A Review Delving into the Factors Influencing Mycelium-Based Green Composites (MBCs) Production and Their Properties for Long-Term Sustainability Targets
Abstract
:1. Introduction
2. Basic Details about Mycelium-Based Green Composites
3. Fungal Species Selection
4. Substrate Type Selection
Substrate Types | Cellulose (%) | Hemicellulose (%) | Lignin (%) | pH | Organic Carbon (%) | Total Nitrogen (%) | C: N Ratio |
---|---|---|---|---|---|---|---|
Bamboo | 45.7–46.5 | 18.8–26.6 | 21.1–25.7 | 5.4–6.76 | 34.4 | 1.03 | 33.4:1 |
Cardboard pulp | 56.4–60 | 13.8–15 | 10–12 | 7.1 | 29.5 | 1.18 | 25:1 |
Coconut coir | 36–44.2 | 0.3–22.1 | 32.8–45 | 5.7 | 29.38 | 0.44 | 66:1 |
Coconut shell powder | 24.2 | 38.56 | 29.35 | 5.2–5.7 | 52.6 | 2 | 26.3:1 |
Spent coffee grounds | 9–33.1 | 30–39 | 24–29 | 5.4 | 48 | 2.29 | 21:1 |
Corn cobs | 33.7–45 | 31.9–39 | 6.1–15.9 | 7.8–9 | 47.54 | 1.32 | 36:1 |
Corn husk | 45–55 | 27–39 | 7.5–20 | 5.4–9 | 45.98 | 0.97 | 47:1 |
Corn stalk | 33.8–35 | 21.1–25 | 19.9–35 | 5.9–8.2 | 47.1 | 0.81 | 58.1:1 |
Corn stover | 35–44 | 24–30 | 7–21.8 | 5.5–5.7 | 41.4 | 0.8 | 51.8:1 |
Cotton stalk | 35–67 | 16–25 | 13–35 | 4.74 | 41.5 | 1.81 | 22.9:1 |
Cotton waste | 83–96 | 1–2 | 0.3–1 | 5.74 | 48.8 | 1.16 | 42.1:1 |
Flax | 63–88 | 5–12 | 3–5 | 6.8–6.9 | 49.3 | 0.59 | 84:1 |
Fruit peels | 11.2–43.6 | 5.4–33.3 | 2.2–64 | 3.5–5.9 | 36–43.2 | 0.42–2.23 | 19–84.7:1 |
Hardwood | 20–55 | 25–50 | 20–25 | 5.1–8.8 | 46.3–50 | 0.2–0.83 | 60–231:1 |
Hemp fibers | 53.2–85 | 5.7–16 | 3.3–13 | 5 | 45.6 | 0.3 | 152:1 |
Hemp hurds | 43.3–85.1 | 37.2–39.5 | 20.7–23.1 | 5 | 46.4 | 0.27 | 171.9:1 |
Jute fibers | 61–73 | 13.6–23 | 12–26 | 7 | 41.1 | 0.97 | 42.4:1 |
Lavender straw | 18–38 | 28 | 25 | – | 48.1 | 1.3 | 37:1 |
Miscanthus biomass | 38–40 | 18–24 | 24–25 | – | 51.52 | 0.18 | 286.2:1 |
Nutshell | 18.6–37 | 18.7–49.3 | 21–49.8 | 5.4–7.1 | 38.5–48.6 | 0.42–0.72 | 61–116:1 |
Oat husk | 34.9–38.7 | 35.3–37 | 5.6–10.1 | – | 34.6 | 0.71 | 48.7:1 |
Peach palm sheath | 34.2 | 21.3 | 19.5 | 5.8–6 | 40.87 | 1.14 | 35.8:1 |
Rapeseed cake | 43.8–46.5 | 15.6–17.5 | 8.7–15.8 | 5.9 | 46.1 | 0.71 | 65:1 |
Rapeseed straw | 37.5–53 | 18.1–31.4 | 9.6–21.3 | – | 44.4 | 1.29 | 34.4:1 |
Rice husks | 25–40 | 16–31.6 | 26–31 | 6.8 | 39.8 | 0.55 | 79.6:1 |
Rice straw | 28–38.1 | 22–31.1 | 12–26.4 | 5.9–7.2 | 35.7 | 0.7 | 51:1 |
Rose flowers | 29.13 | 14.57 | 18.57 | 5.2 | 13.9 | 0.82 | 16.8:1 |
Sawdust | 15–44 | 35–60 | 15–30 | 3.5–8.8 | 27.1–57.6 | 0.1–0.5 | 115–271:1 |
Softwood | 27–50 | 20–40 | 25–31 | 5.1–8.8 | 41.3–55.1 | 0.2–1.3 | 42–206:1 |
Spent mushroom substrates | 36.19 | 22.24 | 11.99 | 7.5 | 32.61–49.82 | 0.85–1.72 | 29–38.4:1 |
Sugarcane bagasse | 37–48 | 19–25 | 19–42 | 8.75 | 45 | 0.3 | 150:1 |
Textile waste | 97–98 | 1–2 | <1 | – | 15.9–24.3 | 0.15–0.24 | 101–106:1 |
Vegetable peels | 17–63 | 11.4–32 | 3–36 | 3.9–6.1 | 34.5–41 | 0.65–1.9 | 21.6–53:1 |
Wheat bran | 11.65–13.15 | 49.7 | 5.3 | 6.3–6.8 | 36.92 | 1.98 | 18.6:1 |
Wheat straw | 30–38 | 25.2–32 | 13–32 | 7.5–17 | 41.7 | 0.4 | 104:1 |
5. Substrate Preparation
6. Factors Controlling Production for MBCs
- Temperature: Maintain an ideal temperature range for mycelium growth, typically between 20 °C to 30 °C (68 °F to 86 °F). Specific strains may have slight variations in their preferred temperature range [138].
- Relative humidity: Maintaining appropriate humidity levels is essential in MBCs production. Different fungal groups have varied optimal humidity requirements. White rot fungi, commonly used in MBCs fabrication, grow best in humidity levels ranging from 70% to 80%. In contrast, brown rot fungi prefer humidity levels exceeding 95%. Soft rot fungi and other species show the highest growth rates when relative humidity ranges from 60% to 75%. Ensuring adequate moisture content prevents drying and promotes healthy mycelial development [28].
- Aeration and gas exchange: Provide sufficient aeration throughout the substrate for healthy mycelium growth. Oxygen is crucial for mycelial metabolism, making proper gas exchange vital. Incorporate ventilation features to facilitate air exchange, preventing anaerobic conditions and ensuring uniform colonization [139].
- Incubation time: The duration of the incubation period varies depending on factors such as the strain of mycelium, substrate composition, and production goals. Typically ranging from several days to a few weeks or even longer (5–42 days), the duration is determined by the desired level of colonization, the purposeful application, and the volume of the inoculated substrate [24].
- Light exposure: During the colonization phase, mycelium thrives in darkness. Limit exposure to light during this stage [11].
7. Dehydrating Methods and Post-Processing Techniques
7.1. Dehydrating
7.2. Pressing
- Cold pressing: The first option involves applying pressure to MBC samples at or near room temperature [51]. This method is often used to shape and consolidate the material into specific forms without the application of heat. The effect on material properties maintains a softer texture and allows the mycelium to continue growing, resulting in greater flexibility compared to heat pressing. Furthermore, it preserves some of the inherent characteristics of the mycelium, resulting in the obtained MBCs with a more natural feel. This is suitable for applications where a softer and more porous structure is desired, such as producing acoustic panels or packaging materials [149].
- Heat pressing: The second option involves applying pressure to the MBCs at elevated temperatures. This method aims to increase the material’s density, strength, and durability. The effect on material properties involves enhancing material density and structural integrity, resulting in a more rigid and durable product. Importantly, this can contribute to a smoother surface finish, making it suitable for applications where a polished appearance is desirable, along with dimensional stability. This is particularly applicable to materials used in semi-construction (building) and furniture that require strength-bearing properties [24,33,150]. However, the heat may induce some level of color change in the MBCs, potentially transitioning to a gradient from grey to brown [140]. Previous studies have reported various heat pressing conditions for MBCs production, such as temperatures of 250 °C for 20 min [142], pressures less than 30 kN at 150 °C for 20 min [33], pressures of 3.5–4.0 MPa at 160 °C for 6 min [151], and pressures of 20 MPa at 120 °C for 20 min [152]. These conditions offer different advantages for the final MBCs.
- Nonpressing: the third option refers to processes without external pressure, achieving shaping and consolidation through methods like hand pressure, mold casting, or 3D printing. This preserves the delicate structure of the mycelium more effectively than pressing methods, allowing intricate and detailed designs [4,153]. It may result in a lighter and more porous material compared to pressing methods, suitable for applications not requiring strength, like certain types of packaging materials, insulation materials, or materials used in agricultural applications [33,149].
8. Designing Molds and Sterilization Processes
9. Other Related Factors
10. Guidelines for Improving Properties
11. Comparison of Costs
12. Additional Key Recommendations and Precautions
- Fungal strain degeneration: Frequent strain degradation is a significant concern in fungal product production, particularly affecting economically important varieties like edible and medicinal mushrooms, resulting in substantial production losses. Although tip mycelium subculture is commonly used for vitality maintenance, successive subculturing can lead to strain degradation, affecting mycelium growth efficiency over time [174]. Continuous subculturing without reintroducing genetic diversity can cause a decline in vitality [175,176]. For example, Yin et al. [177] observed strain degeneration from the third generation, displaying incomplete growth by the fourth. Similarly, Kim et al. [178] reported symptoms of degraded strains during continuous subculturing, such as slowed vegetative mycelial growth and less-tight mycelial pads. Inducing mushroom mycelium to produce fruiting bodies completes the fungal life cycle, generating complex mycelium structures and spores with the original genetic information (Zhao et al. [174]). Directly isolating mycelium and spores from fruiting bodies (first generation) is a more effective approach, aiding in maintaining genetic diversity and initiating fresh cultures with lower risks of mutations or degradations in strain characteristics (Figure 5) (Sakamoto et al. [179]). This part supports the efficient growth of fungal mycelium, effective bonding with substrate particles, and dense surface coverage, resulting in great composite properties.
- Research collaboration: Encourage collaboration with research institutions, industry partners, and experts in biotechnology science, physics, materials science, architecture and design, engineering, environmental science, chemistry, and multidisciplinary. This collaborative approach ensures staying updated on the latest developments, sharing knowledge, and fostering continuous improvements in production processes [7,22]
- Biosecurity protocols: Establish biosecurity protocols to prevent contamination during the production process. Strict hygiene measures, including personnel training, cleanroom practices, and equipment sterilization, are essential to ensure the purity of the MBC products [180].
- Regulatory compliance: Stay informed about and adhere to relevant regulatory guidelines and standards for MBCs production. Compliance ensures the products meet safety, environmental, and quality standards. Moreover, a comprehensive evaluation of properties encompassing physical, mechanical, chemical, and biological aspects should align with internationally accepted standards like the International Organization for Standardization (ISO), American Society for Testing and Materials (ASTM), European Standards (EN), and other relevant benchmarks [24].
- Storage conditions: To ensure optimal conditions for the dry storage of raw materials and MBC samples, it is recommended to maintain a relative humidity level below 60% (preferably between 30% and 50%). This measure effectively prevents unwanted fungal growth and enhances the long-term stability of the samples [181]. Maintaining a low relative humidity is essential for preserving the integrity and properties of MBCs. Adhering to proper storage practices plays a key role in sustaining the qualities and characteristics of MBCs, ensuring their longevity and overall quality.
- Waste management: Developing and creating an effective waste management plan for byproducts and unused materials ensures a clean workspace and successful contamination prevention. Responsible disposal or recycling practices contribute to the sustainability of the overall production process [182].
- Life cycle assessment (LCA): Performing life cycle assessments is integral to understanding and evaluating the environmental footprint of MBCs. This comprehensive analysis empowers stakeholders to make well-informed decisions concerning the sustainability and eco-friendliness of the product [183].
- Suggested parameters: The diverse properties of MBCs are influenced by many production parameters. Table 4 provides suggestions for desirable properties of MBCs across various aspects based on findings from previous studies employing different parameters and techniques. These suggestions serve as both examples and guidelines for producing efficient and high-quality MBCs materials, helping the selection process of appropriate parameters, and reducing the time required.
13. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bradu, P.; Biswas, A.; Nair, C.; Sreevalsakumar, S.; Patil, M.; Kannampuzha, S.; Mukherjee, A.G.; Wanjari, U.R.; Renu, K.; Vellingiri, B.; et al. Recent advances in green technology and Industrial Revolution 4.0 for a sustainable future. Environ. Sci. Pollut. Res. Int. 2023, 30, 124488–124519. [Google Scholar] [CrossRef] [PubMed]
- Balaeș, T.; Radu, B.M.; Tănase, C. Mycelium-composite materials—A promising alternative to plastics? J. Fungi 2023, 9, 210. [Google Scholar] [CrossRef]
- Teeraphantuvat, T.; Jatuwong, K.; Jinanukul, P.; Thamjaree, W.; Lumyong, S.; Aiduang, W. Improving the physical and mechanical properties of mycelium-based green composites using paper waste. Polymers 2024, 16, 262. [Google Scholar] [CrossRef] [PubMed]
- Butu, A.; Rodino, S.; Miu, B.; Butu, M. Mycelium-based materials for the ecodesign of bioeconomy. Digest J. Nanomater. Biostruct. 2020, 15, 1129–1140. [Google Scholar] [CrossRef]
- Manan, S.; Ullah, M.W.; Ul-Islam, M.; Atta, O.M.; Yang, G. Synthesis and applications of fungal mycelium-based advanced functional materials. J. Bioresour. Bioprod. 2021, 6, 1–10. [Google Scholar] [CrossRef]
- Al-Qahtani, S.; Koç, M.; Isaifan, R.J. Mycelium-based thermal insulation for domestic cooling footprint reduction: A review. Sustainability 2023, 15, 13217. [Google Scholar] [CrossRef]
- Sydor, M.; Bonenberg, A.; Doczekalska, B.; Cofta, G. Mycelium-based composites in art, architecture, and interior design: A review. Polymers 2021, 14, 145. [Google Scholar] [CrossRef]
- Vašatko, H.; Gosch, L.; Jauk, J.; Stavric, M. Basic research of material properties of mycelium-based composites. Biomimetics 2022, 7, 51. [Google Scholar] [CrossRef]
- Aiduang, W.; Chanthaluck, A.; Kumla, J.; Jatuwong, K.; Srinuanpan, S.; Waroonkun, T.; Oranratmanee, W.; Lumyong, S.; Suwannarach, N. Amazing fungi for eco-friendly composite materials: A comprehensive review. J. Fungi 2022, 8, 842. [Google Scholar] [CrossRef]
- Li, K.; Jia, J.; Wu, N.; Xu, Q. Recent advances in the construction of biocomposites based on fungal mycelia. Front. Bioeng. BioTechnol. 2022, 10, 1067869. [Google Scholar] [CrossRef]
- Barta, D.G.; Simion, I.; Tiuc, A.E.; Vasile, O. Mycelium-based composites as a sustainable solution for waste management and circular economy. Materials 2024, 17, 404. [Google Scholar] [CrossRef] [PubMed]
- Payal, R. Green composites: Versatile uses and applications in life. In Green Sustainable Process for Chemical and Environmental Engineering and Science; Elsevier: Amsterdam, The Netherlands, 2022; pp. 165–193. [Google Scholar]
- La Mantia, F.P.; Morreale, M. Green composites: A brief review. Compos. Appl. Sci. Manuf. 2011, 42, 579–588. [Google Scholar] [CrossRef]
- Jadhav, A.C.; Pandit, P.; Gayatri, T.N.; Chavan, P.P.; Jadhav, N.C. Production of green composites from various sustainable raw materials. In Green Composites Sustainable Raw Materials; Spring: Berlin/Heidelberg, Germany, 2019; pp. 1–24. [Google Scholar] [CrossRef]
- Chen, N.; Pilla, S. A comprehensive review on transforming lignocellulosic materials into biocarbon and its utilization for composites applications. Compos. C Open Access 2022, 7, 100225. [Google Scholar] [CrossRef]
- Andrew, J.J.; Dhakal, H.N. Sustainable biobased composites for advanced applications: Recent trends and future opportunities–A critical review. Compos. C Open Access 2022, 7, 100220. [Google Scholar] [CrossRef]
- Phiri, R.; Rangappa, S.M.; Siengchin, S.; Oladijo, O.P.; Dhakal, H.N. Development of sustainable biopolymer-based composites for lightweight applications from agricultural waste biomass: A review. Adv. Ind. Eng. Polym. Res. 2023, 6, 436–450. [Google Scholar] [CrossRef]
- Pelletier, M.G.; Holt, G.A.; Wanjura, J.D.; Greetham, L.; McIntyre, G.; Bayer, E.; Kaplan-Bie, J. Acoustic evaluation of mycological biopolymer, an all-natural closed cell foam alternative. Ind. Crops Prod. 2019, 139, 111533. [Google Scholar] [CrossRef]
- Yang, L.; Park, D.; Qin, Z. Material function of mycelium-based bio-composite: A review. Front. Mater. 2021, 8, 737377. [Google Scholar] [CrossRef]
- Alemu, D.; Tafesse, M.; Mondal, A.K. Mycelium-based composite: The future sustainable biomaterial. Int. J. Biomater. 2020, 2022, 8401528. [Google Scholar] [CrossRef]
- Lingam, D.; Narayan, S.; Mamun, K.; Charan, D. Engineered mycelium-based composite materials: Comprehensive study of various properties and applications. Constr. Build. Mater. 2023, 391, 131841. [Google Scholar] [CrossRef]
- Aiduang, W.; Jatuwong, K.; Jinanukul, P.; Suwannarach, N.; Kumla, J.; Thamjaree, W.; Teeraphantuvat, T.; Waroonkun, T.; Oranratmanee, R.; Lumyong, S. Sustainable Innovation: Fabrication and characterization of mycelium-based green composites for modern interior materials using agro-industrial wastes and different species of fungi. Polymers 2024, 16, 550. [Google Scholar] [CrossRef]
- Sydor, M.; Cofta, G.; Doczekalska, B.; Bonenberg, A. Fungi in mycelium-based composites: Usage and recommendations. Materials 2022, 15, 6283. [Google Scholar] [CrossRef]
- Alaneme, K.K.; Anaele, J.U.; Oke, T.M.; Kareem, S.A.; Adediran, M.; Ajibuwa, O.A.; Anabaranze, Y.O. Mycelium based composites: A review of their bio-fabrication procedures, material properties and potential for green building and construction applications. Alex. Eng. J. 2023, 83, 234–250. [Google Scholar] [CrossRef]
- Javadian, A.; Le Ferrand, H.; Hebel, D.E.; Saeidi, N. Application of mycelium-bound composite materials in construction industry: A short review. SOJ Mater. Sci. Eng. 2020, 7, 1–9. [Google Scholar] [CrossRef]
- Elsacker, E.; Vandelook, S.; Brancart, J.; Peeters, E.; Laet, L.D. Mechanical, physical and chemical characterisation of myce-lium–based composites with different types of lignocellulosic substrates. PLoS ONE 2019, 7, e0213954. [Google Scholar]
- Sierra, L.A.B.; Mendes-Pereira, T.; García, G.J.Y.; Werkhaizer, C.Q.; de Rezende, J.B.; Rodrigues, T.A.B.; Badotti, F.; Cardoso, E.S.d.C.; da Costa, A.M.; Uetanabaro, A.P.; et al. Current situation and future perspectives for the use of fungi in the biomaterial industry and proposal for a new classification of fungal-derived materials. PeerJ Mater. Sci. 2023, 5, e31. [Google Scholar] [CrossRef]
- Huang, Z.; Wei, Y.; Hadigheh, S.A. Variations in the properties of engineered mycelium-bound composites (mbcs) under different manufacturing conditions. Buildings 2024, 14, 155. [Google Scholar] [CrossRef]
- Wimmers, G.; Klick, J.; Tackaberry, L.; Zwiesigk, C.; Egger, K.; Massicotte, H. Fundamental studies for designing insulation panels from wood shavings and filamentous fungi. BioResources 2019, 14, 5506–5520. [Google Scholar] [CrossRef]
- Schritt, H.; Vidi, S.; Pleissner, D. Spent mushroom substrate and sawdust to produce mycelium-based thermal insulation composites. J. Clean. Prod. 2021, 313, 127910. [Google Scholar] [CrossRef]
- Tsao, Y. Characterization of Mycelium-Based Composites as Foam-like Wall Insulation Material. Ph.D. Dissertation, Eidhoven University of Technology, Eindhoven, The Netherlands, 2020. [Google Scholar]
- Scopus.com. Available online: https://www.scopus.com/search/form.uri?display=basic#basic (accessed on 2 March 2024).
- Appels, F.V.W.; Camere, S.; Montalti, M.; Karana, E.; Jansen, K.M.B.; Dijksterhuis, J.; Krijgsheld, P.; Wosten, H.A.B. Fabrication factors influencing mechanical, moisture and water related properties of mycelium-based composites. Mater. Des. 2019, 161, 64–71. [Google Scholar] [CrossRef]
- Meyer, V.; Basenko, E.Y.; Benz, J.P.; Braus, G.H.; Caddick, M.X.; Csukai, M.; De Vries, R.P.; Endy, D.; Frisvad, J.C.; Gunde-Cimerman, N.; et al. Growing a circular economy with fungal biotechnology: A white paper. Fungal Biol. Biotechnol. 2020, 7, 5. [Google Scholar] [CrossRef]
- Vandelook, S.; Elsacker, E.; Van Wylick, A.; De Laet, L.; Peeters, E. Current state and future prospects of pure mycelium materials. Fungal Biol. Biotechnol. 2021, 8, 20. [Google Scholar] [CrossRef] [PubMed]
- Aiduang, W.; Kumla, J.; Srinuanpan, S.; Thamjaree, W.; Lumyong, S.; Suwannarach, N. Mechanical, physical, and chemical properties of mycelium-based composites produced from various lignocellulosic residues and fungal species. J. Fungi 2022, 8, 1125. [Google Scholar] [CrossRef] [PubMed]
- Peeters, E.; Salueña Martin, J.; Vandelook, S. Growing sustainable materials from filamentous fungi. Biochemist 2023, 45, 8–13. [Google Scholar] [CrossRef]
- Antinori, M.E.; Ceseracciu, L.; Mancini, G.; Heredia-Guerrero, J.A.; Athanassiou, A. Fine-tuning of physicochemical properties and growth dynamics of mycelium-based materials. ACS Appl. Bio Mater. 2020, 32, 1044–1051. [Google Scholar] [CrossRef] [PubMed]
- De Lima, G.G.; Schoenherr, Z.C.P.; Magalhães, W.L.E.; Tavares, L.B.B.; Helm, C.V. Enzymatic activities and analysis of a mycelium-based composite formation using peach palm (Bactris gasipaes) residues on Lentinula edodes. Bioresour. Bioprocess. 2020, 7, 58. [Google Scholar] [CrossRef]
- Nashiruddin, N.I.; Chua, K.S.; Mansor, A.F.A.; Rahman, R.; Lai, J.C.; Wan Azelee, N.I.; El Enshasy, H. Effect of growth factors on the production of mycelium-based biofoam. Clean Technol. Environ. Policy 2022, 24, 351–361. [Google Scholar] [CrossRef]
- Haneef, M.; Ceseracciu, L.; Canale, C.; Bayer, I.S.; Heredia-Guerrero, J.A.; Athanassiou, A. Advanced materials from fungal mycelium: Fabrication and tuning of physical properties. Sci. Rep. 2017, 7, srep41292. [Google Scholar] [CrossRef]
- Tudryn, G.J.; Smith, L.C.; Freitag, J.; Bucinell, R.; Schadler, L.S. Processing and morphology impacts on mechanical properties of fungal based biopolymer composites. J. Polym. Environ. 2018, 26, 1473–1483. [Google Scholar] [CrossRef]
- Santos, I.S.; Nascimento, B.L.; Marino, R.H.; Sussuchi, E.M.; Matos, M.P.; Griza, S. Influence of drying heat treatments on the mechanical behavior and physico-chemical properties of mycelial biocomposite. Compos. B Eng. 2021, 217, 108870. [Google Scholar] [CrossRef]
- Bähner, F.D.; Prado-Rubio, O.A.; Huusom, J.K. Challenges in optimization and control of biobased process systems: An industrial-academic perspective. Ind. Eng. Chem. Res. 2021, 60, 14985–15003. [Google Scholar] [CrossRef]
- Livne, A.; Wösten, H.A.; Pearlmutter, D.; Gal, E. Fungal mycelium bio-composite acts as a CO2-sink building material with low embodied energy. ACS Sustain Chem Eng. 2022, 10, 12099–12106. [Google Scholar] [CrossRef]
- Ghazvinian, A.; Farrokhsiar, P.; Vieira, F.; Pecchia, J.; Gursoy, B. Mycelium-based bio-composites for architecture: Assessing the effects of cultivation factors on compressive strength. Mater. Res. Innov. 2019, 2, 505–514. [Google Scholar]
- Attias, N.; Danai, O.; Ezov, N.; Tarazi, E.; Grobman, Y.J. Developing novel applications of mycelium based bio-composite materials for design and architecture. In Proceedings of the Building with Biobased Materials: Best Practice And Performance Specification, Zagreb, Croatia, 9–16 September 2017; pp. 1–10. [Google Scholar]
- Abdelhady, O.; Spyridonos, E.; Dahy, H. Bio-modules: Mycelium-based composites forming a modular interlocking system through a computational design towards sustainable architecture. Designs 2023, 7, 20. [Google Scholar] [CrossRef]
- Santulli, C. Mycelium-grown composites as a multidisciplinary way for the development of innovative materials for design and architecture. Cuad. Cent. Estud. Diseño Y Comun. 2023, 190, 165–179. [Google Scholar] [CrossRef]
- Citraresmi, A.D.P.; Haryati, N. The strategy of business model development in mushroom agroindustry. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2021; Volume 924, p. 012057. [Google Scholar]
- Elsacker, E.V. Mycelium Matters-An Interdisciplinary Exploration of the Fabrication and Properties of Mycelium-Based Materials. Ph.D. Thesis, Vrije Universiteit Brussel, Brussel, Belgium, 2021. [Google Scholar]
- Kamali, M.; Sarvtin, M.T. Fungal colonization of wood and wood products inside the buildings of Sari, northern Iran. South Asian J. Exp. Biol. 2016, 6, 101–104. [Google Scholar]
- Martín, J.A.; López, R. Biological Deterioration and Natural Durability of Wood in Europe. Forests 2023, 14, 283. [Google Scholar] [CrossRef]
- Aslanzadeh, S.; Ishola, M.M.; Richards, T.; Taherzadeh, M.J. An overview of existing individual unit operations. Biorefineries 2014, 3–36. [Google Scholar] [CrossRef]
- Jones, M.; Huynh, T.; John, S. Inherent species characteristic influence and growth performance assessment for mycelium composite applications. Adv. Mater. Lett. 2018, 9, 71–80. [Google Scholar] [CrossRef]
- Tacer-Caba, Z.; Varis, J.J.; Lankinen, P.; Mikkonen, K.S. Comparison of novel fungal mycelia strains and sustainable growth substrates to produce humidity-resistant biocomposites. Mater. Des. 2020, 192, 108728. [Google Scholar] [CrossRef]
- Porter, D.L.; Bradshaw, A.J.; Nielsen, R.H.; Newell, P.; Dentinger, B.T.; Naleway, S.E. The melanized layer of Armillaria ostoyae rhizomorphs: Its protective role and functions. J. Mech. Behav. Biomed. Mater. 2022, 125, 104934. [Google Scholar] [CrossRef]
- Porter, D.L.; Naleway, S.E. Hyphal systems and their effect on the mechanical properties of fungal sporocarps. Acta Biomater. 2022, 145, 272–282. [Google Scholar] [CrossRef]
- Heaton, L.; Obara, B.; Grau, V.; Jones, N.; Nakagaki, T.; Boddy, L.; Fricker, M.D. Analysis of fungal networks. Fungal Biol. Rev. 2012, 26, 12–29. [Google Scholar] [CrossRef]
- Jones, M.; Mautner, A.; Luenco, S.; Bismarck, A.; John, S. Engineered mycelium composite construction materials from fungal biorefineries: A critical review. Mater. Des. 2020, 187, 108397. [Google Scholar] [CrossRef]
- BioRender.com. Available online: https://www.biorender.com/ (accessed on 19 March 2024).
- Sun, W. Fungal mycelia: From innovative materials to promising products: Insights and challenges. Biointerphases 2024, 19, 018502. [Google Scholar] [CrossRef] [PubMed]
- Läkk, H.; Krijgsheld, P.; Montalti, M.; Wösten, H. Fungal based biocomposite for habitat structures on the Moon and Mars. In Proceedings of the International Astronautical Congress (IAC), Bremen, Germany, 1–5 October 2018; International Astronautical Federation, IAF. pp. 1–11. [Google Scholar]
- Xiao, Q.; Ma, F.; Li, Y.; Yu, H.; Li, C.; Zhang, X. Differential proteomic profiles of Pleurotus ostreatus in response to lignocellulosic components provide insights into divergent adaptive mechanisms. Front. Microbiol. 2017, 8, 480. [Google Scholar] [CrossRef] [PubMed]
- Rigobello, A.; Ayres, P. Compressive behaviour of anisotropic mycelium-based composites. Sci. Rep. 2022, 12, 6846. [Google Scholar] [CrossRef] [PubMed]
- Andlar, M.; Rezić, T.; Marđetko, N.; Kracher, D.; Ludwig, R.; Šantek, B. Lignocellulose degradation: An overview of fungi and fungal enzymes involved in lignocellulose degradation. Eng. Life Sci. 2018, 18, 768–778. [Google Scholar] [CrossRef] [PubMed]
- Barnett, A.; Pyle, L.; Subramanian, S.K. Biogas Technology in the Third World: A Multi-Disciplinary Review; IDRC: Ottawa, ON, Canada, 1978. [Google Scholar]
- Tetreault, J. Coatings for Display and Storage in Museums; Canadian Conservation Institute: Ottawa, ON, Canada, 1999. [Google Scholar]
- Goodale, C.L.; Lajtha, K.; Nadelhoffer, K.J.; Boyer, E.W.; Jaworski, N.A. Forest nitrogen sinks in large eastern US watersheds: Estimates from forest inventory and an ecosystem model. In The Nitrogen Cycle at Regional to Global Scales; Springer: Berlin/Heidelberg, Germany, 2002; pp. 239–266. [Google Scholar]
- Thompson, R.K.; McKinnon, J.J.; Mustafa, A.F.; Maenz, D.D.; Racz, V.J.; Christensen, D.A. Chemical composition, ruminal kinetic parameters, and nutrient digestibility of ammonia treated oat hulls. Can. J. Anim. Sci. 2002, 82, 103–109. [Google Scholar] [CrossRef]
- Lamlom, S.H.; Savidge, R.A. A reassessment of carbon content in wood: Variation within and between 41 North American species. Biomass Bioenergy 2003, 25, 381–388. [Google Scholar] [CrossRef]
- Abdelhamid, M.T.; Horiuchi, T.; Oba, S. Composting of rice straw with oilseed rape cake and poultry manure and its effects on faba bean (Vicia faba L.) growth and soil properties. Bioresour. Technol. 2004, 93, 183–189. [Google Scholar] [CrossRef]
- Roldán-Martín, A.; Esparza-García, F.; Calva-Calva, G.; Rodríguez-Vázquez, R. Effects of mixing low amounts of orange peel (Citrus reticulata) with hydrocarbon-contaminated soil in solid culture to promote remediation. J. Environ. Sci. Health A 2006, 41, 2373–2385. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.M.; Halim, M.A.; Islam, M.S.; Biswas, C.K. Analysis the plant nutrients and organic matter in textile sludge in Gazipur, Bangladesh. J. Environ. Sci. Technol. 2009, 2, 63–67. [Google Scholar] [CrossRef]
- Kargarfard, A.; Latibari, A.J. The performance of corn and cotton stalks for medium density fiberboard production. BioResources 2011, 6, 1147–1157. [Google Scholar] [CrossRef]
- Agarry, S.E.; Aremu, M.O. Batch equilibrium and kinetic studies of simultaneous adsorption and biodegradation of phenol by pineapple peels immobilized Pseudomonas aeruginosa NCIB 950. Br. Biotechnol. J. 2012, 2, 26–48. [Google Scholar] [CrossRef]
- Dębska, B.; Drąg, M.; Tobiasova, E. Effect of post-harvest residue of maize, rapeseed, and sunflower on humic acids properties in various soils. Pol. J. Environ. Stud. 2012, 21, 603–613. [Google Scholar]
- Radenkovs, V.; Klava, D. Physically-chemical characterization of industrial wheat bran from Latvia. In Proceedings of the Annual 18th International Scientific Conference Proceedings, Raesfeld, Germany, 16–19 September 2012; Research for Rural Development. pp. 155–159. [Google Scholar]
- Tripetchkul, S.; Pundee, K.; Koonsrisuk, S.; Akeprathumchai, S. Co-composting of coir pith and cow manure: Initial C/N ratio vs physico-chemical changes. Int. J. Recycl. Org. Waste Agric. 2012, 1, 15. [Google Scholar] [CrossRef]
- Wang, A.S.; Hu, P.; Hollister, E.B.; Rothlisberger, K.L.; Somenahally, A.; Provin, T.L.; Hons, F.M.; Gentry, T.J. Impact of Indian mustard (Brassica juncea) and flax (Linum usitatissimum) seed meal applications on soil carbon, nitrogen, and microbial dynamics. Appl. Environ. Soil Sci. 2011, 2012, 351609. [Google Scholar] [CrossRef]
- Isikhuemhen, O.S.; Mikiashvili, N.A.; Senwo, Z.N.; Ohimain, E.I. Biodegradation and sugar release from canola plant biomass by selected white rot fungi. Adv. Biol. Chem. 2014, 4, 395. [Google Scholar] [CrossRef]
- Grover, R.; Goel, A.; Wati, L.; Raj, K. Ethanol production from spent oyster mushroom substrate. Pollut. Res. 2015, 34, 121–124. [Google Scholar]
- Ioelovich, M. Recent findings and the energetic potential of plant biomass as a renewable source of biofuels—A review. BioResources 2015, 10, 1879–1914. [Google Scholar] [CrossRef]
- Lesage-Meessen, L.; Bou, M.; Sigoillot, J.C.; Faulds, C.B.; Lomascolo, A. Essential oils and distilled straws of lavender and lavandin: A review of current use and potential application in white biotechnology. Appl. Microbiol. Biotechnol. 2015, 99, 3375–3385. [Google Scholar] [CrossRef] [PubMed]
- Lesage-Meessen, L.; Bou, M.; Ginies, C.; Chevret, D.; Navarro, D.; Drula, E.; Bonnin, E.; del Río, J.C.; Odinot, E.; Bisotto, A.; et al. Lavender-and lavandin-distilled straws: An untapped feedstock with great potential for the production of high-added value compounds and fungal enzymes. Biotechnol. Biofuels 2018, 11, 217. [Google Scholar] [CrossRef] [PubMed]
- Liyanage, C.D.; Pieris, M. A physico-chemical analysis of coconut shell powder. Procedia Chem. 2015, 16, 222–228. [Google Scholar] [CrossRef]
- Boneberg, B.S.; Machado, G.D.; Santos, D.F.; Gomes, F.; Faria, D.J.; Gomes, L.A.; Santos, F.A. Biorefinery of lignocellulosic biopolymers. Rev. Eletrônica Cient. UERGS 2016, 2, 79–100. [Google Scholar] [CrossRef]
- Pathak, P.D.; Mandavgane, S.A.; Kulkarni, B.D. Characterizing fruit and vegetable peels as bioadsorbents. Curr. Sci. 2016, 110, 2114–2123. [Google Scholar] [CrossRef]
- Gervásio, E.S.; Ishikawa, F.H.; da Silva, V.D.; de Melo Júnior, J.C.F. Water levels depletion in substrate in the development of Heliconia psittacorum L.F. CV. Red Opal. Irriga 2017, 22, 44–58. [Google Scholar] [CrossRef]
- Gismatulina, Y.A.; Budaeva, V.V. Chemical composition of five Miscanthus sinensis harvests and nitric-acid cellulose therefrom. Ind Crops Prod. 2017, 109, 227–232. [Google Scholar] [CrossRef]
- Mishra, A.; Taing, K.; Hall, M.W.; Shinogi, Y. Effects of rice husk and rice husk charcoal on soil physicochemical properties, rice growth and yield. Agric. Sci. 2017, 8, 1014–1032. [Google Scholar] [CrossRef]
- Pan-in, S.; Sukasem, N. Methane production potential from anaerobic co-digestions of different animal dungs and sweet corn residuals. Energy Procedia 2017, 138, 943–948. [Google Scholar] [CrossRef]
- Toushik, S.H.; Lee, K.T.; Lee, J.S.; Kim, K.S. Functional applications of lignocellulolytic enzymes in the fruit and vegetable processing industries. J. Food Sci. 2017, 82, 585–593. [Google Scholar] [CrossRef]
- Chowdhury, R.; Ghosh, S.; Debnath, B.; Manna, D. Indian agro-wastes for 2G biorefineries: Strategic decision on conversion processes. Sustain. Energy Technol. Policies A Transform. J. 2018, 1, 353–373. [Google Scholar]
- Rajendran, K.; Drielak, E.; Sudarshan Varma, V.; Muthusamy, S.; Kumar, G. Updates on the pretreatment of lignocellulosic feedstocks for bioenergy production—A review. Biomass Convers. Biorefinery 2018, 8, 471–483. [Google Scholar] [CrossRef]
- Zhang, J.; Ying, Y.; Li, X.; Yao, X. Evaluation of three kinds of nutshell with respect to utilization as culture media. BioResources 2018, 13, 7508–7518. [Google Scholar] [CrossRef]
- Zhou, J.L.; Song, S.; Huang, Z.X.; Yang, L.; Jiao, A.G.; Liu, Y.; Wang, S.X. Cultivation of Pleurotus ostreatus, a potential candidate for biogas residues degradation. BioResources 2018, 13, 5432–5449. [Google Scholar] [CrossRef]
- Ibrahim, M.I.J.; Sapuan, S.M.; Zainudin, E.S.; Yusoff, M.Z.M. Extraction, Chemical composition, and characterization of the potential lignocellulosic biomasses and polymers from corn plant parts. BioResources 2019, 14, 6485–6500. [Google Scholar] [CrossRef]
- Ajayi-Banji, A.A.; Rahman, S.; Sunoj, S.; Igathinathane, C. Impact of corn stover particle size and C/N ratio on reactor performance in solid-state anaerobic co-digestion with dairy manure. J. Air Waste Manag. Assoc. 2020, 70, 436–454. [Google Scholar] [CrossRef]
- Chikri, R.; Elhadiri, N.; Benchanaa, M.; El Maguana, Y. Efficiency of sawdust as low-cost adsorbent for dyes removal. J. Chem. 2020, 2020, 8813420. [Google Scholar] [CrossRef]
- Gummert, M.; Hung, N.V.; Chivenge, P.; Douthwaite, B. Sustainable Rice Straw Management; Springer Nature: Berlin/Heidelberg, Germany, 2020; p. 192. [Google Scholar]
- Kaur, P.; Taggar, M.S.; Kaur, J. Cellulolytic microorganisms: Diversity and role in conversion of rice straw to bioethanol. Cell Chem Technol. 2020, 54, 613–634. [Google Scholar] [CrossRef]
- Carmo, C.O.; Rodrigues, M.D.S.; Silva, F.D.; Irineu, T.G.; Soares, A.C.F. Spent mushroom substrate of Pleurotus ostreatus kummer increases basil biomass and essential oil yield. Rev. Caatinga 2021, 34, 548–558. [Google Scholar] [CrossRef]
- Angelova, G.; Brazkova, M.; Stefanova, P.; Blazheva, D.; Vladev, V.; Petkova, N.; Slavov, A.; Denev, P.; Karashanova, D.; Zaharieva, R.; et al. Waste rose flower and lavender straw biomass—An innovative lignocellulose feedstock for mycelium bio-materials development using newly isolated Ganoderma resinaceum GA1M. J. Fungi 2021, 7, 866. [Google Scholar] [CrossRef] [PubMed]
- Chong, T.Y.; Law, M.C.; Chan, Y.S. The potentials of corn waste lignocellulosic fibre as an improved reinforced bioplastic composites. J. Polym. Environ. 2021, 29, 363–381. [Google Scholar] [CrossRef]
- Mohammed, A.A.; Omran, A.A.B.; Hasan, Z.; Ilyas, R.A.; Sapuan, S.M. Wheat biocomposite extraction, structure, properties and characterization: A review. Polymers 2021, 13, 3624. [Google Scholar] [CrossRef]
- Olatunji, K.O.; Ahmed, N.A.; Ogunkunle, O. Optimization of biogas yield from lignocellulosic materials with different pretreatment methods: A review. Biotechnol. Biofuels 2021, 14, 159. [Google Scholar] [CrossRef]
- Voća, N.; Leto, J.; Karažija, T.; Bilandžija, N.; Peter, A.; Kutnjak, H.; Šurić, J.; Poljak, M. Energy properties and biomass yield of miscanthus x giganteus fertilized by municipal sewage sludge. Molecules 2021, 26, 4371. [Google Scholar] [CrossRef]
- Spacki, K.d.C.; Corrêa, R.C.G.; Uber, T.M.; Barros, L.; Ferreira, I.C.F.R.; Peralta, R.A.; Moreira, R.d.F.P.M.; Helm, C.V.; de Lima, E.A.; Bracht, A.; et al. Full exploitation of peach palm (Bactris gasipaes Kunth): State of the art and perspectives. Plants 2022, 11, 3175. [Google Scholar] [CrossRef]
- Hadrović, S.; Jovanović, F.; Braunović, S.; Mitrović, T.Ć.; Rakonjac, L.; Jandrić, M.; Hadrović, D. Biomass carbon and nitrogen content of softwood broadleaves in southwestern serbia. Hortic. Sci. 2022, 57, 684–685. [Google Scholar] [CrossRef]
- Hajj Obeid, M.; Douzane, O.; Freitas Dutra, L.; Promis, G.; Laidoudi, B.; Bordet, F.; Langlet, T. Physical and mechanical properties of rapeseed straw concrete. Materials 2022, 15, 8611. [Google Scholar] [CrossRef]
- Oyeleke, A.M.; Olajumoke, A.O.; Rofiyat, A.; Oluwatosin, A.J. Effect of pyrolysis temperature on chemical and structural properties of raw agricultural wastes. Food Sci. 2022, 6, 69–85. [Google Scholar]
- Marrot, L.; Candelier, K.; Valette, J.; Lanvin, C.; Horvat, B.; Legan, L.; DeVallance, D.B. Valorization of hemp stalk waste through thermochemical conversion for energy and electrical applications. Waste Biomass Valori. 2022, 13, 2267–2285. [Google Scholar] [CrossRef]
- Shahinur, S.; Sayeed, M.A.; Hasan, M.; Sayem, A.S.M.; Haider, J.; Ura, S. Current development and future perspective on natural jute fibers and their biocomposites. Polymers 2022, 14, 1445. [Google Scholar] [CrossRef] [PubMed]
- Zawadzińska, A.; Salachna, P.; Nowak, J.S.; Kowalczyk, W.; Piechocki, R.; Łopusiewicz, Ł.; Pietrak, A. Compost based on pulp and paper mill sludge, fruit-vegetable waste, mushroom spent substrate and rye straw improves yield and nutritional value of tomato. Agronomy 2021, 12, 13. [Google Scholar] [CrossRef]
- Ajien, A.; Idris, J.; Md Sofwan, N.; Husen, R.; Seli, H. Coconut shell and husk biochar: A review of production and activation technology, economic, financial aspect and application. Waste Manag. Res. 2023, 41, 37–51. [Google Scholar] [CrossRef]
- Balea, A.; Monte, M.C.; Fuente, E.; Sanchez-Salvador, J.L.; Tarrés, Q.; Mutjé, P.; Delgado-Aguilar, M.; Negro, C. Fit-for-use nanofibrillated cellulose from recovered paper. Nanomaterials 2023, 13, 2536. [Google Scholar] [CrossRef]
- Chiarelotto, M.; Melo, D.C.D.; Santos, M.V.A.D. Does the initial C/N ratio interfere with the performance of sewage sludge composting and cotton waste? Environ. Technol. 2023, 45, 2673–2683. [Google Scholar] [CrossRef]
- Chutimanukul, P.; Phatthanamas, W.; Thepsilvisut, O.; Chantarachot, T.; Thongtip, A.; Chutimanukul, P. Commercial scale production of Yamabushitake mushroom (Hericium erinaceus (Bull.) Pers. 1797) using rubber and bamboo sawdust substrates in tropical regions. Sci. Rep. 2023, 13, 13316. [Google Scholar] [CrossRef]
- De Nijs, E.A.; Maas, L.M.E.; Bol, R.; Tietema, A. Assessing the potential of co-composting rose waste as a sustainable waste management strategy: Nutrient availability and disease control. J. Clean. Prod. 2023, 399, 136685. [Google Scholar] [CrossRef]
- Mridha, N.; Ray, D.P.; Singha, A.; Das, A.; Bhowmick, M.; Ghosh, R.K.; Manjunatha, B.S.; Saha, B.; Roy, A.N.; Nayak, L.; et al. Composting of natural fibre wastes for preparation of organic manures and bio-enhancers. Econ. Aff. 2023, 68, 1121–1128. [Google Scholar]
- Palanikumar, K.; Natarajan, E.; Markandan, K.; Ang, C.K.; Franz, G. Targeted pre-treatment of hemp fibers and the effect on mechanical properties of polymer composites. Fibers 2023, 11, 43. [Google Scholar] [CrossRef]
- Chaowana, P.; Hnoocham, W.; Chaiprapat, S.; Yimlamai, P.; Chitbanyong, K.; Wanitpinyo, K.; Chaisan, T.; Paopun, Y.; Pisutpiched, S.; Khantayanuwong, S.; et al. Utilization of hemp stalk as a potential resource for bioenergy. Mater. Sci. Energy Technol. 2024, 7, 19–28. [Google Scholar] [CrossRef]
- Wu, J.; Wang, R.; Liu, X.; Ni, Y.; Sun, H.; Deng, X.; Wan, L.; Liu, F.; Tang, J.; Yu, J.; et al. Calcium dynamics during the growth of Agaricus bisporus: Implications for mushroom development and nutrition. Chem. Biol. Technol. Agric. 2023, 10, 99. [Google Scholar] [CrossRef]
- Upadhyay, R.C.; Verma, R.N.; Singh, S.K.; Yadav, M.C. Effect of organic nitrogen supplementation in Pleurotus species. Mushroom Biol. Mushroom Prod. 2002, 105, 225–232. [Google Scholar]
- Kumla, J.; Suwannarach, N.; Sujarit, K.; Penkhrue, W.; Kakumyan, P.; Jatuwong, K.; Vadthanarat, S.; Lumyong, S. Cultivation of mushrooms and their lignocellulolytic enzyme production through the utilization of agro-industrial waste. Molecules 2020, 25, 2811. [Google Scholar] [CrossRef]
- Webb, E.; Cullen, N. Ultimate Guide to Mushroom Substrates. Available online: https://urban-farm-it.com/blogs/mushroom-cultivation/guide-to-mushroom-substrates (accessed on 22 March 2024).
- Suwannarach, N.; Kumla, J.; Zhao, Y.; Kakumyan, P. Impact of cultivation substrate and microbial community on improving mushroom productivity: A review. Biology 2022, 11, 569. [Google Scholar] [CrossRef]
- Bellettini, M.B.; Fiorda, F.A.; Maieves, H.A.; Teixeira, G.L.; Ávila, S.; Hornung, P.S.; Júnior, A.M.; Ribani, R.H. Factors affecting mushroom Pleurotus spp. Saudi J. Biol. Sci. 2019, 26, 633–646. [Google Scholar] [CrossRef]
- Carrasco, J.; Zied, D.C.; Pardo, J.E.; Preston, G.M.; Pardo-Giménez, A. Supplementation in mushroom crops and its impact on yield and quality. AMB Express 2018, 8, 146. [Google Scholar] [CrossRef]
- Soh, E.; Saeidi, N.; Javadian, A.; Hebel, D.E.; Le Ferrand, H. Effect of common foods as supplements for the mycelium growth of Ganoderma lucidum and Pleurotus ostreatus on solid substrates. PLoS ONE 2021, 16, e0260170. [Google Scholar] [CrossRef]
- Colavolpe, M.B.; Mejía, S.J.; Albertó, E. Efficiency of treatments for controlling Trichoderma spp. during spawning in cultivation of lignicolous mushrooms. Braz. J. Microbiol. 2014, 45, 1263–1270. [Google Scholar] [CrossRef]
- Mycobio. Ultimate Guide to Sterilizing Mushroom Substrate. Available online: https://mycobio.co.nz/ultimate-guide-to-sterilising-mushroom-substrate/ (accessed on 23 March 2024).
- Tangjang, L.; Megu, T.; Rina, T. Effect of substrate pre-treatment methods on the fruit body production of Pleurotus sajor-caju (Fr.) Singer. J. Bioresour. 2022, 9, 53–56. [Google Scholar]
- Salish Sea Mushrooms. Pasteurization and Sterilization. Available online: https://salishmushrooms.com/cultivation/pasteurization-and-sterilization/ (accessed on 23 March 2024).
- Freak of Natural. Growing Mushrooms: Notions of Sterilization. Available online: https://freakofnatural.com/growing-mushrooms-notions-of-sterilization/ (accessed on 23 March 2024).
- Peeters, S.S. Assessing Modifications on Mycelium-Based Composites and the Effects on Fungal Degradation and Material Properties. Ph.D. Thesis, Eindhoven University of Technology, Eindhoven, The Netherlands, 2023. [Google Scholar]
- Ahmadjian, V.; Alexopoulos, C.J.; Moore, D. Fungus Organism. Available online: https://www.britannica.com/science/fungus (accessed on 25 March 2024).
- Silvestri, L. TERRAFORMA-Material Investigation on the Possibilities to Combine Natural Growth of Mycelium and Unfired Clay for Novel Sustainable Product Design Applications. 2022. Available online: https://www.politesi.polimi.it/handle/10589/214660 (accessed on 5 March 2024).
- Ghazvinian, A. A sustainable alternative to architectural materials: Mycelium-based bio-composites. In Proceedings of the Divergence in Architectural Research, Atlanta, GA, USA, 5–6 March 2021; Volume 15, pp. 159–167. [Google Scholar]
- Houette, T.; Maurer, C.; Niewiarowski, R.; Gruber, P. Growth and mechanical characterization of mycelium-based composites towards future bioremediation and food production in the material manufacturing cycle. Biomimetics 2022, 7, 103. [Google Scholar] [CrossRef]
- Jiang, L.; Walczyk, D.; McIntyre, G.; Bucinell, R.; Tudryn, G. Manufacturing of biocomposite sandwich structures using mycelium-bound cores and preforms. J. Manuf. Process. 2017, 28, 50–59. [Google Scholar] [CrossRef]
- Islam, M.R.; Tudryn, G.; Bucinell, R.; Schadler, L.; Picu, R.C. Mechanical behavior of mycelium-based particulate composites. J. Mater. Sci. 2018, 53, 16371–16382. [Google Scholar] [CrossRef]
- Karana, E.; Blauwhoff, D.; Hultink, E.J.; Camere, S. When the material grows: A case study on designing (with) mycelium-based materials. Int. J. Des. 2018, 12, 119–136. [Google Scholar]
- Attias, N.; Danai, O.; Tarazi, E.; Pereman, I.; Grobman, Y.J. Implementing bio-design tools to develop mycelium-based products. Des. J. 2019, 22, 1647–1657. [Google Scholar] [CrossRef]
- Attias, N.; Danai, O.; Abitbol, T.; Tarazi, E.; Ezov, N.; Pereman, I.; Grobman, Y.J. Mycelium bio-composites in industrial design and architecture: Comparative review and experimental analysis. J. Clean. Prod. 2020, 246, 119037. [Google Scholar] [CrossRef]
- Kaiser, M.; Kleber, M.; Berhe, A.A. How air-drying and rewetting modify soil organic matter characteristics: An assessment to improve data interpretation and inference. Soil Biol. Biochem. 2015, 80, 324–340. [Google Scholar] [CrossRef]
- Gan, J.K.; Soh, E.; Saeidi, N.; Javadian, A.; Hebel, D.E.; Le Ferrand, H. Temporal characterization of biocycles of mycelium-bound composites made from bamboo and Pleurotus ostreatus for indoor usage. Sci. Rep. 2022, 12, 19362. [Google Scholar] [CrossRef] [PubMed]
- Blauwhoff, D.; La Bianca, I. From Biomass to Mycelium Composite: An Exploration on Cellulose and Weed Residues. Stichting Toegepast Onderzoek Waterbeheer (STOWA). 2019. Available online: https://edepot.wur.nl/515208 (accessed on 5 March 2024).
- Yang, L.; Qin, Z. Mycelium-based wood composites for light weight and high strength by experiment and machine learning. Cell Rep. Phys. Sci. 2023, 4, 1–16. [Google Scholar] [CrossRef]
- Liu, R.; Long, L.; Sheng, Y.; Xu, J.; Qiu, H.; Li, X.; Wang, Y.; Wu, H. Preparation of a kind of novel sustainable mycelium/cotton stalk composites and effects of pressing temperature on the properties. Ind. Crops Prod. 2019, 141, 111732. [Google Scholar] [CrossRef]
- Chan, X.Y.; Saeidi, N.; Javadian, A.; Hebel, D.E.; Gupta, M. Mechanical properties of dense mycelium-bound composites under accelerated tropical weathering conditions. Sci. Rep. 2021, 11, 22112. [Google Scholar] [CrossRef]
- Mohseni, A.; Vieira, F.R.; Pecchia, J.A.; Gürsoy, B. Three-Dimensional Printing of living mycelium-based composites: Material compositions, workflows, and ways to mitigate contamination. Biomimetics 2023, 8, 257. [Google Scholar] [CrossRef]
- Elsacker, E.; Vandelook, S.; Peeters, E. Recent technological innovations in mycelium materials as leather substitutes: A patent review. Front. Bioeng. Biotechnol. 2023, 11, 1204861. [Google Scholar] [CrossRef]
- Petersen, J.; McLaughlin, S. Laboratory Exercises in Microbiology: Discovering the Unseen World through Hands-On Investigation; CUNY Academic Works: New York, NY, USA, 2016. [Google Scholar]
- Bubu, V. Mold Design and Maintenance: Key Elements for Manufacturing Excellence. Available online: https://www.linkedin.com/pulse/mold-design-maintenance-key-elements-manufacturing-excellence-babu (accessed on 25 March 2024).
- Etinosa, O.P. Design and Testing of Mycelium Biocomposite. Ph.D. Dissertation, African University of Science and Technology, Galadimawa, Nigeria, 2019. [Google Scholar]
- Lee, T.; Choi, J. Mycelium-composite panels for atmospheric particulate matter adsorption. Results Mater. 2021, 11, 100208. [Google Scholar] [CrossRef]
- Pereira, A.R.; Braga, D.F.; Vassal, M.; Gomes, I.B.; Simões, M. Ultraviolet C irradiation: A promising approach for the disinfection of public spaces? Sci. Total Environ. 2023, 879, 163007. [Google Scholar] [CrossRef]
- Sertkaya, S.N. Assessment of Mycelium Composite Building Elements Produced via Biodesign. 2022. Available online: https://avesis.deu.edu.tr/dosya?id=e5f3bab1-c260-4413-a78f-121439a9f2ad (accessed on 5 March 2024).
- Zhang, W.R.; Liu, S.R.; Kuang, Y.B.; Zheng, S.Z. Development of a novel spawn (block spawn) of an edible mushroom, Pleurotus ostreatus, in liquid culture and its cultivation evaluation. Mycobiology 2019, 47, 97–104. [Google Scholar] [CrossRef]
- Rosado, F.R.; Kemmelmeier, C.; Gomes Da Costa, S.M. Alternative method of inoculum and spawn production for the cultivation of the edible Brazilian mushroom Pleurotus ostreatoroseus Sing. J. Basic Microbiol. 2002, 42, 37–44. [Google Scholar] [CrossRef]
- Zhang, R.Y.; Hu, D.D.; Ma, X.T.; Li, S.G.; Gu, J.G.; Hu, Q.X. Adopting stick spawn reduced the spawn running time and improved mushroom yield and biological efficiency of Pleurotus eryngii. Sci. Hortic. 2014, 175, 156–159. [Google Scholar] [CrossRef]
- Coté, R.J. Aseptic technique for cell culture. Curr. Protoc. Cell Biol. 1998, 1, 1–3. [Google Scholar] [CrossRef]
- Gou, L.; Li, S.; Yin, J.; Li, T.; Liu, X. Morphological and physico-mechanical properties of mycelium biocomposites with natural reinforcement particles. Constr. Build. Mater. 2021, 304, 124656. [Google Scholar] [CrossRef]
- Elsacker, E.; De Laet, L.; Peeters, E. Functional grading of mycelium materials with inorganic particles: The effect of nanoclay on the biological, chemical and mechanical properties. Biomimetics 2022, 7, 57. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Li, Y.; Fan, X.; Wnek, G.; Liao, Y.T.T.; Yu, X. Development and characterization of novelly grown fire-resistant fungal fibers. Sci. Rep. 2022, 12, 10836. [Google Scholar] [CrossRef] [PubMed]
- Bonenberg, A.; Sydor, M.; Cofta, G.; Doczekalska, B.; Grygorowicz-Kosakowska, K. Mycelium-based composite materials: Study of acceptance. Materials 2023, 16, 2164. [Google Scholar] [CrossRef]
- Jiang, L.; Walczyk, D.; McIntyre, G.; Chan, W.K. Cost modeling and optimization of a manufacturing system for mycelium-based biocomposite parts. J. Manuf. Syst. 2016, 41, 8–20. [Google Scholar] [CrossRef]
- Indexbox. Cement Price per kg. Available online: https://www.indexbox.io/search/cement-price-per-kg/ (accessed on 25 March 2024).
- Monteiro, S.N.; de Assis, F.S.; Ferreira, C.L.; Simonassi, N.T.; Weber, R.P.; Oliveira, M.S.; Colorado, H.A.; Pereira, A.C. Fique fabric: A promising reinforcement for polymer composites. Polymers 2018, 10, 246. [Google Scholar] [CrossRef]
- Sai, S. What Is the Total Cost of Production of 1 kg of Cardboard? Available online: https://www.quora.com/What-is-the-total-cost-of-production-of-1-kg-of-cardboard (accessed on 25 March 2024).
- Vandi, L.J.; Chan, C.M.; Werker, A.; Richardson, D.; Laycock, B.; Pratt, S. Wood-PHA composites: Mapping opportunities. Polymers 2018, 10, 751. [Google Scholar] [CrossRef]
- Zhao, F.; Liu, X.; Chen, C.; Cheng, Z.; Wang, W.; Yun, J. Successive mycelial subculturing decreased lignocellulase activity and increased ROS accumulation in Volvariella volvacea. Front. Microbiol. 2022, 13, 997485. [Google Scholar] [CrossRef]
- Sattayaphisut, W. Genetic Instability of Mushrooms as Affected by Continuous Subculturing for Production. Ph.D. Thesis, Suranaree University of Technology, Nakhon Ratchasima, Thailand, 2000. [Google Scholar]
- Chen, X.; Zhang, Z.; Liu, X.; Cui, B.; Miao, W.; Cheng, W.; Zhao, F. Characteristics analysis reveals the progress of Volvariella volvacea mycelium subculture degeneration. Front. Microbiol. 2019, 10, 2045. [Google Scholar] [CrossRef]
- Yin, J.; Xin, X.; Weng, Y.; Gui, Z. Transcriptome-wide analysis reveals the progress of Cordyceps militaris subculture degeneration. PLoS ONE 2017, 12, e0186279. [Google Scholar] [CrossRef]
- Kim, S.Y.; Kim, K.H.; Im, C.H.; Ali, A.; Lee, C.Y.; Kong, W.S.; Ryu, J.S. Identification of degenerate nuclei and development of a SCAR marker for Flammulina velutipes. PLoS ONE 2014, 9, e107207. [Google Scholar] [CrossRef]
- Sakamoto, Y.; Sato, S.; Takizawa, M.; Goto, F.; Eda, K.; Yamauchi, T. Marker-assisted selection of a novel Lentinula edodes cultivation strain with improved post-harvest quality. Mushroom Sci. Biotechnol. 2022, 30, 121–128. [Google Scholar]
- Corrales, C.; Astrin, J.J. Biodiversity Biobanking—A Handbook on Protocols and Practices. 2023. Available online: https://ab.pensoft.net/book/101876/element/8/182816// (accessed on 10 March 2024).
- Gromicko, B.; Gromicko, N. How to Perform a Mold Inspection. 2009. Available online: https://education.nachi.org/coursemedia/course-50/documents/Course-material.pdf (accessed on 10 March 2024).
- Chiu, S.W.; Law, S.C.; Ching, M.L.; Cheung, K.W.; Chen, M.J. Themes for mushroom exploitation in the 21st century: Sustainability, waste management, and conservation. J. Gen. Appl. Microbiol. 2000, 46, 269–282. [Google Scholar] [CrossRef] [PubMed]
- Stelzer, L.; Hoberg, F.; Bach, V.; Schmidt, B.; Pfeiffer, S.; Meyer, V.; Finkbeiner, M. Life cycle assessment of fungal-based composite bricks. Sustainability 2021, 13, 11573. [Google Scholar] [CrossRef]
- Charpentier-Alfaro, C.; Benavides-Hernández, J.; Poggerini, M.; Crisci, A.; Mele, G.; Della Rocca, G.; Emiliani, G.; Frascella, A.; Torrigiani, T.; Palanti, S. Wood-decaying fungi: From timber degradation to sustainable insulating biomaterials production. Materials 2023, 16, 3547. [Google Scholar] [CrossRef]
- Dias, P.P.; Jayasinghe, L.B.; Waldmann, D. Investigation of mycelium-miscanthus composites as building insulation material. Results Mater. 2021, 10, 100189. [Google Scholar] [CrossRef]
- Thermtest. Materials Thermal Properties Database. Available online: https://thermtest.com/thermal-resources/materials-database (accessed on 23 March 2024).
- Jones, M.; Bhat, T.; Kandare, E.; Thomas, A.; Joseph, P.; Dekiwadia, C.; Yuen, R.; John, S.; Ma, J.; Wang, C.-H. Thermal degradation and fire properties of fungal mycelium and mycelium-biomass composite materials. Sci. Rep. 2018, 8, 17583. [Google Scholar] [CrossRef]
- Shakir, M.A.; Azahari, B.; Yusup, Y.; Yhaya, M.F.; Salehabadi, A.; Ahmad, M.I. Preparation and characterization of mycelium as a bio-matrix in fabrication of bio-composite. J. Adv. Res. Fluid Mech. Therm. Sci. 2020, 65, 253–263. [Google Scholar]
- Walter, N.; Gürsoy, B. A study on the sound absorption properties of mycelium-based composites cultivated on waste paper-based substrates. Biomimetics 2022, 7, 100. [Google Scholar] [CrossRef]
- Sim, J.S.; Zulkifli, R.; Tahir, M.M.; Elwaleed, A.K. Recycled paper fibres as sound absorbing material. Appl. Mech. Mater. 2014, 663, 459–463. [Google Scholar] [CrossRef]
Mycelium Species | Type of Mushroom | Decay Type of Mushroom | Type of Hyphal Network Systems | Mycelial Growth Rate |
---|---|---|---|---|
Agaricus bisporus | Edible, Medicinal | – | Monomitic | ++ |
Auricularia auricula-judae | Edible, Medicinal | White rot | Monomitic | +++ |
Auricularia polytricha | Edible, Medicinal | White rot | Monomitic | +++ |
Coprinopsis cinerea | Edible | – | Di-trimitic | + |
Cyclocybe aegerita | Edible | White rot | Dimitic | ++ |
Daedaleopsis confragosa | Medicinal | White rot | Trimitic | ++ |
Flammulina velutipes | Edible | White rot | Dimitic | ++ |
Fomes fomentarius | Medicinal | White rot | Trimitic | + |
Fomitopsis pinicola | Medicinal | Brown rot | Trimitic | ++ |
Ganoderma applanatum | Medicinal | White rot | Trimitic | +++ |
Ganoderma boninense | Medicinal | White rot | Trimitic | +++ |
Ganoderma fornicatum | Medicinal | White rot | Trimitic | +++ |
Ganoderma lucidum | Medicinal | White rot | Trimitic | +++ |
Ganoderma resinaceum | Medicinal | White rot | Trimitic | +++ |
Ganoderma sessile | Medicinal | White rot | Trimitic | +++ |
Ganoderma williamsianum | Medicinal | White rot | Trimitic | +++ |
Ganoderma sp. | Medicinal | White rot | Trimitic | +++ |
Gloeophyllum sepiarium | Nonedible | Brown rot | Di-trimitic | ++ |
Grifola frondosa | Medicinal | White rot | Dimitic | ++ |
Hypsizygus ulmarius | Edible | White rot | Monomitic | ++ |
Inonotus obliquus | Medicinal | White rot | Monomitic | ++ |
Irpex lacteus | Nonedible | White rot | Dimitic | – |
Irpex laceratus | Nonedible | White rot | Monomitic | – |
Irpex latemarginatus | Nonedible | White rot | Dimitic | ++ |
Kuehneromyces mutabilis | Edible | White rot | Dimitic | + |
Laetiporus sulphureus | Edible | Brown rot | Dimitic | ++ |
Lentinula edodes | Edible | White rot | Monomitic | ++ |
Lentinus arcularius | Nonedible | White rot | Dimitic | – |
Lentinus brumalis | Nonedible | White rot | Dimitic | – |
Lentinus polychrous | Edible | White rot | Dimitic | +++ |
Lentinus squarrosulus | Edible | White rot | Dimitic | +++ |
Lentinus sajor-caju | Edible | White rot | Dimitic | +++ |
Lentinus velutinus | Edible | White rot | Dimitic | +++ |
Megasporaporia minor | Edible | White rot | Di-trimitic | + |
Neofavolus alveolaris | Nonedible | White rot | Dimitic | + |
Oudemansiella radicata | Edible | White rot | Dimitic | ++ |
Phaeolus schweinitzii | Nonedible | White rot | Dimitic | + |
Piptoporus betulinus | Medicinal | White rot | Dimitic | ++ |
Pleurotus albidus | Edible | White rot | Monomitic | +++ |
Pleurotus citrinopileatus | Edible | White rot | Monomitic | +++ |
Pleurotus cornucopiae | Edible | White rot | Dimitic | ++ |
Pleurotus djamor | Edible | White rot | Dimitic | +++ |
Pleurotus eryngii | Edible | White rot | Monomitic | ++ |
Pleurotus florida | Edible | White rot | Monomitic | ++ |
Pleurotus ostreatus | Edible | White rot | Monomitic | +++ |
Pleurotus pulmonarius | Edible | White rot | Monomitic | +++ |
Pleurotus salmoneo-stramineus | Edible | White rot | Monomitic | +++ |
Pleurotus sp. | Edible | White rot | Monomitic | +++ |
Pycnoporus sanguineus | Nonedible | White rot | Dimitic | – |
Schizophyllum commune | Edible | White rot | Trimitic | +++ |
Stropharia rugosoannulata | Edible | – | Monomitic | ++ |
Trametes hirsuta | Medicinal | White rot | Trimitic | ++ |
Trametes multicolor | Medicinal | White rot | Trimitic | ++ |
Trametes pubescens | Medicinal | White rot | Trimitic | ++ |
Trametes suaveolens | Medicinal | White rot | Trimitic | ++ |
Trametes versicolor | Medicinal | White rot | Trimitic | +++ |
Trametes sp. | Medicinal | White rot | Trimitic | ++ |
Trichaptum abietinum | Nonedible | White rot | Di-trimitic | – |
Material Types | Cost ($/kg) | References |
---|---|---|
Mycelium-based green composites | 0.07–0.17 (≈0.12) | [20] |
Cement-based materials | 0.05–0.15 (≈0.10) | [170] |
Fabric composites | 3.19–49.59 (≈26.39) | [171] |
Gypsum-based materials | 1.4–11 (≈6.2) | [20] |
Paper-based materials | 0.2–0.5 (≈0.35) | [172] |
Polymer materials | 2.1–2.3 (≈2.2) | [20] |
Wood–PHA composites | 3.0–3.7 (≈3.35) | [173] |
Properties | Material Types | Values | References |
---|---|---|---|
Density (kg/m3) | MBCs made from G. lucidum and Chinese albizia sawdust using heat pressing | 954 | [152] |
Synthetic foams | 11–920 | [22,60] | |
Wood-based composites | 170–921 | [36,60] | |
Paper-based materials | 10–800 | [22] | |
Average shrinkage (%) | MBCs made from L. sajor-caju and bamboo sawdust using cold pressing | 3.14 | [22] |
Synthetic foams | 0.01–5 | [22,36] | |
Wood-based composites | 0.3–25 | [9,36] | |
Paper-based materials | 1–20 | [22] | |
Water absorption (%) | MBCs made from T. versicolor and chopped hemp using cold pressing | 24.45 | [26] |
Synthetic foams | 0.01–72 | [9,22,60] | |
Wood-based composites | 0.01–380 | [9,36,60] | |
Paper-based materials | 16.6–161 | [22] | |
Swelling (%) | MBCs made from G. carnosum and oak shavings without pressing | 0.28 | [184] |
Synthetic foams | Not reported | [22] | |
Wood-based composites | 1.9–25 | [3] | |
Paper-based materials | 0.05–9 | [22] | |
Thermal conductivity (W/m·K) | MBCs made from G. resinaceum and Miscanthus fibers without pressing | 0.104 | [185] |
Synthetic foams | 0.006–0.8 | [9,60] | |
Wood-based composites | 0.08–0.5 | [9,60] | |
Paper-based materials | 0.03–0.09 | [186] | |
Thermal degradation (°C) | MBCs made from T. versicolor and wheat grain without pressing | 200–375 | [187] |
Synthetic foams | 250–546.8 | [9,22,36] | |
Wood-based composites | 150–380 | [9,36] | |
Paper-based materials | 250–350 | [22] | |
Compression strength (MPa) | MBCs made from G. lucidum and Chinese albizia sawdust using heat pressing | 4.44 | [152] |
Synthetic foams | 0.002–48 | [3,9,22,36,60] | |
Wood-based composites | 0.1–25 | [3,9,36,60] | |
Paper-based materials | 0.008–10 | [3,22] | |
Tensile strength (MPa) | MBCs made from G. lucidum and Chinese albizia sawdust using heat pressing | 1.55 | [152] |
Synthetic foams | 0.08–103 | [3,9,22,36,60] | |
Wood-based composites | 10–162 | [3,9,36,60] | |
Paper-based materials | 0.1–22.7 | [3,22] | |
Flexural strength (MPa) | MBCs made from P. ostreatus and rubber sawdust using heat pressing | 3.91 | [188] |
Synthetic foams | 0.07–57 | [3,9,22,36,60] | |
Wood-based composites | 1.5–78 | [3,9,36,60] | |
Paper-based materials | 0.06–4.2 | [3,22] | |
Impact strength (kJ/m2) | MBCs made from L. sajor-caju and corn husk mixed with paper waste using cold pressing | 3.15 | [3] |
Synthetic foams | 0.001–3 | [3,22,36] | |
Wood-based composites | 1–19 | [3] | |
Paper-based materials | 2–12 | [3,22] | |
Sound absorption at frequencies between 125–4000 Hz (%) | MBCs made from P. ostreatus and wastepaper-based substrates without pressing | 7–69 | [189] |
Synthetic foams | 5–80 | [9,60] | |
Wood-based composites | 5–23 | [9,60] | |
Paper-based materials | 5–96 | [190] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aiduang, W.; Jatuwong, K.; Luangharn, T.; Jinanukul, P.; Thamjaree, W.; Teeraphantuvat, T.; Waroonkun, T.; Lumyong, S. A Review Delving into the Factors Influencing Mycelium-Based Green Composites (MBCs) Production and Their Properties for Long-Term Sustainability Targets. Biomimetics 2024, 9, 337. https://doi.org/10.3390/biomimetics9060337
Aiduang W, Jatuwong K, Luangharn T, Jinanukul P, Thamjaree W, Teeraphantuvat T, Waroonkun T, Lumyong S. A Review Delving into the Factors Influencing Mycelium-Based Green Composites (MBCs) Production and Their Properties for Long-Term Sustainability Targets. Biomimetics. 2024; 9(6):337. https://doi.org/10.3390/biomimetics9060337
Chicago/Turabian StyleAiduang, Worawoot, Kritsana Jatuwong, Thatsanee Luangharn, Praween Jinanukul, Wandee Thamjaree, Thana Teeraphantuvat, Tanut Waroonkun, and Saisamorn Lumyong. 2024. "A Review Delving into the Factors Influencing Mycelium-Based Green Composites (MBCs) Production and Their Properties for Long-Term Sustainability Targets" Biomimetics 9, no. 6: 337. https://doi.org/10.3390/biomimetics9060337
APA StyleAiduang, W., Jatuwong, K., Luangharn, T., Jinanukul, P., Thamjaree, W., Teeraphantuvat, T., Waroonkun, T., & Lumyong, S. (2024). A Review Delving into the Factors Influencing Mycelium-Based Green Composites (MBCs) Production and Their Properties for Long-Term Sustainability Targets. Biomimetics, 9(6), 337. https://doi.org/10.3390/biomimetics9060337