Analysis of a Regression Model for Creating Surface Microgeometry after Machining Zirconia YML Used for Dental Application
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Evaluation of the First Experiment
3.2. Evaluation of the Second Experiment
3.3. Evaluation of the Third Experiment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Lee, J.; Saleah, S.A.; Jeon, B.; Wijesinghe, R.E.; Lee, D.E.; Jeon, M.; Kim, J. Assessment of the inner surface roughness of 3D printed dental crowns via optical coherence tomography using a roughness quantification algorithm. IEEE Access 2020, 8, 133854–133864. [Google Scholar] [CrossRef]
- Kłonica, M.; Matuszak, J.; Zagórski, I. Effect of milling technology on selected surface layer properties. In Proceedings of the 2019 IEEE 5th International Workshop on Metrology for AeroSpace (MetroAeroSpace), Turin, Italy, 19–21 June 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 371–375. [Google Scholar]
- Zeng, J.; Song, J.; Zhang, Y.; Yang, Z.; Nie, E.; Zhang, C.; Jiang, R. Surface roughness and bacteria adhesion of full zirconia restoration after different polishing treatment. Chin. J. Tissue Eng. Res. 2023, 27, 3320. [Google Scholar]
- Fernandes, B.F.; Silva, N.; Da Cruz, M.B.; Garret, G.; Carvalho, Ó.; Silva, F.; Mata, A.; Francisco, H.; Marques, J.F. Cell Biological and Antibacterial Evaluation of a New Approach to Zirconia Implant Surfaces Modified with MTA. Biomimetics 2024, 9, 155. [Google Scholar] [CrossRef]
- Denkena, B.; Breidenstein, B.; Busemann, S.; Lehr, C.M. Impact of hard machining on zirconia based ceramics for dental applications. Procedia Cirp 2017, 65, 248–252. [Google Scholar] [CrossRef]
- Panda, A.; Nahornyi, V.; Valíček, J.; Harničárová, M.; Kušnerová, M.; Baron, P.; Pandova, I.; Soročin, P. A novel method for online monitoring of surface quality and predicting tool wear conditions in machining of materials. Int. J. Adv. Manuf. Technol. 2022, 123, 3599–3612. [Google Scholar] [CrossRef]
- Valíček, J.; Harničárová, M.; Öchsner, A.; Hutyrová, Z.; Kušnerová, M.; Tozan, H.; Michenka, V.; Sepelak, V.; Mital, D.; Zajac, J. Quantifying the mechanical properties of materials and the process of elastic-plastic deformation under external stress on material. Materials 2015, 8, 7401–7422. [Google Scholar] [CrossRef]
- Mascenik, J.; Coranic, T.; Kuchar, J.; Hazdra, Z. Influence of Selected Parameters of Zinc Electroplating on Surface Quality and Layer Thickness. Coatings 2024, 14, 579. [Google Scholar] [CrossRef]
- Baysal, N.; Tuğba Kalyoncuoğlu, Ü.; Ayyıldız, S. Mechanical properties and bond strength of additively manufactured and milled dental zirconia: A pilot study. J. Prosthodont. 2022, 31, 629–634. [Google Scholar] [CrossRef]
- Abdul Hamid, R.; Wan Muhamad, W.N.; Izamshah, R.; Kasim, M.S. Surface roughness analysis of zirconia dental restoration manufactured through cnc milling machine. In Intelligent Manufacturing and Mechatronics: Proceedings of the 2nd Symposium on Intelligent Manufacturing and Mechatronics–SympoSIMM 2019, Melaka, Malaysia, 8 July 2019; Springer: Singapore, 2020; pp. 361–371. [Google Scholar]
- Liu, J.W.; Yang, X.J. Effect of milling parameters on surface roughness for high-speed milling of pre-sintering zirconia. Adv. Mater. Res. 2014, 988, 253–256. [Google Scholar] [CrossRef]
- Dong, S.; Zheng, K.; Xiao, X.Z. Ultrasonic vibration assisted grinding of sintered dental zirconia ceramics: An experimental study on surface roughness. Adv. Mater. Res. 2014, 1017, 800–805. [Google Scholar] [CrossRef]
- Manicone, P.F.; Iommetti, P.R.; Raffaelli, L. An overview of zirconia ceramics: Basic properties and clinical applications. J. Dent. 2007, 35, 819–826. [Google Scholar] [CrossRef] [PubMed]
- Osman, R.B.; Swain, M.V. A critical review of dental implant materials with an emphasis on titanium versus zirconia. Materials 2015, 8, 932–958. [Google Scholar] [CrossRef]
- Zhang, Y.; Lawn, B.R. Novel zirconia materials in dentistry. J. Dent. Res. 2018, 97, 140–147. [Google Scholar] [CrossRef]
- Vera, V.; Corchado, E.; Redondo, R.; Sedano, J.; Garcia, A.E. Applying soft computing techniques to optimise a dental milling process. Neurocomputing 2013, 109, 94–104. [Google Scholar] [CrossRef]
- Herpel, C.; Tasaka, A.; Higuchi, S.; Finke, D.; Kühle, R.; Odaka, K.; Rues, S.; Lux, C.; Yamashita, S.; Rammelsberg, P.; et al. Accuracy of 3D printing compared with milling—A multi-center analysis of try-in dentures. J. Dent. 2021, 110, 103681. [Google Scholar] [CrossRef] [PubMed]
- Grande, F.; Tesini, F.; Pozzan, M.C.; Zamperoli, E.M.; Carossa, M.; Catapano, S. Comparison of the accuracy between denture bases produced by subtractive and additive manufacturing methods: A pilot study. Prosthesis 2022, 4, 151–159. [Google Scholar] [CrossRef]
- Barraclough, O.; Gray, D.; Ali, Z.; Nattress, B. Modern partial dentures-part 1: Novel manufacturing techniques. Br. Dent. J. 2021, 230, 651–657. [Google Scholar] [CrossRef]
- Dejkun, V.; Dietz, S.; Abele, E. Influence on surface quality in milling of green stage zirconia for dental products. Appl. Mech. Mater. 2015, 794, 201–206. [Google Scholar] [CrossRef]
- Jing, Z.; Ke, Z.; Yihong, L.; Zhijian, S. Effect of Multistep Processing Technique on the Formation of Micro-defects and Residual Stresses in Zirconia Dental Restorations. J. Prosthodont. 2014, 23, 206–212. [Google Scholar] [CrossRef]
- Zhang, Y.; Han, J.M.; Zheng, G.; Lin, H.; Bai, W.; Zhao, J.; Shen, Z. Fatigue behaviours of the zirconia dental restorations prepared by two manufacturing methods. Adv. Appl. Ceram. 2017, 116, 368–375. [Google Scholar] [CrossRef]
- Chopra, D.; Guo, T.; Gulati, K.; Ivanovski, S. Load, unload and repeat: Understanding the mechanical characteristics of zirconia in dentistry. Dent. Mater. 2024, 40, e1–e17. [Google Scholar] [CrossRef]
- Baghel, P.; Singh, S.; Nagdeve, L.; Jain, V.K.; Sharma, N.D. Preliminary investigations into finishing of artificial dental crown. Int. J. Precis. Technol. 2015, 5, 229–245. [Google Scholar] [CrossRef]
- Lebon, N.; Tapie, L.; Vennat, E. Influence of milling tool and prosthetic materials on roughness of the dental CAD CAM prostheses in end milling mode. Appl. Sci. 2020, 10, 2238. [Google Scholar] [CrossRef]
- Pacquet, W.; Tapie, L.; Mawussi, B.; Boitelle, P. Volumetric and dimensional accuracy assessment of CAD-CAM–manufactured dental prostheses from different materials. J. Prosthet. Dent. 2023, 129, 150–159. [Google Scholar] [CrossRef] [PubMed]
- Nicolas, L.; Laurent, T. Surface Integrity of Pre-sintered Ceramics and Composites Used for Dental Prostheses After CAD/CAM Abrasive Milling. Procedia CIRP 2022, 108, 252–257. [Google Scholar] [CrossRef]
- Son, K.; Lee, J.H.; Lee, K.B. Comparison of intaglio surface trueness of interim dental crowns fabricated with SLA 3D printing, DLP 3D printing, and milling technologies. Healthcare 2021, 9, 983. [Google Scholar] [CrossRef]
- Li, R.; Chen, H.; Wang, Y.; Sun, Y. Performance of stereolithography and milling in fabricating monolithic zirconia crowns with different finish line designs. J. Mech. Behav. Biomed. Mater. 2021, 115, 104255. [Google Scholar] [CrossRef]
- Lu, Y.; Wang, L.; Dal Piva AM, D.O.; Tribst JP, M.; Nedeljkovic, I.; Kleverlaan, C.J.; Feilzer, A.J. Influence of surface finishing and printing layer orientation on surface roughness and flexural strength of stereolithography-manufactured dental zirconia. J. Mech. Behav. Biomed. Mater. 2023, 143, 105944. [Google Scholar] [CrossRef] [PubMed]
- Lei, X.B.; Xie, F. Surface roughness prediction and experimental analysis in grinding the material of zirconia used by dental restoration. Mater. Sci. Forum 2014, 800, 160–166. [Google Scholar] [CrossRef]
- Roushan, A.; Rao, U.S.; Patra, K.; Sahoo, P. Multi-characteristics optimization in micro-milling of Ti6Al4V alloy. J. Phys. Conf. Ser. 2021, 1950, 012046. [Google Scholar] [CrossRef]
- Raghavendra, M.J.; Ramachandra, C.G.; Srinivas, T.R.; Pai, M.P. Optimization of surface roughness of Titanium Gr-9 Alloy Turning using Taguchi method. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1013, 012001. [Google Scholar] [CrossRef]
- Dantas, T.A.; Pinto, P.; Vaz, P.C.; Silva, F.S. Design and optimization of zirconia functional surfaces for dental implants applications. Ceram. Int. 2020, 46, 16328–16336. [Google Scholar] [CrossRef]
- Yan, X.; Dong, S.; Li, X.; Zhao, Z.; Dong, S. A Optimization of machining parameters for milling zirconia ceramics by polycrystalline diamond tool. Materials 2021, 15, 208. [Google Scholar] [CrossRef]
- CAD/CAM Discs. Multi-Layered Zirconia Katana Disc by Kuraray Noritake. Available online: https://www.kuraraynoritake.eu/en/labside/zirconia (accessed on 12 June 2024).
- DATRON D5 Linear Scale. DATRON AG. Available online: https://www.datron.de/products/dental-cad/cam/datron-d5-linear-scale (accessed on 11 June 2024).
- Zirconium Oxide, Zirconia, ZrO2. Available online: https://www.matweb.com/search/datasheet.aspx?MatGUID=0742ddaddf80467fb6532e025c694e89&ckck=1 (accessed on 13 June 2024).
- Catalogue of Tools DATRON. 2017. Available online: https://www.datron.sk/data/datron.sk/documents/DATRON_Katalog_nastroju-2018_CZ_V0.4_1538216052.pdf (accessed on 24 June 2024).
- Solid Carbide End Mills for All Dental CNC Milling Machines and Materials. Available online: http://www.datron.co.in/brouchers/DATRON_Dental_Toolflyer_Prosp_EN.pdf (accessed on 24 June 2024).
- Alsafi, M.S.; Abed, I.J. Effect of milling parameters on surface characteristics and mechanical properties of presintered zirconia ceramic. Rev. Des Compos. Et Des Matériaux Avancés-J. Compos. Adv. Mater. 2023, 33, 243–252. [Google Scholar] [CrossRef]
- Walia, T.; Brigi, C.; KhirAllah, A.R.M.M. Comparative evaluation of surface roughness of posterior primary zirconia crowns. Eur. Arch. Paediatr. Dent. 2019, 20, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Wallum, A.J.; Raimondi, C.; Lien, W.; Hoopes, W.L.; Vandewalle, K.S. Effect of Milling Speed on the Properties of Zirconia Restorations. J. Clin. Exp. Dent. 2024, 16, e84. [Google Scholar] [CrossRef] [PubMed]
- Mei, L.; Guan, G. Profilometry and atomic force microscopy for surface characterization. Nano TransMed 2023, 2, e9130017. [Google Scholar] [CrossRef]
- Guan, G.; He, Y.; Mei, L. Atomic force microscopy: A nanobiotechnology for cellular research. Nano TransMed 2022, 1, e9130004. [Google Scholar] [CrossRef]
- Guo, T.; Ivanovski, S.; Gulati, K. Tuning electrolyte aging in titanium anodization to fabricate nano-engineered implants. Surf. Coat. Technol. 2022, 447, 128819. [Google Scholar] [CrossRef]
Physical Properties | |
Chemical composition | ZrO2 |
Volume density | 6.05 g/cm3 |
Porosity | 0.5> % |
Mechanical Properties | |
Microhardness Vickers | 1150 (Hv 0.5) |
Young’s modulus | 205 GPa |
Tensile strength | 551 MPa |
Elastic modulus | 186 GPa |
Flexural strength | 75 MPa |
Compressive strength | 3000 MPa |
Poisson’s ratio | 0.33 |
Fracture toughness | 10 MPa.m½ |
Shear modulus | 80 GPa |
Name | Factor | Unit | −1 | +1 |
---|---|---|---|---|
X1 | m/min | 130 | 150 | |
X2 | mm/z | 0.05 | 0.07 | |
X3 | mm | 0.1 | 0.2 |
Ra | ||||
---|---|---|---|---|
1 | 130 | 0.05 | 0.1 | 0.22 |
2 | 130 | 0.05 | 0.2 | 0.31 |
3 | 130 | 0.07 | 0.1 | 0.26 |
4 | 130 | 0.07 | 0.2 | 0.21 |
5 | 150 | 0.05 | 0.1 | 0.18 |
6 | 150 | 0.05 | 0.2 | 0.13 |
7 | 150 | 0.07 | 0.1 | 0.24 |
8 | 150 | 0.07 | 0.2 | 0.30 |
9 | 130 | 0.05 | 0.1 | 0.28 |
10 | 130 | 0.05 | 0.2 | 0.41 |
11 | 130 | 0.07 | 0.1 | 0.33 |
12 | 130 | 0.07 | 0.2 | 0.47 |
13 | 150 | 0.05 | 0.1 | 0.21 |
14 | 150 | 0.05 | 0.2 | 0.19 |
15 | 150 | 0.07 | 0.1 | 0.34 |
16 | 150 | 0.07 | 0.2 | 0.41 |
17 | 130 | 0.05 | 0.1 | 0.36 |
18 | 130 | 0.05 | 0.2 | 0.29 |
19 | 130 | 0.07 | 0.1 | 0.45 |
20 | 130 | 0.07 | 0.2 | 0.37 |
21 | 150 | 0.05 | 0.1 | 0.24 |
22 | 150 | 0.05 | 0.2 | 0.19 |
23 | 150 | 0.07 | 0.1 | 0.36 |
24 | 150 | 0.07 | 0.2 | 0.40 |
Ra | ||||
---|---|---|---|---|
1 | 130 | 0.05 | 0.1 | 0.18 |
2 | 130 | 0.05 | 0.2 | 0.16 |
3 | 130 | 0.07 | 0.1 | 0.15 |
4 | 130 | 0.07 | 0.2 | 0.21 |
5 | 150 | 0.05 | 0.1 | 0.13 |
6 | 150 | 0.05 | 0.2 | 0.11 |
7 | 150 | 0.07 | 0.1 | 0.18 |
8 | 150 | 0.07 | 0.2 | 0.22 |
9 | 130 | 0.05 | 0.1 | 0.19 |
10 | 130 | 0.05 | 0.2 | 0.23 |
11 | 130 | 0.07 | 0.1 | 0.29 |
12 | 130 | 0.07 | 0.2 | 0.26 |
13 | 150 | 0.05 | 0.1 | 0.12 |
14 | 150 | 0.05 | 0.2 | 0.15 |
15 | 150 | 0.07 | 0.1 | 0.20 |
16 | 150 | 0.07 | 0.2 | 0.31 |
17 | 130 | 0.05 | 0.1 | 0.18 |
18 | 130 | 0.05 | 0.2 | 0.27 |
19 | 130 | 0.07 | 0.1 | 0.35 |
20 | 130 | 0.07 | 0.2 | 0.28 |
21 | 150 | 0.05 | 0.1 | 0.17 |
22 | 150 | 0.05 | 0.2 | 0.11 |
23 | 150 | 0.07 | 0.1 | 0.26 |
24 | 150 | 0.07 | 0.2 | 0.22 |
Ra | ||||
---|---|---|---|---|
1 | 130 | 0.05 | 0.1 | 0.22 |
2 | 130 | 0.05 | 0.2 | 0.31 |
3 | 130 | 0.07 | 0.1 | 0.42 |
4 | 130 | 0.07 | 0.2 | 0.50 |
5 | 150 | 0.05 | 0.1 | 0.36 |
6 | 150 | 0.05 | 0.2 | 0.24 |
7 | 150 | 0.07 | 0.1 | 0.37 |
8 | 150 | 0.07 | 0.2 | 0.56 |
9 | 130 | 0.05 | 0.1 | 0.38 |
10 | 130 | 0.05 | 0.2 | 0.37 |
11 | 130 | 0.07 | 0.1 | 0.41 |
12 | 130 | 0.07 | 0.2 | 0.47 |
13 | 150 | 0.05 | 0.1 | 0.34 |
14 | 150 | 0.05 | 0.2 | 0.28 |
15 | 150 | 0.07 | 0.1 | 0.39 |
16 | 150 | 0.07 | 0.2 | 0.45 |
17 | 130 | 0.05 | 0.1 | 0.44 |
18 | 130 | 0.05 | 0.2 | 0.36 |
19 | 130 | 0.07 | 0.1 | 0.24 |
20 | 130 | 0.07 | 0.2 | 0.56 |
21 | 150 | 0.05 | 0.1 | 0.47 |
22 | 150 | 0.05 | 0.2 | 0.39 |
23 | 150 | 0.07 | 0.1 | 0.34 |
24 | 150 | 0.07 | 0.2 | 0.42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duplák, J.; Mikuláško, S.; Dupláková, D.; Yeromina, M.; Kaščák, R. Analysis of a Regression Model for Creating Surface Microgeometry after Machining Zirconia YML Used for Dental Application. Biomimetics 2024, 9, 473. https://doi.org/10.3390/biomimetics9080473
Duplák J, Mikuláško S, Dupláková D, Yeromina M, Kaščák R. Analysis of a Regression Model for Creating Surface Microgeometry after Machining Zirconia YML Used for Dental Application. Biomimetics. 2024; 9(8):473. https://doi.org/10.3390/biomimetics9080473
Chicago/Turabian StyleDuplák, Ján, Samuel Mikuláško, Darina Dupláková, Maryna Yeromina, and Rastislav Kaščák. 2024. "Analysis of a Regression Model for Creating Surface Microgeometry after Machining Zirconia YML Used for Dental Application" Biomimetics 9, no. 8: 473. https://doi.org/10.3390/biomimetics9080473
APA StyleDuplák, J., Mikuláško, S., Dupláková, D., Yeromina, M., & Kaščák, R. (2024). Analysis of a Regression Model for Creating Surface Microgeometry after Machining Zirconia YML Used for Dental Application. Biomimetics, 9(8), 473. https://doi.org/10.3390/biomimetics9080473