+04 | 9.44E+03 | 8.61E+03 | 1.65E+04 | 1.05E+04 | 1.10E+04 | |
Ranking | 4 | 5 | 8 | 7 | 2 | 6 | 3 | 1 | |
Scene2 | Mean | 1.80E+11 | 6.30E+11 | 9.00E+11 | 9.00E+11 | 1.30E+04 | 8.10E+11 | 1.34E+04 | 1.26E+04 |
Std | 1.34E+23 | 1.76E+23 | 7.05E+04 | 6.57E+02 | 4.01E+06 | 7.54E+22 | 1.33E+06 | 1.74E+06 | |
Min | 1.07E+04 | 8.73E+03 | 9.00E+11 | 9.00E+11 | 8.23E+03 | 1.28E+04 | 1.18E+04 | 9.91E+03 | |
Ranking | 4 | 5 | 8 | 7 | 2 | 6 | 3 | 1 | |
Scene3 | Mean | 3.00E+10 | 7.59E+03 | 4.50E+11 | 7.06E+03 | 6.96E+03 | 1.06E+04 | 3.00E+10 | 6.75E+03 |
Std | 2.70E+22 | 2.71E+05 | 2.09E+23 | 7.65E+03 | 2.10E+03 | 2.40E+06 | 2.70E+22 | 2.70E+07 | |
Min | 7.21E+03 | 7.05E+03 | 8.45E+03 | 6.91E+03 | 6.84E+03 | 8.30E+03 | 7.27E+03 | 6.57E+03 | |
Ranking | 6 | 4 | 8 | 3 | 2 | 5 | 7 | 1 | |
Scene4 | Mean | 3.00E+11 | 1.44E+12 | 1.80E+12 | 1.80E+12 | 1.50E+04 | 1.80E+12 | 1.44E+04 | 1.32E+04 |
Std | 4.66E+23 | 5.36E+23 | 3.28E+05 | 9.56E+02 | 1.25E+06 | 1.37E+07 | 2.57E+06 | 1.48E+06 | |
Min | 1.18E+04 | 1.37E+04 | 1.80E+12 | 1.80E+12 | 1.29E+04 | 1.80E+12 | 1.16E+04 | 1.13E+04 | |
Ranking | 4 | 5 | 7 | 6 | 3 | 8 | 2 | 1 | |
Scene5 | Mean | 3.00E+11 | 6.90E+11 | 1.14E+12 | 3.30E+11 | 3.00E+10 | 3.90E+11 | 1.14E+04 | 9.94E+03 |
Std | 1.86E+23 | 1.50E+23 | 2.76E+23 | 1.95E+23 | 2.70E+22 | 2.06E+23 | 1.64E+06 | 2.75E+06 | |
Min | 7.63E+03 | 1.01E+04 | 1.17E+04 | 7.11E+03 | 6.83E+03 | 9.64E+03 | 8.89E+03 | 8.07E+03 | |
Ranking | 4 | 7 | 8 | 5 | 3 | 6 | 2 | 1 | |
Scene6 | Mean | 7.00E+03 | 8.67E+03 | 9.00E+10 | 6.73E+03 | 6.72E+03 | 8.56E+03 | 8.26E+03 | 6.69E+03 |
Std | 3.38E+04 | 1.27E+06 | 7.54E+22 | 1.34E+04 | 1.93E+04 | 7.12E+05 | 5.80E+05 | 1.71E+02 | |
Min | 6.66E+03 | 6.67E+03 | 8.52E+03 | 6.56E+03 | 6.55E+03 | 7.10E+03 | 6.99E+03 | 6.59E+03 | |
Ranking | 4 | 7 | 8 | 3 | 2 | 6 | 5 | 1 | |
Scene7 | Mean | 6.97E+03 | 7.96E+03 | 6.00E+10 | 6.72E+03 | 6.65E+03 | 7.89E+03 | 7.71E+03 | 6.62E+03 |
Std | 1.49E+04 | 1.07E+06 | 5.21E+22 | 5.98E+03 | 4.87E+03 | 1.99E+05 | 3.09E+05 | 7.89E+04 | |
Min | 6.77E+03 | 6.77E+03 | 9.27E+03 | 6.57E+03 | 6.55E+03 | 7.19E+03 | 6.80E+03 | 6.58E+03 | |
Ranking | 4 | 7 | 8 | 3 | 2 | 6 | 5 | 1 | |
Scene8 | Mean | 6.00E+10 | 3.60E+11 | 5.10E+11 | 6.75E+03 | 6.88E+03 | 3.00E+10 | 9.02E+03 | 6.69E+03 |
Std | 1.08E+23 | 5.36E+23 | 7.09E+23 | 6.21E+03 | 2.42E+04 | 2.70E+22 | 5.79E+05 | 2.71E+04 | |
Min | 6.86E+03 | 7.07E+03 | 9.43E+03 | 6.63E+03 | 6.65E+03 | 7.87E+03 | 7.61E+03 | 6.60E+03 | |
Ranking | 6 | 7 | 8 | 2 | 3 | 5 | 4 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Zhang, Y.; Zheng, C.; Feng, S.; Yu, H.; Hu, B.; Xie, Z. An Adaptive Spiral Strategy Dung Beetle Optimization Algorithm: Research and Applications. Biomimetics 2024, 9, 519. https://doi.org/10.3390/biomimetics9090519
Wang X, Zhang Y, Zheng C, Feng S, Yu H, Hu B, Xie Z. An Adaptive Spiral Strategy Dung Beetle Optimization Algorithm: Research and Applications. Biomimetics. 2024; 9(9):519. https://doi.org/10.3390/biomimetics9090519
Chicago/Turabian StyleWang, Xiong, Yi Zhang, Changbo Zheng, Shuwan Feng, Hui Yu, Bin Hu, and Zihan Xie. 2024. "An Adaptive Spiral Strategy Dung Beetle Optimization Algorithm: Research and Applications" Biomimetics 9, no. 9: 519. https://doi.org/10.3390/biomimetics9090519
APA StyleWang, X., Zhang, Y., Zheng, C., Feng, S., Yu, H., Hu, B., & Xie, Z. (2024). An Adaptive Spiral Strategy Dung Beetle Optimization Algorithm: Research and Applications. Biomimetics, 9(9), 519. https://doi.org/10.3390/biomimetics9090519