Novel Methods for Personalized Gait Assistance: Three-Dimensional Trajectory Prediction Based on Regression and LSTM Models
Abstract
:1. Introduction
2. Materials and Methods
2.1. Gait Dataset Description
2.2. Gait Analysis
2.3. Regression-Based Gait Pattern Generator
2.3.1. Gait Key-Points
2.3.2. Regression Analysis on Key-Points
2.3.3. Trajectory Reconstruction
2.4. LSTM-Based Gait Pattern Generator
2.4.1. Data Preparation and Processing
2.4.2. LSTM Model Architecture
2.4.3. Model Training
2.5. Evaluation of Gait Models Accuracy
3. Results
3.1. Regression-Based Model
3.2. LSTM-Based Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Hip (x,y,z) | ||||||||
---|---|---|---|---|---|---|---|---|
Axis | Parameter | Key-Point | Charact. | β0 (Intercept) | β1 (Speed) | β2 (Speed2) | β3 (Height) | RMSE [mm] |
X | t (% gait) | 1 | Heel contact | 1.00 | - | - | - | - |
2 | Max. y. | 7.61 | 5.46 | −1.86 | −4.90 | 1.75 | ||
3 | Min. dy/dt | 21.02 | −7.41 | 2.36 | −0.46 | 3.31 | ||
4 | Min. y. | 64.37 | −20.42 | 6.66 | 6.08 | 6.78 | ||
5 | Max. dy/dt | 71.10 | 0.64 | −1.84 | 7.09 | 5.11 | ||
6 | End of the gait cycle | 100 | - | - | - | - | ||
y (position [m]) | 1 | Heel contact | 0.03 | 0.03 | - | −0.04 | 20.33 | |
2 | Max. y. | 0.02 | 0.03 | −0.01 | −0.02 | 20.42 | ||
3 | Min. dy/dt | 0.02 | 0.01 | - | −0.02 | 19.51 | ||
4 | Min. y. | - | 0.02 | −0.02 | −0.02 | 17.66 | ||
5 | Max. dy/dt | −0.02 | 0.04 | −0.02 | - | 17.15 | ||
6 | End of the gait cycle | 0.03 | 0.03 | 0 | −0.04 | 20.31 | ||
Y | t (% gait) | 1 | Heel contact | 1.00 | - | - | - | - |
2 | Min. y (early stance) | 8.84 | 6.50 | −1.47 | −2.41 | 3.90 | ||
3 | Min. dy/dt | 24.53 | −5.35 | 3.50 | 1.20 | 3.50 | ||
4 | Max. y. | 37.50 | −15.19 | 7.75 | 5.52 | 5.19 | ||
5 | Min. pos (late stance) | 58.89 | −5.47 | 3.19 | −5.74 | 3.32 | ||
6 | Min. dy/dt | 78.90 | 3.73 | −1.10 | −15.52 | 4.05 | ||
7 | Min. y. | 95.94 | −7.92 | 3.56 | −2.14 | 4.03 | ||
8 | End of the gait cycle | 100 | - | - | - | - | ||
y (position [m]) | 1 | Heel contact | −0.17 | 0.01 | - | −0.03 | 13.03 | |
2 | Min. y (stance) | −0.17 | - | - | −0.02 | 13.52 | ||
3 | Min. dy/dt | −0.16 | - | - | −0.02 | 13.15 | ||
4 | Max. y. | −0.16 | −0.01 | - | −0.02 | 13.02 | ||
5 | Min. pos (stance) | −0.17 | −0.01 | 0.01 | - | 14.34 | ||
6 | Min. dy/dt | −0.18 | 0.01 | - | −0.02 | 14.45 | ||
7 | Min. y. | −0.18 | 0.01 | - | −0.02 | 14.64 | ||
8 | End of the gait cycle | −0.17 | 0.01 | 0 | −0.03 | 13.03 | ||
Z | t (% gait) | 1 | Heel contact | 1.00 | - | - | - | - |
2 | Max. y | 11.72 | −3.63 | 1.10 | 3.10 | 4.20 | ||
3 | Min. y. | 34.72 | −0.22 | −0.41 | −1.06 | 3.26 | ||
4 | Max. dy/dt (stance) | 41.51 | −5.41 | 2.32 | 1.48 | 2.56 | ||
5 | Min. dy/dt | 54.43 | 0.72 | −1.20 | −2.40 | 2.31 | ||
6 | Min. y. | 72.00 | −12.51 | 4.99 | 4.05 | 3.17 | ||
7 | Max. dy/dt | 80.73 | −5.01 | 2.29 | 0.62 | 2.33 | ||
8 | Max. y. | 91.27 | −1.41 | 1.18 | −3.13 | 3.28 | ||
9 | End of the gait cycle | 100 | - | - | - | - | ||
y (position [m]) | 1 | Heel contact | −0.06 | −0.01 | - | −0.10 | 19.23 | |
2 | Max. y | −0.05 | 0.01 | - | −0.12 | 19.61 | ||
3 | Min. y. | −0.07 | 0.01 | - | −0.11 | 108.53 | ||
4 | Max. dy/dt (stance) | −0.05 | - | - | −0.13 | 18.92 | ||
5 | Min. dy/dt | −0.05 | 0.01 | - | −0.13 | 18.35 | ||
6 | Min. y. | −0.05 | −0.02 | - | −0.12 | 19.07 | ||
7 | Max. dy/dt | −0.05 | −0.01 | - | −0.12 | 19.4 | ||
8 | Max. y. | −0.05 | −0.01 | - | −0.12 | 19 | ||
9 | End of the gait cycle | −0.06 | −0.01 | - | −0.10 | 19.25 |
Knee (x,y,z) | ||||||||
---|---|---|---|---|---|---|---|---|
Axis | Parameter | Key-Point | Charact. | β0 (Intercept) | β1 (Speed) | β2 (Speed2) | β3 (Height) | RMSE [mm] |
X | t (% gait) | 1 | Heel contact | 1.00 | - | - | - | - |
2 | Max. dy/dt | 3.00 | - | - | - | 2.82 | ||
3 | Min. dy/dt | 5.20 | −9.52 | 6.33 | −14.31 | 5.34 | ||
4 | Min. y | 29.98 | −2.57 | 0.71 | 0.93 | 1.55 | ||
5 | Max. dy/dt | 59.08 | −7.07 | 1.81 | −0.46 | 1.67 | ||
6 | Max. ye | 75.94 | −6.09 | 1.26 | −4.99 | 1.99 | ||
7 | End of the gait cycle | 100 | - | - | - | - | ||
y (position [m]) | 1 | Heel contact | −0.02 | 0.09 | −0.01 | 0.11 | 21.90 | |
2 | Max. dy/dt | −0.03 | 0.10 | −0.02 | 0.12 | 21.99 | ||
3 | Min. dy/dt | - | 0.08 | −0.01 | 0.12 | 18.78 | ||
4 | Min. y | −0.08 | 0.04 | −0.02 | 0.08 | 21.54 | ||
5 | Max. dy/dt | −0.09 | −0.03 | −0.01 | 0.03 | 20.5 | ||
6 | Max. ye | - | 0.03 | −0.03 | 0.01 | 26.16 | ||
7 | End of the gait cycle | −0.01 | 0.09 | −0.01 | 0.11 | 21.85 | ||
Y | t (% gait) | 1 | Heel contact | 1.00 | - | - | - | - |
2 | Max. y. | 30.02 | −1.11 | 0.28 | 8.23 | 10.50 | ||
3 | Min. dy/dt | 41.73 | 14.48 | −7.91 | 37.34 | 13.17 | ||
4 | Min. y. | 58.46 | −6.93 | −0.22 | 10.27 | 5.12 | ||
5 | End of the gait cycle | 100 | - | - | - | - | ||
y (position [m]) | 1 | Heel contact | −0.11 | 0.03 | −0.01 | −0.07 | 10.78 | |
2 | Max. y. | −0.08 | −0.02 | 0.01 | −0.03 | 10.16 | ||
3 | Min. dy/dt | −0.15 | 0.03 | −0.01 | −0.06 | 16.89 | ||
4 | Min. y. | −0.12 | 0.01 | - | −0.04 | 21.23 | ||
5 | End of the gait cycle | −0.11 | 0.03 | −0.01 | −0.07 | 10.89 | ||
Z | t (% gait) | 1 | Heel contact | 1.00 | - | - | - | - |
2 | Max. dy/dt (stance) | 2.86 | 3.15 | −0.77 | −1.96 | 1.74 | ||
3 | Max. y. | 6.28 | 5.74 | −1.27 | −4.89 | 3.46 | ||
4 | Min. dy/dt | 18.29 | −0.80 | 0.32 | 1.72 | 1.97 | ||
5 | Min. y. | 27.54 | −5.80 | 1.44 | 9.67 | 2.56 | ||
6 | Max. y. (stance) | 57.28 | −1.98 | −0.15 | −1.37 | 1.57 | ||
7 | Min. dy/dt | 68.39 | −3.10 | 0.60 | −6.33 | 1.80 | ||
8 | Min. y | 72.50 | −5.80 | 1.93 | −3.10 | 2.04 | ||
9 | Max. y | 88.92 | −1.24 | 1.42 | −3.51 | 3.8 | ||
10 | End of the gait cycle | 100 | - | - | - | - | ||
y (position [m]) | 1 | Heel contact | −0.02 | 0.01 | - | −0.57 | 14.23 | |
2 | Max. dy/dt (stance) | −0.02 | 0.01 | - | −0.57 | 14.99 | ||
3 | Max. y. | −0.04 | 0.02 | - | −0.57 | 47.79 | ||
4 | Min. dy/dt | −0.03 | 0.02 | - | −0.57 | 15.04 | ||
5 | Min. y. | −0.03 | 0.02 | - | −0.56 | 21.74 | ||
6 | Max. y. (stance) | −0.02 | 0.01 | 0 | −0.59 | 18.36 | ||
7 | Min. dy/dt | - | −0.01 | - | −0.61 | 18.35 | ||
8 | Min. y | −0.02 | - | - | −0.59 | 18.09 | ||
9 | Max. y | 0.01 | 0.02 | 0 | −0.63 | 61.67 | ||
10 | End of the gait cycle | - | −0.01 | 0.01 | −0.60 | 14.24 |
Ankle (x,y,z) | ||||||||
---|---|---|---|---|---|---|---|---|
Axis | Parameter | Key-Point | Charact. | β0 (Intercept) | β1 (Speed) | β2 (Speed2) | β3 (Height) | RMSE [mm] |
X | t (% gait) | 1 | Heel contact | 1.00 | - | - | - | - |
2 | Middle point | 33.37 | −5.87 | 1.48 | 1.32 | 0.71 | ||
3 | Min. y. | 65.98 | −11.19 | 2.77 | 2.53 | 1.31 | ||
4 | Max. dy/dt | 77.19 | 9.27 | −3.17 | 3.26 | 1.82 | ||
5 | Max. y. | 93.19 | 2.67 | −0.82 | 1.92 | 0.88 | ||
6 | End of the gait cycle | 100 | - | - | - | - | ||
y (position [m]) | 1 | Heel contact | −0.03 | 0.20 | −0.04 | 0.14 | 30.98 | |
2 | Middle of k1–k3 | −0.01 | 0.04 | −0.03 | −0.07 | 21.81 | ||
3 | Min. y. | - | −0.12 | - | −0.25 | 29 | ||
4 | Max. dy/dt | −0.17 | 0.28 | −0.09 | 0.08 | 31.44 | ||
5 | Max. y. | - | 0.19 | −0.04 | 0.14 | 34.52 | ||
6 | End of the gait cycle | −0.03 | 0.2 | −0.05 | 0.14 | 31.59 | ||
Y | t (% gait) | 1 | Heel contact | 1.00 | - | - | - | - |
2 | Max. dy/dt | 12.28 | 0.64 | 0.15 | 6.50 | 1.92 | ||
3 | Max. y. | 24.33 | 1.09 | 0.41 | 12.84 | 3.87 | ||
4 | Max. dy/dt | 66.48 | −5.59 | −0.23 | 7.31 | 4.35 | ||
5 | Max. y | 82.66 | −1.33 | −0.46 | −0.26 | 2.21 | ||
6 | Min. dy/dt | 93.81 | 4.64 | −1.34 | −3.77 | 1.70 | ||
7 | End of the gait cycle | 100 | - | - | - | - | ||
y (position [m]) | 1 | Heel contact | −0.13 | 0.05 | −0.01 | −0.03 | 11.03 | |
2 | Max. dy/dt | −0.07 | −0.01 | - | −0.01 | 9.66 | ||
3 | Max. y. | −0.05 | −0.04 | 0.01 | - | 10.57 | ||
4 | Max. dy/dt | −0.16 | 0.04 | −0.01 | - | 15.17 | ||
5 | Max. y | −0.14 | 0.06 | −0.01 | −0.04 | 15.94 | ||
6 | Min. dy/dt | −0.14 | 0.05 | −0.01 | −0.04 | 13.69 | ||
7 | End of the gait cycle | −0.13 | 0.05 | −0.01 | −0.04 | 11.22 | ||
Z | t (% gait) | 1 | Heel contact | 1.00 | - | - | - | - |
2 | Min. dy/dt | 15.05 | −0.49 | 0.14 | −0.29 | 1.68 | ||
3 | Min. y. | 29.12 | −1.10 | 0.34 | 0.09 | 3.34 | ||
4 | Max. dy/dt | 68.28 | −4.31 | −1.21 | 0.38 | 2.89 | ||
5 | Max. y. | 70.65 | −5.04 | 0.15 | 4.48 | 1.51 | ||
6 | Min. dy/dt | 72.31 | 4.54 | −2.87 | 7.29 | 1.89 | ||
7 | Min. y. | 90.68 | −2.00 | 0.17 | 1.18 | 0.60 | ||
8 | End of the gait cycle | 100 | - | - | - | - | ||
y (position [m]) | 1 | Heel contact | - | 0.03 | −0.01 | −1.07 | 16.36 | |
2 | Min. dy/dt | −0.01 | 0.02 | - | −1.07 | 16.4 | ||
3 | Min. y. | −0.02 | - | - | −1.05 | 15.95 | ||
4 | Max. dy/dt | −0.03 | 0.12 | −0.03 | −0.99 | 23.08 | ||
5 | Max. y. | −0.06 | 0.11 | −0.02 | −0.92 | 17.93 | ||
6 | Min. dy/dt | −0.01 | 0.03 | - | −1.00 | 17.36 | ||
7 | Min. y. | - | 0.01 | - | −1.05 | 15.66 | ||
8 | End of the gait cycle | 0 | 0.03 | −0.01 | −1.07 | 16.42 |
References
- Rocon, E.; Ruiz, A.F.; Raya, R.; Schiele, A.; Pons, J.L.; Belda-Lois, J.M.; Poveda, R.; Vivas, M.J.; Moreno, J.C. Human–Robot Physical Interaction. In Wearable Robots: Biomechatronic Exoskeletons; John Wiley & Sons, Ltd.: Chichester, UK, 2008; pp. 127–163. [Google Scholar] [CrossRef]
- Winter, D.A. Biomechanics and Motor Control of Human Movement, 4th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2009; pp. 1–370. [Google Scholar] [CrossRef]
- Stauffer, Y.; Allemand, Y.; Bouri, M.; Fournier, J.; Clavel, R.; Metrailler, P.; Brodard, R.; Reynard, F. The WalkTrainer—A New Generation of Walking Reeducation Device Combining Orthoses and Muscle Stimulation. IEEE Trans. Neural Syst. Rehabil. Eng. 2008, 17, 38–45. [Google Scholar] [CrossRef] [PubMed]
- Banala, S.K.; Agrawal, S.K.; Scholz, J.P. Active Leg Exoskeleton (ALEX) for Gait Rehabilitation of Motor-Impaired Patients. In Proceedings of the 2007 IEEE 10th International Conference on Rehabilitation Robotics, ICORR’07, Noordwijk, The Netherlands, 12–15 June 2007; pp. 401–407. [Google Scholar] [CrossRef]
- Zoss, A.B.; Kazerooni, H.; Chu, A. Biomechanical Design of the Berkeley Lower Extremity Exoskeleton (BLEEX). IEEE/ASME Trans. Mechatron. 2006, 11, 128–138. [Google Scholar] [CrossRef]
- Chehab, E.F.; Andriacchi, T.P.; Favre, J. Speed, Age, Sex, and Body Mass Index Provide a Rigorous Basis for Comparing the Kinematic and Kinetic Profiles of the Lower Extremity during Walking. J. Biomech. 2017, 58, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Hanlon, M.; Anderson, R. Prediction Methods to Account for the Effect of Gait Speed on Lower Limb Angular Kinematics. Gait Posture 2006, 24, 280–287. [Google Scholar] [CrossRef] [PubMed]
- Kwon, J.W.; Son, S.M.; Lee, N.K. Changes of Kinematic Parameters of Lower Extremities with Gait Speed: A 3D Analysis Study. J. Phys. Ther. Sci. 2015, 27, 477–479. [Google Scholar] [CrossRef] [PubMed]
- Lelas, J.L.; Merriman, G.J.; Riley, P.O.; Kerrigan, D.C. Predicting Peak Kinematic and Kinetic Parameters from Gait Speed. Gait Posture 2003, 17, 106–112. [Google Scholar] [CrossRef] [PubMed]
- Yun, Y.; Kim, H.C.; Shin, S.Y.; Lee, J.; Deshpande, A.D.; Kim, C. Statistical Method for Prediction of Gait Kinematics with Gaussian Process Regression. J. Biomech. 2014, 47, 186–192. [Google Scholar] [CrossRef] [PubMed]
- Koopman, B.; van Asseldonk, E.H.F.; Van der Kooij, H. Speed-Dependent Reference Joint Trajectory Generation for Robotic Gait Support. J. Biomech. 2014, 47, 1447–1458. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Shen, F.; Zhao, Z.; Qu, X.; Ye, J. An Individualized Gait Pattern Prediction Model Based on the Least Absolute Shrinkage and Selection Operator Regression. J. Biomech. 2020, 112, 110052. [Google Scholar] [CrossRef]
- Liang, F.Y.; Zhong, C.H.; Zhao, X.; Lo Castro, D.; Chen, B.; Gao, F.; Liao, W.H. Online Adaptive and LSTM-Based Trajectory Generation of Lower Limb Exoskeletons for Stroke Rehabilitation. In Proceedings of the 2018 IEEE International Conference on Robotics and Biomimetics, ROBIO 2018, Lumpur, Malaysia, 12–15 December 2018; pp. 27–32. [Google Scholar] [CrossRef]
- Luu, T.P.; Low, K.H.; Qu, X.; Lim, H.B.; Hoon, K.H. An Individual-Specific Gait Pattern Prediction Model Based on Generalized Regression Neural Networks. Gait Posture 2014, 39, 443–448. [Google Scholar] [CrossRef]
- Zaroug, A.; Lai, D.T.H.; Mudie, K.; Begg, R. Lower Limb Kinematics Trajectory Prediction Using Long Short-Term Memory Neural Networks. Front. Bioeng. Biotechnol. 2020, 8, 362. [Google Scholar] [CrossRef]
- Ren, B.; Zhang, Z.; Zhang, C.; Chen, S. Motion Trajectories Prediction of Lower Limb Exoskeleton Based on Long Short-Term Memory (LSTM) Networks. Actuators 2022, 11, 73. [Google Scholar] [CrossRef]
- Su, B.; Gutierrez-Farewik, E.M. Gait Trajectory and Gait Phase Prediction Based on an LSTM Network. Sensors 2020, 20, 7127. [Google Scholar] [CrossRef]
- Wu, X.; Liu, D.X.; Liu, M.; Chen, C.; Guo, H. Individualized Gait Pattern Generation for Sharing Lower Limb Exoskeleton Robot. IEEE Trans. Autom. Sci. Eng. 2018, 15, 1459–1470. [Google Scholar] [CrossRef]
- Zhou, Z.; Liang, B.; Huang, G.; Liu, B.; Nong, J.; Xie, L. Individualized Gait Generation for Rehabilitation Robots Based on Recurrent Neural Networks. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 29, 273–281. [Google Scholar] [CrossRef]
- Jeon, H.; Lee, D. Bi-Directional Long Short-Term Memory-Based Gait Phase Recognition Method Robust to Directional Variations in Subject’s Gait Progression Using Wearable Inertial Sensor. Sensors 2024, 24, 1276. [Google Scholar] [CrossRef]
- Du, X.; Vasudevan, R.; Johnson-Roberson, M. Bio-LSTM: A Biomechanically Inspired Recurrent Neural Network for 3-d Pedestrian Pose and Gait Prediction. Robot. Autom. Lett. 2019, 4, 1501–1508. [Google Scholar] [CrossRef]
- Hernandez, A.; Gall, J.; Moreno-Noguer, F. Human Motion Prediction via Spatio-Temporal Inpainting. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019; pp. 7134–7143. [Google Scholar]
- Golchoubian, M.; Ghafurian, M.; Dautenhahn, K.; Azad, N.L. Pedestrian Trajectory Prediction in Pedestrian-Vehicle Mixed Environments: A Systematic Review. IEEE Trans. Intell. Transp. Syst. 2023, 24, 11544–11567. [Google Scholar] [CrossRef]
- Romero Sorozabal, P.; Delgado-Oleas, G.; Gutierrez, A.; Rocon, E. Individualized Three-Dimensional Gait Pattern Generator for Lower Limbs Rehabilitation Robots. In Proceedings of the IEEE International Conference on Rehabilitation Robotics (ICORR), Singapore, 24–28 September 2023. [Google Scholar]
- Shi, D.; Zhang, W.; Ding, X.; Sun, L. Parametric Generation of Three-Dimensional Gait for Robot-Assisted Rehabilitation. Biol. Open 2020, 9, bio047332. [Google Scholar] [CrossRef]
- Fukuchi, C.A.; Fukuchi, R.K.; Duarte, M. A Public Dataset of Overground and Treadmill Walking Kinematics and Kinetics in Healthy Individuals. PeerJ 2018, 6, e4640. [Google Scholar] [CrossRef]
- Leardini, A.; Sawacha, Z.; Paolini, G.; Ingrosso, S.; Nativo, R.; Benedetti, M.G. A New Anatomically Based Protocol for Gait Analysis in Children. Gait Posture 2007, 26, 560–571. [Google Scholar] [CrossRef]
- Hof, A.L. Scaling Gait Data to Body Size. Gait Posture 1996, 4, 222–223. [Google Scholar] [CrossRef]
- Street, J.O.; Carroll, R.J.; Ruppert, D. A Note on Computing Robust Regression Estimates via Iteratively Reweighted Least Squares. Am. Stat. 1988, 42, 152–154. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention Is All You Need. arXiv 2023, arXiv:1706.03762. [Google Scholar] [CrossRef]
Older Adults Cohort | |||||
Variable | Median | Max | Min | ||
Height [cm] | 164.5 | 151.5 | 168.2 | 175 | 147 |
Velocity [km/h] | 4.4 | 3.3 | 5.4 | 7.6 | 1.3 |
Mass [kg] | 70.25 | 64.7 | 73.1 | 79.7 | 46 |
Age | 62 | 57 | 68 | 80 | 50 |
Young Adults Cohort | |||||
Variable | Median | Max | Min | ||
Height [cm] | 171 | 166.8 | 180.6 | 192 | 153 |
Velocity [km/h] | 4.6 | 3.3 | 5.6 | 8 | 1.4 |
Mass [kg] | 66.3 | 61.2 | 77.6 | 95.4 | 44.9 |
Age | 28 | 24 | 31 | 37 | 21 |
Joint | Axis | Regression Model | LSTM Model | ||||||
---|---|---|---|---|---|---|---|---|---|
Hip | X | 15.62 | 13.40 | 0.92 | 0.92 | 8.09 | 12.57 | 0.96 | 0.99 |
Y | 10.65 | 0.71 | 2.84 | 0.98 | |||||
Z | 13.81 | 0.80 | 2.92 | 0.99 | |||||
Knee | X | 19.94 | 0.99 | 16.20 | 0.99 | ||||
Y | 14.03 | 0.80 | 6.92 | 0.95 | |||||
Z | 14.83 | 0.90 | 4.75 | 0.99 | |||||
Ankle | X | 33.93 | 0.99 | 27.39 | 0.99 | ||||
Y | 12.34 | 0.92 | 11.31 | 0.92 | |||||
Z | 15.52 | 0.99 | 10.86 | 0.99 |
Model | Joint | Axis | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Regression | Hip | X | 19.63 | 11.15 | 11.77 | 24.28 | 5.73 | 0.85 | 0.24 | 0.85 | 0.97 | 9.63 |
Y | 12.16 | 8.01 | 6.54 | 16.05 | 3.90 | 0.66 | 0.31 | 0.51 | 0.89 | 3.38 | ||
Z | 15.71 | 13.80 | 7.18 | 20.25 | 4.15 | 0.76 | 0.21 | 0.69 | 0.91 | 5.22 | ||
Knee | X | 26.76 | 13.74 | 18.95 | 31.10 | 4.28 | 0.98 | 0.06 | 0.98 | 0.99 | 8.31 | |
Y | 15.35 | 8.19 | 9.19 | 19.34 | 3.28 | 0.74 | 0.36 | 0.71 | 0.96 | 12.11 | ||
Z | 14.89 | 9.07 | 7.75 | 21.46 | 1.13 | 0.85 | 0.13 | 0.81 | 0.93 | 4.12 | ||
Ankle | X | 46.96 | 22.36 | 36.33 | 51.33 | 5.54 | 0.98 | 0.05 | 0.98 | 0.99 | 8.79 | |
Y | 15.85 | 7.03 | 10.61 | 19.76 | 2.09 | 0.85 | 0.16 | 0.81 | 0.95 | 7.76 | ||
Z | 17.30 | 10.05 | 10.18 | 21.29 | 5.09 | 0.97 | 0.07 | 0.97 | 0.99 | 7.73 | ||
LSTM | Hip | X | 6.79 | 4.00 | 4.47 | 8.14 | 3.91 | 0.94 | 0.12 | 0.94 | 0.99 | 11.05 |
Y | 2.43 | 1.93 | 1.55 | 2.82 | 4.28 | 0.92 | 0.13 | 0.91 | 0.98 | 8.61 | ||
Z | 2.81 | 1.94 | 1.96 | 3.24 | 3.98 | 0.95 | 0.09 | 0.95 | 0.99 | 10.42 | ||
Knee | X | 13.40 | 9.45 | 8.45 | 15.91 | 4.20 | 0.99 | 0.05 | 0.99 | 1.00 | 9.95 | |
Y | 6.17 | 3.39 | 4.08 | 7.44 | 3.49 | 0.89 | 0.17 | 0.88 | 0.98 | 10.66 | ||
Z | 3.74 | 2.47 | 2.54 | 4.31 | 4.57 | 0.96 | 0.07 | 0.96 | 0.99 | 8.10 | ||
Ankle | X | 20.97 | 18.14 | 11.85 | 24.84 | 5.19 | 0.99 | 0.05 | 1.00 | 1.00 | 11.54 | |
Y | 9.93 | 5.38 | 6.41 | 12.22 | 3.37 | 0.91 | 0.14 | 0.89 | 0.98 | 8.98 | ||
Z | 7.93 | 6.35 | 4.67 | 9.29 | 5.27 | 0.98 | 0.06 | 0.99 | 1.00 | 11.48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romero-Sorozábal, P.; Delgado-Oleas, G.; Laudanski, A.F.; Gutiérrez, Á.; Rocon, E. Novel Methods for Personalized Gait Assistance: Three-Dimensional Trajectory Prediction Based on Regression and LSTM Models. Biomimetics 2024, 9, 352. https://doi.org/10.3390/biomimetics9060352
Romero-Sorozábal P, Delgado-Oleas G, Laudanski AF, Gutiérrez Á, Rocon E. Novel Methods for Personalized Gait Assistance: Three-Dimensional Trajectory Prediction Based on Regression and LSTM Models. Biomimetics. 2024; 9(6):352. https://doi.org/10.3390/biomimetics9060352
Chicago/Turabian StyleRomero-Sorozábal, Pablo, Gabriel Delgado-Oleas, Annemarie F. Laudanski, Álvaro Gutiérrez, and Eduardo Rocon. 2024. "Novel Methods for Personalized Gait Assistance: Three-Dimensional Trajectory Prediction Based on Regression and LSTM Models" Biomimetics 9, no. 6: 352. https://doi.org/10.3390/biomimetics9060352
APA StyleRomero-Sorozábal, P., Delgado-Oleas, G., Laudanski, A. F., Gutiérrez, Á., & Rocon, E. (2024). Novel Methods for Personalized Gait Assistance: Three-Dimensional Trajectory Prediction Based on Regression and LSTM Models. Biomimetics, 9(6), 352. https://doi.org/10.3390/biomimetics9060352