Improved Osprey Optimization Algorithm Based on Two-Color Complementary Mechanism for Global Optimization and Engineering Problems
Abstract
:1. Introduction
2. OOA
2.1. Population Initialization
2.2. Positioning and Fishing
2.3. Hunting and Feeding
3. IOOA
3.1. L-Good Point Set Initialization Strategy
3.1.1. Good Point Set Method
3.1.2. Logistic Chaotic Map
3.1.3. L-Good Point Set Method
3.2. A Two-Color Complementary Strategy Based on the Four-Color Theorem
3.2.1. Stock Grouping Adjustment Mechanism
3.2.2. Two-Color Complementary Mechanism
3.3. Optimize Spiral Search Strategy
3.4. Firefly Spoiler Strategy
3.5. OOA and IOOA Basic Process
Algorithm 1. OOA steps can be summarized as follows. |
Input parameters: Osprey population size N and maximum number of iterations . |
Output parameters: best position , best fitness value |
(1) Initialization phase |
Initial population of fish eagles initialized using Equation (1). |
(2) Algorithm flow: |
The iteration begins: |
while (t < ) |
Initialize the array of fitness values. |
for i = 1: |
Phase 1: Position identification and hunting the fish |
Update fish positions set for the ith OOA member using Equation (2). |
Determine the selected fish by the ith osprey at random. |
Calculate new position of the ith OOA member based on the first phase of OOA using Equation (3). |
Check the boundary conditions for the new position of OOA members using Equation (4). |
Update the ith OOA member using Equation (5). |
Phase 2: Carrying the fish to the suitable position |
Calculate new position of the ith OOA member based on the second phase of OOA using Equation (6). |
Check the boundary conditions for the new position of OOA members using Equation (7). |
Update the ith OOA member using Equation (8). |
end |
for i = 1: |
Get the current new location; |
If the new location is better than before, update it; |
End for |
t = t + l; |
Get the current new location; |
If the new location is better than before, update it; |
End while |
Algorithm 2. IOOA steps can be summarized as follows. |
Input parameters: Osprey population size N, number of populations in the red group , number of populations in the green group , number of populations in the blue group , number of populations in the orange group , and maximum number of iterations . |
Output parameters: best position , best fitness value |
(1) Initialization phase |
The initial population of the fish eagle was initialized with the L-good point set using Equations (11) and (12), and then its initialized population was randomly grouped, and the red group of populations, the green group of populations, the blue group of populations, and the orange group of populations were selected according to Equations (13)–(16). |
(2) Algorithm flow: |
The iteration begins: |
while (t < ) |
Initialize the array of fitness values. |
The exchange probability is calculated dynamically for each generation. According to equation ( |
Setting the minimum exchange probability threshold to prevent the probability from being too small. |
If |
end |
Blue stock location update |
for i = 1: |
Using Equation (5) update the blue population’s location; |
Using Equation (8) update the blue population’s location; |
end |
stock location update |
for i = 1: |
Using Equation (5) update the blue population’s location; |
Using Equations (18) and (19) update the blue population’s location; |
end |
stock location update |
for i = 1: |
Using Equation (23) update the blue population’s location; |
Using Equation (8) update the blue population’s location; |
end |
stock location update |
for i = 1: |
Using Equation (27) update the blue population’s location; |
Using Equation (30) update the blue population’s location; |
end |
for i = 1: |
Get the current new location; |
If the new location is better than before, update it; |
End for |
t = t + l; |
End while |
3.6. Complexity Analysis
4. Experimental Simulation and Result Analysis
4.1. Selection of Benchmark Function and Experimental Setup
4.2. Convergence Analysis
4.2.1. Convergence Analysis of IOOA on Benchmark Test Set
4.2.2. Convergence Analysis of IOOA on CEC2020 Test Set
4.2.3. Convergence Analysis of IOOA on CEC2022 Test Set
4.3. Stability Analysis
4.3.1. IOOA Stability Analysis on Benchmark Test Sets
4.3.2. IOOA Stability Analysis on CEC2020 Test Sets
4.3.3. IOOA Stability Analysis on CEC2022 Test Sets
4.4. Nonparametric Test
4.4.1. IOOA Nonparametric Analysis on Benchmark Test Sets
4.4.2. IOOA Nonparametric Analysis on CEC2020 Test Sets
4.4.3. IOOA Nonparametric Analysis on CEC2022 Test Sets
5. Engineering Applications of the IOOA
5.1. Extension/Compression Spring Design
5.2. Optimized Design Problems for Welded Beams
5.3. Gear Train Optimization Design
6. IOOA Performance Analysis and Conclusions
6.1. IOOA Performance Analysis
6.2. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shadhik, M.; Senthil Kumaran, M. Meta Heuristic Optimization Algorithm Based Rectifier Control in Switched Reluctance Generator. IETE J. Res. 2023, 1–23. [Google Scholar] [CrossRef]
- Fogel Lawrence, J.; Owens Alvin, J.; Walsh Michael, J. Artificial Intelligence through Simulated Evolution; Wiley-IEEE Press: Hoboken, NJ, USA, 1998; pp. 227–296. [Google Scholar]
- Holland, J.H. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence; MIT Press: Cambridge, MA, USA, 1992; p. 211. [Google Scholar] [CrossRef]
- Storn, R.; Price, K. Differential Evolution–A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces. J. Glob. Optim. 1997, 11, 341–359. [Google Scholar] [CrossRef]
- Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P. Optimization by Simulated Annealing. Science 1983, 220, 671–680. [Google Scholar] [CrossRef] [PubMed]
- Tanyildizi, E.; Demir, G. Golden Sine Algorithm: A Novel Math-Inspired Algorithm. Adv. Electr. Comput. Eng. 2017, 35, 71–78. [Google Scholar] [CrossRef]
- Shehadeh, H.A. Chernobyl Disaster Optimizer (CDO): A Novel Meta-Heuristic Method for Global Optimization. Neural Comput. Appl. 2023, 35, 10733–10749. [Google Scholar] [CrossRef]
- Xue, J.; Shen, B. A Novel Swarm Intelligence Optimization Approach: Sparrow Search Algorithm. Syst. Sci. Control. Eng. 2020, 8, 22–34. [Google Scholar] [CrossRef]
- Geem, Z.W.; Kim, J.H.; Loganathan, G.V. A New Heuristic Optimization Algorithm: Harmony Search. Simulation 2001, 76, 60–68. [Google Scholar] [CrossRef]
- He, S.; Wu, Q.H.; Saunders, J.R. A Novel Group Search Optimizer Inspired by Animal Behavioural Ecology. In Proceedings of the 2006 IEEE International Conference on Evolutionary Computation, Vancouver, BC, Canada, 16–21 September 2006. [Google Scholar] [CrossRef]
- Das, B.; Mukherjee, V.; Das, D. Student Psychology Based Optimization Algorithm: A New Population Based Optimization Algorithm for Solving Optimization Problems. Adv. Eng. Softw. 2020, 146, 102804. [Google Scholar] [CrossRef]
- Faridmehr, I.; Nehdi Moncef, L.; Davoudkhani, I.; Poolad, A. Mountaineering Team-Based Optimization: A Novel Human-Based Metaheuristic Algorithm. Mathematics 2023, 11, 1273. [Google Scholar] [CrossRef]
- Eberhart, R.; Kennedy, J. A New Optimizer Using Particle Swarm Theory. In Proceedings of the Sixth International Symposium on Micro Machine and Human Science, MHS’95, Nagoya, Japan, 4–6 November 2002. [Google Scholar] [CrossRef]
- Dorigo, M.; Maniezzo, V.; Colorni, A. Ant System: Optimization by a Colony of Cooperating Agents. IEEE Trans. Syst. Man Cybern. Part B Cybern. 1996, 26, 29–41. [Google Scholar] [CrossRef]
- Yang, X.-S. A New Metaheuristic Bat-Inspired Algorithm. arXiv 2010, arXiv:1004.4170. [Google Scholar]
- Reza Naji, H.; Shadravan, S.; Mousa Jafarabadi, H.; Momeni, H. Accelerating Sailfish Optimization Applied to Unconstrained Optimization Problems on Graphical Processing Unit. Engineering Science and Technology. Int. J. 2022, 32, 101077. [Google Scholar] [CrossRef]
- Jia, H.; Peng, X.; Lang, C. Remora Optimization Algorithm. Expert Syst. Appl. 2021, 185, 115665. [Google Scholar] [CrossRef]
- Abdelhamid, A.A.; Towfek, S.K.; Khodadadi, N.; Alhussan, A.A.; Khafaga, D.S.; Eid, M.M.; Ibrahim, A. Waterwheel Plant Algorithm: A Novel Metaheuristic Optimization Method. Processes 2023, 11, 1502. [Google Scholar] [CrossRef]
- Dehghani, M.; Trojovský, P. Osprey Optimization Algorithm: A New Bio-Inspired Metaheuristic Algorithm for Solving Engineering Optimization Problems. Front. Mech. Eng. 2023, 8, 1126450. [Google Scholar] [CrossRef]
- Yuan, Y.; Yang, Q.; Ren, J.; Mu, X.; Wang, Z.; Shen, Q.; Zhao, W. Attack-Defense Strategy Assisted Osprey Optimization Algorithm for PEMFC Parameters Identification. Renew. Energy 2024, 225, 120211. [Google Scholar] [CrossRef]
- Wen, X.; Liu, X.; Yu, C.; Gao, H.; Wang, J.; Liang, Y.; Yu, J.; Bai, Y.; Wen, X.; Liu, X.; et al. IOOA: A Multi-Strategy Fusion Improved Osprey Optimization Algorithm for Global Optimization. Electron. Res. Arch. 2024, 32, 2033–2074. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, P. Research on Reactive Power Optimization Based on Hybrid Osprey Optimization Algorithm. Energies 2023, 16, 7101. [Google Scholar] [CrossRef]
- Li, L.; Huang, X.; Qian, S.; Li, Z.; Li, S.; Mansour, R. Fuzzy Hybrid Coyote Optimization Algorithm for Image Thresholding. Comput. Mater. Contin. 2022, 72, 3073–3090. [Google Scholar] [CrossRef]
- Liu, D.; Zhang, S.; Wang, B.; Li, Z. Seagull Algorithm Based on Good Point Set and Dual Hybrid Strategy. In Proceedings of the International Conference on Cloud Computing, Performance Computing, and Deep Learning (CCPCDL 2023), Huzhou, China, 17–19 February 2023; Volume 12712, pp. 79–84. [Google Scholar]
- Kurapov, S.; Davidovsky, M. Algorithmic Methods of Finite Discrete Structures. The Four Color Theorem. Theory, Methods, Algorithms. arXiv 2024, arXiv:2405.05270. [Google Scholar]
- Javaheri, D.; Gorgin, S.; Lee, J.A.; Masdari, M. An Improved Discrete Harris Hawk Optimization Algorithm for Efficient Workflow Scheduling in Multi-Fog Computing. Sustain. Comput. Inform. Syst. 2022, 36, 100787. [Google Scholar] [CrossRef]
- Wei, X.; Zhang, Y.; Song, H.; Qin, H.; Zhao, G. Research on Evacuation Path Planning Based on Improved Sparrow Search Algorithm. CMES-Comput. Model. Eng. Sci. 2024, 139, 1295–1316. [Google Scholar] [CrossRef]
- Ouyang, C.; Qiu, Y.; Zhu, D. Adaptive Spiral Flying Sparrow Search Algorithm. Sci. Program. 2021, 2021, e6505253. [Google Scholar] [CrossRef]
- Khare, P.; Raju, M.; Gupta, S.C.; Shukla, H. Liberalized Automatic Generation Control of Interconnected Thermal-Hydro-Gas System Using Firefly Algorithm Optimized PID Controller. Int. J. Numer. Model. Electron. Netw. Devices Fields 2024, 37, e3136. [Google Scholar] [CrossRef]
- Langenberg, B.; Janczyk, M.; Koob, V.; Kliegl, R.; Mayer, A. A Tutorial on Using the Paired t Test for Power Calculations in Repeated Measures ANOVA with Interactions. Behav. Res. 2023, 55, 2467–2484. [Google Scholar] [CrossRef] [PubMed]
- Hernanda, Y.; Kaporina, A.; Nurlaily, D. AnalisisTingkat Pengangguran Provinsi Kalimantan Timur Menggunakan Sign Test, Wilcoxon Test Dan Paired Sample t-Test. Semin. Nas. Teknol. Inf. Dan Mat. Semiot. 2023, 2, 94–102. [Google Scholar]
- Vigya; Raj, S.; Shiva, C.K.; Vedik, B.; Mahapatra, S.; Mukherjee, V. A Novel Chaotic Chimp Sine Cosine Algorithm Part-I: For Solving Optimization Problem. Chaos Solitons Fractals 2023, 173, 113672. [Google Scholar] [CrossRef]
Algorithm | Parameter |
---|---|
ROA | ; |
SFO | ; |
CDO | ; |
BA | , ; |
GSA | , ; |
WWPA | , ; |
OOA | ; |
SOOA | ; |
ADSOOA | , ; |
IOOA | ,; |
No. | Function | dim | Range | Fmin |
---|---|---|---|---|
1 | Rotated Ackley’s Function | 100 | [−100, 100] | 0 |
2 | Schwefel’s Problem 1.2 with Noise | 100 | [−50, 50] | 0 |
3 | Rotated Hybrid Composition Function with Noise | 2 | [−65.536, 65.536] | 0 |
4 | Hybrid Composition Function | 4 | [−5, 5] | 0 |
5 | Composition Function No. 4 | 6 | [0, 1] | −3.32 |
6 | BOOTH FUNCTION | 2 | [−10, 10] | 0 |
7 | ROSENBROCK FUNCTION | 100 | [−5, 10] | 0 |
8 | COLVILLE FUNCTION | 4 | [−10, 10] | 0 |
No. | Functions | fopt | |
---|---|---|---|
Unimodal function | 9 | Shifted and Rotated Bent Cigar Function | 100 |
Basic functions | 10 | Shifted and Rotated Schwefel’s Function | 1100 |
11 | Shifted and Rotated Lunacek bi-Rastrigin Function | 700 | |
12 | Expanded Rosenbrock’s plus Griewangk’s Function | 1900 | |
Hybrid functions | 13 | Hybrid Function 1 (N = 3) | 1700 |
14 | Hybrid Function 2 (N = 4) | 1600 | |
15 | Hybrid Function 3 (N = 5) | 2100 | |
Composition functions | 16 | Composition Function 1 (N = 3) | 2200 |
17 | Composition Function 2 (N = 4) | 2400 | |
18 | Composition Function 3 (N = 5) | 2500 | |
Search range: [−100, 100] |
No. | Functions | fopt | |
---|---|---|---|
Unimodal function | 19 | Shifted and full-rotated Zakharov function | 300 |
Basic functions | 20 | Shifted and full-rotated Rosenbrock’s function | 400 |
21 | Shifted and full-rotated expanded Schaffer’s f6 function | 600 | |
22 | Shifted and full-rotated noncontinuous Rastrigin’s function | 800 | |
23 | Shifted and full-rotated levy function | 900 | |
Hybrid functions | 24 | Hybrid Function 1 (N = 3) | 1800 |
25 | Hybrid Function 2 (N = 6) | 2000 | |
26 | Hybrid Function 3 (N = 5) | 2200 | |
Composition functions | 27 | Composition Function 1 (N = 5) | 2300 |
28 | Composition Function 2 (N = 4) | 2400 | |
29 | Composition Function 3 (N = 5) | 2600 | |
30 | Composition Function 4 (N = 6) | 2700 | |
Search range: [−100, 100] |
Function | N | T | Dim |
---|---|---|---|
Benchmark functions | 50 | 1000 | [0, 100] |
CEC2020 | 50 | 2000 | 20 |
CEC2022 | 50 | 10,000 | 20 |
Function | ROA | SFO | CDO | BA | GSA | WWPA | OOA | SOOA | ADSOOA | IOOA | |
---|---|---|---|---|---|---|---|---|---|---|---|
F1 | Best | 2.35 × 10−06 | 4.45 × 10+00 | 2.50 × 10+01 | 3.41 × 10+04 | 1.04 × 10−06 | 1.57 × 10−01 | 0.00 × 10+00 | 1.35 × 10−02 | 1.63 × 10+00 | 7.70 × 10−30 |
Mean | 1.68 × 10−04 | 1.50 × 10+01 | 2.50 × 10+01 | 5.49 × 10+04 | 1.57 × 10−04 | 5.77 × 10+00 | 1.45 × 10−08 | 7.94 × 10−02 | 4.75 × 10+00 | 3.68 × 10−10 | |
Std | 1.40 × 10−04 | 5.85 × 10+00 | 0.00 × 10+00 | 1.34 × 10+04 | 3.92 × 10−04 | 5.79 × 10+00 | 4.57 × 10−08 | 3.25 × 10−02 | 4.58 × 10+00 | 1.16 × 10−09 | |
Iter | 866 | 1000 | 557 | 1000 | 916 | 18 | 185 | 1000 | 475 | 976 | |
F2 | Best | 1.00 × 10−09 | 3.10 × 10−03 | 1.16 × 10+00 | 3.19 × 10+06 | 6.67 × 10−09 | 6.74 × 10−04 | 4.71 × 10−33 | 7.90 × 10−05 | 2.10 × 10−02 | 4.71 × 10−33 |
Mean | 1.87 × 10−06 | 2.04 × 10−01 | 1.27 × 10+00 | 2.68 × 10+07 | 4.98 × 10−07 | 9.42 × 10−02 | 1.35 × 10−13 | 6.62 × 10−04 | 3.13 × 10−02 | 7.32 × 10−15 | |
Std | 2.98 × 10−06 | 2.74 × 10−01 | 8.16 × 10−02 | 1.63 × 10+07 | 7.00 × 10−07 | 1.59 × 10−01 | 4.18 × 10−13 | 4.25 × 10−04 | 1.51 × 10−02 | 1.94 × 10−14 | |
Iter | 918 | 985 | 848 | 1000 | 706 | 3 | 92 | 1000 | 249 | 731 | |
F3 | Best | 9.98 × 10−01 | 1.99 × 10+00 | 9.90 × 10+00 | 2.98 × 10+00 | 9.98 × 10−01 | 9.98 × 10−01 | 9.98 × 10−01 | 9.98 × 10−01 | 9.98 × 10−01 | 9.98 × 10−01 |
Mean | 9.98 × 10−01 | 8.13 × 10+00 | 1.23 × 10+01 | 9.34 × 10+00 | 9.98 × 10−01 | 3.51 × 10+00 | 1.69 × 10+00 | 2.88 × 10+00 | 1.61 × 10+00 | 9.98 × 10−01 | |
Std | 2.03 × 10−11 | 4.55 × 10+00 | 1.21 × 10+00 | 6.43 × 10+00 | 5.20 × 10−10 | 2.98 × 10+00 | 8.17 × 10−01 | 1.99 × 10+00 | 5.01 × 10−01 | 1.30 × 10−15 | |
Iter | 572 | 945 | 1 | 183 | 504 | 220 | 342 | 326 | 871 | 906 | |
F4 | Best | 3.11 × 10−04 | 3.31 × 10−04 | 3.12 × 10−04 | 1.02 × 10−03 | 3.12 × 10−04 | 1.82 × 10−03 | 3.12 × 10−04 | 4.01 × 10−04 | 3.07 × 10−04 | 3.08 × 10−04 |
Mean | 4.50 × 10−04 | 8.99 × 10−03 | 3.21 × 10−04 | 4.85 × 10−03 | 3.58 × 10−04 | 1.25 × 10−02 | 4.74 × 10−04 | 2.64 × 10−03 | 3.08 × 10−04 | 3.10 × 10−04 | |
Std | 2.08 × 10−04 | 1.03 × 10−02 | 6.43 × 10−06 | 5.49 × 10−03 | 6.83 × 10−05 | 9.24 × 10−03 | 2.56 × 10−04 | 3.16 × 10−03 | 6.70 × 10−07 | 1.81 × 10−06 | |
Iter | 650 | 619 | 504 | 999 | 918 | 303 | 456 | 1000 | 949 | 1000 | |
F5 | Best | −3.20 × 10+00 | −3.23 × 10+00 | −3.29 × 10+00 | −3.32 × 10+00 | −3.27 × 10+00 | −1.83 × 10+00 | −2.96 × 10+00 | −3.09 × 10+00 | −3.32 × 10+00 | −3.32 × 10+00 |
Mean | −2.95 × 10+00 | −3.04 × 10+00 | −3.23 × 10+00 | −3.24 × 10+00 | −3.11 × 10+00 | −1.41 × 10+00 | −2.52 × 10+00 | −2.73 × 10+00 | −3.25 × 10+00 | −3.32 × 10+00 | |
Std | 3.42 × 10−01 | 1.44 × 10−01 | 5.55 × 10−02 | 5.74 × 10−02 | 1.41 × 10−01 | 2.43 × 10−01 | 3.08 × 10−01 | 2.94 × 10−01 | 7.35 × 10−02 | 3.74 × 10−06 | |
Iter | 685 | 982 | 168 | 824 | 922 | 234 | 155 | 67 | 996 | 997 | |
F6 | Best | 4.31 × 10−06 | 3.05 × 10−10 | 3.43 × 10−05 | 1.41 × 10−11 | 7.95 × 10−06 | 1.20 × 10−01 | 6.25 × 10−14 | 2.35 × 10−26 | 3.83 × 10−14 | 0.00 × 10+00 |
Mean | 2.00 × 10−01 | 9.43 × 10−09 | 2.31 × 10−04 | 1.28 × 10−10 | 6.16 × 10−05 | 1.21 × 10+00 | 3.54 × 10−03 | 4.94 × 10−04 | 2.10 × 10−06 | 2.78 × 10−16 | |
Std | 6.32 × 10−01 | 9.06 × 10−09 | 1.65 × 10−04 | 1.51 × 10−10 | 4.57 × 10−05 | 7.25 × 10−01 | 1.07 × 10−02 | 1.56 × 10−03 | 5.01 × 10−06 | 8.81 × 10−16 | |
Iter | 598 | 785 | 524 | 321 | 789 | 67 | 149 | 340 | 912 | 765 | |
F7 | Best | 1.61 × 10−06 | 4.85 × 10+01 | 4.69 × 10+01 | 4.24 × 10+01 | 1.62 × 10−06 | 9.33 × 10−01 | 0.00 × 10+00 | 4.85 × 10+01 | 4.84 × 10+01 | 1.23 × 10−13 |
Mean | 1.25 × 10−04 | 4.85 × 10+01 | 4.71 × 10+01 | 4.47 × 10+01 | 1.20 × 10−04 | 6.94 × 10+01 | 2.43 × 10+01 | 4.85 × 10+01 | 4.85 × 10+01 | 3.09 × 10+01 | |
Std | 1.75 × 10−04 | 9.51 × 10−04 | 9.41 × 10−02 | 1.35 × 10+00 | 1.58 × 10−04 | 5.70 × 10+01 | 2.56 × 10+01 | 2.50 × 10−03 | 3.28 × 10−02 | 2.32 × 10+01 | |
Iter | 652 | 578 | 308 | 1000 | 530 | 66 | 185 | 1000 | 935 | 982 | |
F8 | Best | 2.03 × 10−06 | 9.18 × 10−05 | 2.27 × 10−02 | 4.54 × 10−06 | 1.97 × 10−07 | 2.13 × 10−01 | 0.00 × 10+00 | 6.94 × 10−03 | 2.84 × 10−07 | 0.00 × 10+00 |
Mean | 2.50 × 10−04 | 4.20 × 10+00 | 1.35 × 10−01 | 6.27 × 10−01 | 1.64 × 10−05 | 6.08 × 10+00 | 4.36 × 10−05 | 2.14 × 10+00 | 6.98 × 10−03 | 1.17 × 10−13 | |
Std | 3.40 × 10−04 | 3.27 × 10+00 | 1.52 × 10−01 | 1.27 × 10+00 | 3.52 × 10−05 | 7.71 × 10+00 | 1.38 × 10−04 | 2.31 × 10+00 | 1.23 × 10−02 | 3.42 × 10−13 | |
Iter | 648 | 464 | 218 | 992 | 705 | 13 | 766 | 1000 | 967 | 895 |
Function | ROA | SFO | CDO | BA | GSA | WWPA | OOA | SOOA | ADSOOA | IOOA | |
---|---|---|---|---|---|---|---|---|---|---|---|
F9 | Best | 7.39 × 10+09 | 9.26 × 10+09 | 2.11 × 10+10 | 1.39 × 10+10 | 1.08 × 10+10 | 4.05 × 10+10 | 1.71 × 10+10 | 1.68 × 10+10 | 1.01 × 10+10 | 2.63 × 10+05 |
Mean | 1.93 × 10+10 | 1.88 × 10+10 | 2.12 × 10+10 | 2.37 × 10+10 | 1.75 × 10+10 | 4.28 × 10+10 | 2.60 × 10+10 | 2.40 × 10+10 | 1.47 × 10+10 | 5.58 × 10+07 | |
Std | 4.87 × 10+09 | 6.44 × 10+09 | 1.40 × 10+08 | 7.38 × 10+09 | 5.85 × 10+09 | 1.20 × 10+09 | 6.91 × 10+09 | 4.24 × 10+09 | 2.50 × 10+09 | 1.16 × 10+08 | |
Iter | 861 | 1943 | 697 | 2000 | 1953 | 911 | 462 | 572 | 1986 | 1999 | |
F10 | Best | 4.10 × 10+03 | 4.79 × 10+03 | 4.35 × 10+03 | 3.46 × 10+03 | 4.63 × 10+03 | 5.83 × 10+03 | 4.54 × 10+03 | 4.70 × 10+03 | 3.79 × 10+03 | 2.80 × 10+03 |
Mean | 4.95 × 10+03 | 5.39 × 10+03 | 4.84 × 10+03 | 4.30 × 10+03 | 5.14 × 10+03 | 6.16 × 10+03 | 5.00 × 10+03 | 5.31 × 10+03 | 4.26 × 10+03 | 3.23 × 10+03 | |
Std | 6.11 × 10+02 | 4.12 × 10+02 | 2.73 × 10+02 | 4.38 × 10+02 | 4.44 × 10+02 | 2.63 × 10+02 | 3.42 × 10+02 | 4.22 × 10+02 | 4.00 × 10+02 | 3.45 × 10+02 | |
Iter | 766 | 610 | 493 | 1367 | 1529 | 226 | 1396 | 571 | 631 | 1998 | |
F11 | Best | 9.44 × 10+02 | 1.00 × 10+03 | 9.77 × 10+02 | 1.07 × 10+03 | 1.01 × 10+03 | 1.11 × 10+03 | 9.81 × 10+02 | 9.50 × 10+02 | 8.99 × 10+02 | 8.81 × 10+02 |
Mean | 9.95 × 10+02 | 1.03 × 10+03 | 9.85 × 10+02 | 1.23 × 10+03 | 1.04 × 10+03 | 1.13 × 10+03 | 1.02 × 10+03 | 1.03 × 10+03 | 9.44 × 10+02 | 9.42 × 10+02 | |
Std | 2.79 × 10+01 | 1.97 × 10+01 | 1.26 × 10+01 | 1.11 × 10+02 | 1.66 × 10+01 | 1.11 × 10+01 | 2.15 × 10+01 | 3.42 × 10+01 | 3.28 × 10+01 | 3.15 × 10+01 | |
Iter | 921 | 1814 | 761 | 1394 | 2000 | 55 | 333 | 873 | 151 | 2000 | |
F12 | Best | 1.70 × 10+04 | 3.28 × 10+04 | 3.87 × 10+05 | 2.42 × 10+04 | 5.68 × 10+03 | 1.71 × 10+06 | 9.21 × 10+04 | 2.48 × 10+04 | 1.57 × 10+04 | 1.91 × 10+03 |
Mean | 3.37 × 10+05 | 1.04 × 10+05 | 3.88 × 10+05 | 5.37 × 10+05 | 1.23 × 10+05 | 2.86 × 10+06 | 5.15 × 10+05 | 1.60 × 10+05 | 1.09 × 10+05 | 1.93 × 10+03 | |
Std | 8.02 × 10+05 | 6.25 × 10+04 | 7.95 × 10+02 | 6.04 × 10+05 | 8.43 × 10+04 | 9.13 × 10+05 | 3.46 × 10+05 | 1.11 × 10+05 | 1.21 × 10+05 | 2.02 × 10+01 | |
Iter | 840 | 1664 | 482 | 2000 | 1978 | 83 | 1167 | 456 | 1771 | 1699 | |
F13 | Best | 9.72 × 10+05 | 5.99 × 10+05 | 4.16 × 10+05 | 2.39 × 10+05 | 1.20 × 10+06 | 6.53 × 10+06 | 3.33 × 10+06 | 1.60 × 10+06 | 2.86 × 10+05 | 1.64 × 10+05 |
Mean | 2.75 × 10+06 | 3.58 × 10+06 | 6.69 × 10+05 | 1.03 × 10+07 | 3.41 × 10+06 | 2.69 × 10+07 | 6.30 × 10+06 | 6.35 × 10+06 | 9.83 × 10+05 | 7.77 × 10+05 | |
Std | 1.37 × 10+06 | 2.32 × 10+06 | 2.72 × 10+05 | 1.50 × 10+07 | 1.51 × 10+06 | 9.89 × 10+06 | 3.04 × 10+06 | 5.56 × 10+06 | 6.25 × 10+05 | 4.19 × 10+05 | |
Iter | 1270 | 1082 | 787 | 2000 | 1788 | 70 | 1898 | 260 | 1951 | 1986 | |
F14 | Best | 2.39 × 10+03 | 2.36 × 10+03 | 2.76 × 10+03 | 2.64 × 10+03 | 2.61 × 10+03 | 3.49 × 10+03 | 2.81 × 10+03 | 2.67 × 10+03 | 2.16 × 10+03 | 2.11 × 10+03 |
Mean | 2.74 × 10+03 | 3.02 × 10+03 | 3.09 × 10+03 | 3.05 × 10+03 | 3.02 × 10+03 | 4.17 × 10+03 | 3.04 × 10+03 | 3.18 × 10+03 | 2.57 × 10+03 | 2.37 × 10+03 | |
Std | 2.88 × 10+02 | 3.59 × 10+02 | 1.82 × 10+02 | 2.94 × 10+02 | 3.20 × 10+02 | 3.49 × 10+02 | 1.55 × 10+02 | 2.37 × 10+02 | 2.57 × 10+02 | 2.34 × 10+02 | |
Iter | 910 | 1993 | 443 | 2000 | 1865 | 181 | 1990 | 1888 | 1976 | 1727 | |
F15 | Best | 1.28 × 10+05 | 6.66 × 10+04 | 3.45 × 10+05 | 4.24 × 10+06 | 1.09 × 10+05 | 5.72 × 10+06 | 1.91 × 10+05 | 3.19 × 10+05 | 1.40 × 10+05 | 5.45 × 10+04 |
Mean | 1.25 × 10+06 | 3.54 × 10+06 | 2.42 × 10+07 | 7.99 × 10+06 | 2.21 × 10+06 | 2.86 × 10+07 | 1.86 × 10+06 | 1.72 × 10+06 | 4.30 × 10+05 | 3.51 × 10+05 | |
Std | 1.74 × 10+06 | 2.85 × 10+06 | 2.59 × 10+07 | 5.86 × 10+06 | 2.31 × 10+06 | 2.24 × 10+07 | 2.35 × 10+06 | 1.29 × 10+06 | 2.57 × 10+05 | 3.32 × 10+05 | |
Iter | 1331 | 1735 | 916 | 2000 | 1971 | 28 | 1603 | 1998 | 1883 | 2000 | |
F16 | Best | 3.78 × 10+03 | 3.42 × 10+03 | 4.22 × 10+03 | 4.19 × 10+03 | 3.66 × 10+03 | 6.71 × 10+03 | 3.88 × 10+03 | 4.43 × 10+03 | 3.37 × 10+03 | 2.31 × 10+03 |
Mean | 5.24 × 10+03 | 5.51 × 10+03 | 5.22 × 10+03 | 5.82 × 10+03 | 5.67 × 10+03 | 7.41 × 10+03 | 5.33 × 10+03 | 5.55 × 10+03 | 3.90 × 10+03 | 2.32 × 10+03 | |
Std | 1.16 × 10+03 | 1.61 × 10+03 | 1.31 × 10+03 | 8.62 × 10+02 | 9.65 × 10+02 | 2.78 × 10+02 | 9.29 × 10+02 | 6.49 × 10+02 | 3.38 × 10+02 | 1.22 × 10+01 | |
Iter | 613 | 1527 | 1370 | 2000 | 1711 | 222 | 1012 | 1994 | 1976 | 1986 | |
F17 | Best | 3.08 × 10+03 | 2.95 × 10+03 | 3.24 × 10+03 | 3.14 × 10+03 | 3.05 × 10+03 | 3.20 × 10+03 | 3.28 × 10+03 | 3.34 × 10+03 | 2.97 × 10+03 | 2.90 × 10+03 |
Mean | 3.19 × 10+03 | 3.17 × 10+03 | 3.34 × 10+03 | 3.27 × 10+03 | 3.25 × 10+03 | 3.48 × 10+03 | 3.55 × 10+03 | 3.53 × 10+03 | 3.01 × 10+03 | 3.03 × 10+03 | |
Std | 7.99 × 10+01 | 1.06 × 10+02 | 4.93 × 10+01 | 8.12 × 10+01 | 1.87 × 10+02 | 2.07 × 10+02 | 1.78 × 10+02 | 1.20 × 10+02 | 2.09 × 10+01 | 1.13 × 10+02 | |
Iter | 716 | 1993 | 443 | 2000 | 1997 | 80 | 170 | 97 | 1966 | 2000 | |
F18 | Best | 3.44 × 10+03 | 3.63 × 10+03 | 5.91 × 10+03 | 4.24 × 10+03 | 3.28 × 10+03 | 6.85 × 10+03 | 4.41 × 10+03 | 3.95 × 10+03 | 3.34 × 10+03 | 2.96 × 10+03 |
Mean | 4.20 × 10+03 | 4.31 × 10+03 | 5.92 × 10+03 | 5.46 × 10+03 | 4.51 × 10+03 | 8.72 × 10+03 | 5.59 × 10+03 | 4.90 × 10+03 | 4.01 × 10+03 | 3.00 × 10+03 | |
Std | 7.69 × 10+02 | 6.30 × 10+02 | 8.74 × 10+00 | 1.48 × 10+03 | 6.59 × 10+02 | 1.34 × 10+03 | 9.61 × 10+02 | 6.74 × 10+02 | 3.16 × 10+02 | 2.43 × 10+01 | |
Iter | 977 | 1993 | 591 | 2000 | 1920 | 94 | 358 | 717 | 673 | 2000 |
Function | ROA | SFO | CDO | BA | GSA | WWPA | OOA | SOOA | ADSOOA | IOOA | |
---|---|---|---|---|---|---|---|---|---|---|---|
F19 | Best | 1.52 × 10+04 | 2.74 × 10+04 | 2.25 × 10+04 | 2.37 × 10+03 | 2.08 × 10+04 | 9.28 × 10+04 | 2.11 × 10+04 | 2.65 × 10+04 | 1.13 × 10+04 | 3.00 × 10+02 |
Mean | 3.58 × 10+04 | 4.75 × 10+04 | 2.26 × 10+04 | 1.13 × 10+05 | 4.82 × 10+04 | 1.56 × 10+05 | 4.17 × 10+04 | 5.16 × 10+04 | 1.76 × 10+04 | 3.01 × 10+02 | |
Std | 1.35 × 10+04 | 1.31 × 10+04 | 6.16 × 10+01 | 1.26 × 10+05 | 4.00 × 10+04 | 3.65 × 10+04 | 8.34 × 10+03 | 2.61 × 10+04 | 3.93 × 10+03 | 2.46 × 10+00 | |
Iter | 5768 | 9929 | 2853 | 10,000 | 7392 | 630 | 596 | 486 | 7884 | 10,000 | |
F20 | Best | 8.51 × 10+02 | 1.14 × 10+03 | 1.96 × 10+03 | 6.44 × 10+02 | 8.63 × 10+02 | 2.11 × 10+03 | 1.59 × 10+03 | 1.04 × 10+03 | 1.11 × 10+03 | 4.03 × 10+02 |
Mean | 1.42 × 10+03 | 1.71 × 10+03 | 1.97 × 10+03 | 8.34 × 10+02 | 1.46 × 10+03 | 4.11 × 10+03 | 2.50 × 10+03 | 2.06 × 10+03 | 1.47 × 10+03 | 4.33 × 10+02 | |
Std | 5.07 × 10+02 | 4.22 × 10+02 | 5.07 × 10+00 | 1.35 × 10+02 | 4.72 × 10+02 | 1.11 × 10+03 | 6.13 × 10+02 | 6.50 × 10+02 | 3.07 × 10+02 | 1.58 × 10+01 | |
Iter | 5137 | 9966 | 3955 | 10,000 | 8320 | 86 | 1382 | 5893 | 5387 | 9975 | |
F21 | Best | 6.47 × 10+02 | 6.63 × 10+02 | 6.47 × 10+02 | 6.59 × 10+02 | 6.64 × 10+02 | 6.98 × 10+02 | 6.53 × 10+02 | 6.59 × 10+02 | 6.58 × 10+02 | 6.41 × 10+02 |
Mean | 6.68 × 10+02 | 6.81 × 10+02 | 6.49 × 10+02 | 6.67 × 10+02 | 6.78 × 10+02 | 7.10 × 10+02 | 6.71 × 10+02 | 6.72 × 10+02 | 6.66 × 10+02 | 6.57 × 10+02 | |
Std | 1.24 × 10+01 | 1.02 × 10+01 | 1.93 × 10+00 | 9.12 × 10+00 | 1.08 × 10+01 | 6.71 × 10+00 | 1.12 × 10+01 | 8.48 × 10+00 | 5.38 × 10+00 | 6.86 × 10+00 | |
Iter | 4257 | 9900 | 2824 | 10,000 | 9376 | 455 | 6241 | 7017 | 6145 | 9883 | |
F22 | Best | 9.07 × 10+02 | 9.63 × 10+02 | 8.99 × 10+02 | 8.62 × 10+02 | 9.16 × 10+02 | 9.96 × 10+02 | 9.34 × 10+02 | 9.43 × 10+02 | 9.19 × 10+02 | 8.72 × 10+02 |
Mean | 9.43 × 10+02 | 9.86 × 10+02 | 9.19 × 10+02 | 8.91 × 10+02 | 9.42 × 10+02 | 1.02 × 10+03 | 9.62 × 10+02 | 9.65 × 10+02 | 9.37 × 10+02 | 8.86 × 10+02 | |
Std | 1.70 × 10+01 | 1.71 × 10+01 | 1.37 × 10+01 | 2.37 × 10+01 | 1.71 × 10+01 | 1.14 × 10+01 | 1.30 × 10+01 | 1.72 × 10+01 | 1.48 × 10+01 | 7.08 × 10+00 | |
Iter | 4598 | 3753 | 3868 | 3229 | 8730 | 3682 | 1316 | 2447 | 9418 | 9779 | |
F23 | Best | 2.59 × 10+03 | 2.76 × 10+03 | 2.76 × 10+03 | 2.43 × 10+03 | 2.94 × 10+03 | 5.09 × 10+03 | 2.80 × 10+03 | 2.53 × 10+03 | 2.36 × 10+03 | 2.39 × 10+03 |
Mean | 3.27 × 10+03 | 4.28 × 10+03 | 2.89 × 10+03 | 3.26 × 10+03 | 3.31 × 10+03 | 5.47 × 10+03 | 3.37 × 10+03 | 3.08 × 10+03 | 2.76 × 10+03 | 2.43 × 10+03 | |
Std | 4.41 × 10+02 | 7.97 × 10+02 | 7.30 × 10+01 | 6.84 × 10+02 | 1.94 × 10+02 | 2.28 × 10+02 | 4.23 × 10+02 | 4.61 × 10+02 | 2.61 × 10+02 | 1.41 × 10+01 | |
Iter | 8304 | 9688 | 4073 | 9514 | 9373 | 79 | 9892 | 5547 | 5135 | 9994 | |
F24 | Best | 4.95 × 10+06 | 7.87 × 10+07 | 7.28 × 10+08 | 2.18 × 10+03 | 2.95 × 10+07 | 2.95 × 10+09 | 1.57 × 10+08 | 5.38 × 10+08 | 6.15 × 10+07 | 2.01 × 10+03 |
Mean | 4.00 × 10+08 | 2.25 × 10+08 | 3.34 × 10+09 | 8.65 × 10+03 | 6.43 × 10+08 | 6.09 × 10+09 | 1.56 × 10+09 | 1.16 × 10+09 | 3.22 × 10+08 | 3.24 × 10+03 | |
Std | 5.73 × 10+08 | 1.13 × 10+08 | 2.75 × 10+09 | 9.68 × 10+03 | 7.00 × 10+08 | 1.71 × 10+09 | 1.03 × 10+09 | 7.46 × 10+08 | 2.36 × 10+08 | 6.82 × 10+02 | |
Iter | 4646 | 9960 | 4142 | 9818 | 9803 | 112 | 1119 | 1565 | 9700 | 6264 | |
F25 | Best | 2.11 × 10+03 | 2.17 × 10+03 | 2.26 × 10+03 | 2.16 × 10+03 | 2.16 × 10+03 | 2.35 × 10+03 | 2.15 × 10+03 | 2.16 × 10+03 | 2.12 × 10+03 | 2.07 × 10+03 |
Mean | 2.18 × 10+03 | 2.31 × 10+03 | 2.30 × 10+03 | 2.28 × 10+03 | 2.22 × 10+03 | 2.45 × 10+03 | 2.18 × 10+03 | 2.21 × 10+03 | 2.15 × 10+03 | 2.16 × 10+03 | |
Std | 4.55 × 10+01 | 1.04 × 10+02 | 3.57 × 10+01 | 9.88 × 10+01 | 4.21 × 10+01 | 5.81 × 10+01 | 1.84 × 10+01 | 3.65 × 10+01 | 2.93 × 10+01 | 3.23 × 10+01 | |
Iter | 4521 | 8979 | 3745 | 9478 | 9733 | 1770 | 909 | 10,000 | 9766 | 9309 | |
F26 | Best | 2.24 × 10+03 | 2.26 × 10+03 | 2.24 × 10+03 | 2.61 × 10+03 | 2.23 × 10+03 | 2.34 × 10+03 | 2.25 × 10+03 | 2.24 × 10+03 | 2.23 × 10+03 | 2.23 × 10+03 |
Mean | 2.31 × 10+03 | 2.51 × 10+03 | 2.24 × 10+03 | 2.98 × 10+03 | 2.28 × 10+03 | 2.69 × 10+03 | 2.31 × 10+03 | 2.38 × 10+03 | 2.32 × 10+03 | 2.24 × 10+03 | |
Std | 2.06 × 10+02 | 2.08 × 10+02 | 4.97 × 10+00 | 4.28 × 10+02 | 6.85 × 10+01 | 2.38 × 10+02 | 6.44 × 10+01 | 1.47 × 10+02 | 8.91 × 10+01 | 5.57 × 10+00 | |
Iter | 5671 | 9894 | 3469 | 9476 | 9372 | 155 | 9941 | 3908 | 9486 | 10,000 | |
F27 | Best | 2.73 × 10+03 | 2.77 × 10+03 | 3.08 × 10+03 | 2.64 × 10+03 | 2.65 × 10+03 | 3.81 × 10+03 | 2.96 × 10+03 | 3.03 × 10+03 | 2.64 × 10+03 | 2.47 × 10+03 |
Mean | 2.79 × 10+03 | 2.91 × 10+03 | 3.43 × 10+03 | 2.75 × 10+03 | 2.89 × 10+03 | 4.26 × 10+03 | 3.41 × 10+03 | 3.28 × 10+03 | 2.76 × 10+03 | 2.47 × 10+03 | |
Std | 6.51 × 10+01 | 1.02 × 10+02 | 1.22 × 10+02 | 1.09 × 10+02 | 1.73 × 10+02 | 2.62 × 10+02 | 4.15 × 10+02 | 2.33 × 10+02 | 1.03 × 10+02 | 1.62 × 10+00 | |
Iter | 7735 | 9993 | 3444 | 10,000 | 9468 | 262 | 2117 | 177 | 7694 | 9000 | |
F28 | Best | 5.30 × 10+03 | 6.32 × 10+03 | 5.02 × 10+03 | 4.53 × 10+03 | 2.60 × 10+03 | 6.68 × 10+03 | 4.88 × 10+03 | 2.70 × 10+03 | 2.74 × 10+03 | 2.50 × 10+03 |
Mean | 5.88 × 10+03 | 7.15 × 10+03 | 5.55 × 10+03 | 5.24 × 10+03 | 5.56 × 10+03 | 7.17 × 10+03 | 6.40 × 10+03 | 5.27 × 10+03 | 4.23 × 10+03 | 2.77 × 10+03 | |
Std | 4.26 × 10+02 | 4.54 × 10+02 | 3.47 × 10+02 | 5.16 × 10+02 | 1.11 × 10+03 | 2.83 × 10+02 | 6.32 × 10+02 | 1.73 × 10+03 | 1.20 × 10+03 | 5.77 × 10+02 | |
Iter | 6587 | 9964 | 714 | 10,000 | 9688 | 4015 | 5790 | 9818 | 9124 | 9548 | |
F29 | Best | 5.58 × 10+03 | 7.78 × 10+03 | 8.42 × 10+03 | 3.42 × 10+04 | 6.65 × 10+03 | 9.19 × 10+03 | 8.01 × 10+03 | 6.91 × 10+03 | 6.45 × 10+03 | 2.61 × 10+03 |
Mean | 7.16 × 10+03 | 8.61 × 10+03 | 8.44 × 10+03 | 5.33 × 10+04 | 7.72 × 10+03 | 9.76 × 10+03 | 8.92 × 10+03 | 8.34 × 10+03 | 7.41 × 10+03 | 2.77 × 10+03 | |
Std | 9.07 × 10+02 | 6.37 × 10+02 | 1.85 × 10+01 | 1.31 × 10+04 | 5.50 × 10+02 | 3.60 × 10+02 | 5.51 × 10+02 | 6.47 × 10+02 | 6.89 × 10+02 | 1.68 × 10+02 | |
Iter | 4764 | 4097 | 1620 | 10,000 | 9456 | 620 | 5484 | 110 | 5022 | 9995 | |
F30 | Best | 3.04 × 10+03 | 3.07 × 10+03 | 3.44 × 10+03 | 2.90 × 10+03 | 3.15 × 10+03 | 2.90 × 10+03 | 3.65 × 10+03 | 3.64 × 10+03 | 3.11 × 10+03 | 2.98 × 10+03 |
Mean | 3.21 × 10+03 | 3.26 × 10+03 | 3.47 × 10+03 | 2.90 × 10+03 | 3.41 × 10+03 | 2.90 × 10+03 | 3.86 × 10+03 | 3.90 × 10+03 | 3.17 × 10+03 | 3.04 × 10+03 | |
Std | 1.75 × 10+02 | 1.14 × 10+02 | 1.72 × 10+01 | 5.07 × 10−05 | 2.58 × 10+02 | 3.23 × 10−05 | 1.28 × 10+02 | 3.05 × 10+02 | 7.55 × 10+01 | 3.94 × 10+01 | |
Iter | 4261 | 8365 | 3121 | 8418 | 5579 | 7426 | 402 | 9989 | 9943 | 9742 |
IOOA vs. | ROA | SFO | CDO | BA | GSA | WWPA | OOA | SOOA | ADSOOA |
---|---|---|---|---|---|---|---|---|---|
F1 | 0.0002 (+) | 0.0002 (+) | 0.0001 (+) | 0.0002 (+) | 0.0002 (+) | 0.0002 (+) | 0.5204 (=) | 0.0002 (+) | 0.0002 (+) |
F2 | 0.0002 (+) | 0.0002 (+) | 0.0001 (+) | 0.0002 (+) | 0.0002 (+) | 0.0002 (+) | 0.4272 (=) | 0.0002 (+) | 0.0002 (+) |
F3 | NaN (=) | 0.0001 (+) | 0.0000 (+) | 0.0001 (+) | NaN (=) | 0.0008 (+) | 0.0146 (+) | 0.0007 (+) | 0.0002 (+) |
F4 | 0.0004 (+) | 0.0002 (+) | 0.0003 (+) | 0.0002 (+) | 0.0003 (+) | 0.0002 (+) | 0.0003 (+) | 0.0002 (+) | 0.0234 (−) |
F5 | 0.0001 (+) | 0.0001 (+) | 0.0001 (+) | 0.0016 (+) | 0.0001 (+) | 0.0001 (+) | 0.0001 (+) | 0.0001 (+) | 0.0148 (+) |
F6 | 0.0001 (+) | 0.0001 (+) | 0.0001 (+) | 0.0001 (+) | 0.0001 (+) | 0.0001 (+) | 0.0001 (+) | 0.0009 (+) | 0.0001 (+) |
F7 | 0.1390 (=) | 0.0060 (+) | 0.4649 (=) | 0.4708 (=) | 0.1390 (=) | 0.0252 (+) | 0.4988 (=) | 0.0060 (+) | 0.0362 (+) |
F8 | 0.0002 (+) | 0.0002 (+) | 0.0002 (+) | 0.0002 (+) | 0.0002 (+) | 0.0002 (+) | 0.5199 (=) | 0.0002 (+) | 0.0002 (+) |
+/=/− | 6/2/0 | 8/0/0 | 7/1/0 | 7/1/0 | 6/2/0 | 8/0/0 | 4/4/0 | 8/0/0 | 7/1/0 |
IOOA vs. | ROA | SFO | CDO | BA | GSA | WWPA | OOA | SOOA | ADSOOA |
---|---|---|---|---|---|---|---|---|---|
F9 | 0.0002 (+) | 0.0002 (+) | 0.0002 (+) | 0.0002 (+) | 0.0002 (+) | 0.0002 (+) | 0.0002 (+) | 0.0002 (+) | 0.0002 (+) |
F10 | 0.0002 (+) | 0.0002 (+) | 0.0002 (+) | 0.0006 (+) | 0.0002 (+) | 0.0002 (+) | 0.0002 (+) | 0.0002 (+) | 0.0002 (+) |
F11 | 0.0028 (+) | 0.0002 (+) | 0.0002 (+) | 0.0002 (+) | 0.0002 (+) | 0.0002 (+) | 0.0002 (+) | 0.0010 (+) | 0.8501 (=) |
F12 | 0.0002 (+) | 0.0002 (+) | 0.0002 (+) | 0.0002 (+) | 0.0002 (+) | 0.0002 (+) | 0.0002 (+) | 0.0002 (+) | 0.0002 (+) |
F13 | 0.0010 (+) | 0.0046 (+) | 0.4960 (=) | 0.0022 (+) | 0.0002 (+) | 0.0002 (+) | 0.0002 (+) | 0.0002 (+) | 0.5964 (=) |
F14 | 0.0081 (+) | 0.0008 (+) | 0.0002 (+) | 0.0004 (+) | 0.0010 (+) | 0.0002 (+) | 0.0002 (+) | 0.0003 (+) | 0.0694 (=) |
F15 | 0.1041 (=) | 0.0046 (+) | 0.0013 (+) | 0.0002 (+) | 0.0091 (+) | 0.0002 (+) | 0.0073 (+) | 0.0010 (+) | 0.3075 (=) |
F16 | 0.0002 (+) | 0.0002 (+) | 0.0002 (+) | 0.0002 (+) | 0.0002 (+) | 0.0002 (+) | 0.0002 (+) | 0.0002 (+) | 0.0002 (+) |
F17 | 0.0091 (+) | 0.0140 (+) | 0.0002 (+) | 0.0008 (+) | 0.0058 (+) | 0.0002 (+) | 0.0002 (+) | 0.0002 (+) | 0.8501 (=) |
F18 | 0.0002 (+) | 0.0002 (+) | 0.0002 (+) | 0.0002 (+) | 0.0002 (+) | 0.0002 (+) | 0.0002 (+) | 0.0002 (+) | 0.0002 (+) |
+/=/− | 9/1/0 | 10/0/0 | 9/1/0 | 10/0/0 | 10/0/0 | 10/0/0 | 10/0/0 | 10/0/0 | 5/5/0 |
IOOA vs. | ROA | SFO | CDO | BA | GSA | WWPA | OOA | SOOA | ADSOOA |
---|---|---|---|---|---|---|---|---|---|
F19 | 0.0002 (+) | 0.0002 (+) | 0.0002 (+) | 0.0002 (+) | 0.0002 (+) | 0.0002 (+) | 0.0002 (+) | 0.0002 (+) | 0.0002 (+) |
F20 | 0.0001 (+) | 0.0001 (+) | 0.0001 (+) | 0.0001 (+) | 0.0001 (+) | 0.0001 (+) | 0.0001 (+) | 0.0001 (+) | 0.0001 (+) |
F21 | 0.0757 (=) | 0.0002 (+) | 0.0073 (-) | 0.0140 (+) | 0.0002 (+) | 0.0002 (+) | 0.0113 (+) | 0.0017 (+) | 0.0046 (+) |
F22 | 0.0002 (+) | 0.0002 (+) | 0.0002 (+) | 0.6232 (=) | 0.0002 (+) | 0.0002 (+) | 0.0002 (+) | 0.0002 (+) | 0.0002 (+) |
F23 | 0.0002 (+) | 0.0002 (+) | 0.0002 (+) | 0.0010 (+) | 0.0002 (+) | 0.0002 (+) | 0.0002 (+) | 0.0002 (+) | 0.0211 (+) |
F24 | 0.0002 (+) | 0.0002 (+) | 0.0002 (+) | 0.0539 (=) | 0.0002 (+) | 0.0002 (+) | 0.0002 (+) | 0.0002 (+) | 0.0002 (+) |
F25 | 0.4727 (=) | 0.0008 (+) | 0.0002 (+) | 0.0140 (+) | 0.0036 (+) | 0.0002 (+) | 0.0757 (=) | 0.0046 (+) | 0.1405 (=) |
F26 | 0.0073 (+) | 0.0002 (+) | 0.0091 (+) | 0.0002 (+) | 0.0073 (+) | 0.0002 (+) | 0.0002 (+) | 0.0003 (+) | 0.0022 (+) |
F27 | 0.0002 (+) | 0.0002 (+) | 0.0002 (+) | 0.0002 (+) | 0.0002 (+) | 0.0002 (+) | 0.0002 (+) | 0.0002 (+) | 0.0002 (+) |
F28 | 0.0002 (+) | 0.0002 (+) | 0.0002 (+) | 0.0002 (+) | 0.0003 (+) | 0.0002 (+) | 0.0002 (+) | 0.0010 (+) | 0.0022 (+) |
F29 | 0.0002 (+) | 0.0002 (+) | 0.0002 (+) | 0.0002 (+) | 0.0002 (+) | 0.0002 (+) | 0.0002 (+) | 0.0002 (+) | 0.0002 (+) |
F30 | 0.0004 (+) | 0.0003 (+) | 0.0002 (+) | 0.0001 (-) | 0.0002 (+) | 0.0002 (−) | 0.0002 (+) | 0.0002 (+) | 0.0004 (+) |
+/=/− | 10/2/0 | 12/0/0 | 11/0/1 | 9/2/1 | 12/0/0 | 11/0/1 | 11/1/0 | 12/0/0 | 11/1/0 |
Methods | Optimal Solution of Design Variables | fmin (X) | Iter | ||
---|---|---|---|---|---|
ROA | 5.89 × 10−02 | 5.54 × 10−01 | 5.09 × 10+00 | 1.36 × 10−02 | 1353 |
SFO | 5.70 × 10−02 | 4.97 × 10−01 | 6.15 × 10+00 | 1.31 × 10−02 | 1418 |
CDO | 5.00 × 10−02 | 3.17 × 10−01 | 1.42 × 10+01 | 1.28 × 10−02 | 904 |
BA | 4.96 × 10−02 | 3.09 × 10−01 | 1.47 × 10+01 | 1.27 × 10−02 | 1638 |
GSA | 5.85 × 10−02 | 5.44 × 10−01 | 5.30 × 10+00 | 1.36 × 10−02 | 2000 |
WWPA | 1.44 × 10−01 | 1.30 × 10+00 | 1.50 × 10+01 | 3.99 × 10+99 | 185 |
OOA | 5.37 × 10−02 | 4.61 × 10−01 | 4.20 × 10+00 | 1.1 × 10+100 | 276 |
SOOA | 5.90 × 10−02 | 5.59 × 10−01 | 4.97 × 10+00 | 1.36 × 10−02 | 1442 |
ADSOOA | 5.00 × 10−02 | 3.17 × 10−01 | 1.40 × 10+01 | 1.27 × 10−02 | 1870 |
IOOA | 5.18 × 10−02 | 3.60 × 10−01 | 1.11 × 10+01 | 1.27 × 10−02 | 1247 |
Methods | Optimal Solution of Design Variables | fmin (X) | Iter | |||
---|---|---|---|---|---|---|
ROA | 1.85 × 10−01 | 3.86 × 10+00 | 8.84 × 10+00 | 2.15 × 10−01 | 1.78 × 10+00 | 1334 |
SFO | 1.39 × 10−01 | 7.69 × 10+00 | 7.14 × 10+00 | 3.29 × 10−01 | 2.62 × 10+00 | 1954 |
CDO | 2.00 × 10−01 | 3.36 × 10+00 | 9.32 × 10+00 | 2.07 × 10−01 | 1.76 × 10+00 | 457 |
BA | −9.26 × 10−02 | 9.08 × 10+00 | 6.94 × 10+00 | −3.28 × 10−01 | −1.39 × 10+108 | 4 |
GSA | 2.04 × 10−01 | 3.40 × 10+00 | 9.08 × 10+00 | 2.06 × 10−01 | 1.72 × 10+00 | 2000 |
WWPA | 7.75 × 10−01 | 1.72 × 10+00 | 1.00 × 10+01 | 6.40 × 10−01 | 9.86 × 10+100 | 661 |
OOA | 2.45 × 10−01 | 7.14 × 10+00 | 6.73 × 10+00 | 3.70 × 10−01 | 3.01 × 10+00 | 693 |
SOOA | 1.73 × 10+00 | 5.62 × 10−01 | 3.32 × 10+00 | 1.52 × 10+00 | 2.08 × 10+100 | 501 |
ADSOOA | 2.54 × 10−01 | 3.05 × 10+00 | 7.59 × 10+00 | 2.91 × 10−01 | 2.03 × 10+00 | 1974 |
IOOA | 1.98 × 10−01 | 3.43 × 10+00 | 9.03 × 10+00 | 2.06 × 10−01 | 1.71 × 10+00 | 1997 |
Methods | Optimal Solution of Design Variables | fmin (X) | Iter | |||
---|---|---|---|---|---|---|
ROA | 6.00 × 10+01 | 2.02 × 10+01 | 2.62 × 10+01 | 6.00 × 10+01 | 2.73 × 10−08 | 915 |
SFO | 4.66 × 10+01 | 1.31 × 10+01 | 1.21 × 10+01 | 2.30 × 10+01 | 9.92 × 10−10 | 20 |
CDO | 3.73 × 10+01 | 2.11 × 10+01 | 1.45 × 10+01 | 5.86 × 10+01 | 3.07 × 10−10 | 200 |
BA | 2.32 × 10+02 | −2.05 × 10+02 | −7.33 × 10+01 | 4.44 × 10+02 | 1.00 × 10−06 | 1173 |
GSA | 6.00 × 10+01 | 1.35 × 10+01 | 4.03 × 10+01 | 6.00 × 10+01 | 2.73 × 10−08 | 2000 |
WWPA | 2.92 × 10+16 | 1.23 × 10+17 | 1.21 × 10+16 | 3.53 × 10+17 | 2.17 × 10−07 | 879 |
OOA | 4.12 × 10+01 | 1.63 × 10+01 | 1.67 × 10+01 | 4.56 × 10+01 | 3.45 × 10−09 | 16 |
SOOA | 4.57 × 10+01 | 3.75 × 10+01 | 1.24 × 10+01 | 5.28 × 10+01 | 1.43 × 10−03 | 15 |
ADSOOA | 2.33 × 10+01 | 1.33 × 10+01 | 1.20 × 10+01 | 4.66 × 10+01 | 9.92 × 10−10 | 27 |
IOOA | 4.27 × 10+01 | 1.60 × 10+01 | 1.91 × 10+01 | 4.90 × 10+01 | 2.70 × 10−12 | 1429 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, F.; Shi, X.; Feng, Y. Improved Osprey Optimization Algorithm Based on Two-Color Complementary Mechanism for Global Optimization and Engineering Problems. Biomimetics 2024, 9, 486. https://doi.org/10.3390/biomimetics9080486
Wei F, Shi X, Feng Y. Improved Osprey Optimization Algorithm Based on Two-Color Complementary Mechanism for Global Optimization and Engineering Problems. Biomimetics. 2024; 9(8):486. https://doi.org/10.3390/biomimetics9080486
Chicago/Turabian StyleWei, Fengtao, Xin Shi, and Yue Feng. 2024. "Improved Osprey Optimization Algorithm Based on Two-Color Complementary Mechanism for Global Optimization and Engineering Problems" Biomimetics 9, no. 8: 486. https://doi.org/10.3390/biomimetics9080486
APA StyleWei, F., Shi, X., & Feng, Y. (2024). Improved Osprey Optimization Algorithm Based on Two-Color Complementary Mechanism for Global Optimization and Engineering Problems. Biomimetics, 9(8), 486. https://doi.org/10.3390/biomimetics9080486