Metachronal Motion of Biological and Artificial Cilia
Abstract
1. Introduction
2. Metachronal Motion of Biological Cilia
3. Metachronal Motion of Artificial Cilia
3.1. Metachronal Motion of Pneumatically Driven Artificial Cilia
3.2. Metachronal Motion of Light-Driven Artificial Cilia
3.3. Metachronal Motion of Electrically Driven Artificial Cilia
3.4. Metachronal Motion of Magnetically Driven Artificial Cilia
- Controlling the magnetic particle distribution within the artificial cilia.
- Controlling the geometry of the artificial cilia.
- Controlling the magnetic field.
4. Applications of Metachronal Motion in Artificial Cilia
4.1. Flow Generation
4.2. Transportation
- Mucus transportation.
- Particle transportation.
- Droplet transportation.
- Microrobot locomotion.
5. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bustamante-Marin, X.M.; Ostrowski, L.E. Cilia and Mucociliary Clearance. Cold Spring Harb. Perspect. Biol. 2017, 9, a02824. [Google Scholar] [CrossRef]
- Sanderson, M.J.; Sleigh, M.A. Ciliary Activity of Cultured Rabbit Tracheal Epithelium: Beat Pattern and Metachrony. J. Cell Sci. 1981, 47, 331–347. [Google Scholar] [CrossRef]
- ul Islam, T.; Wang, Y.; Aggarwal, I.; Cui, Z.; Eslami Amirabadi, H.; Garg, H.; Kooi, R.; Venkataramanachar, B.B.; Wang, T.; Zhang, S.; et al. Microscopic Artificial Cilia—A Review. Lab Chip 2022, 22, 1650–1679. [Google Scholar] [CrossRef]
- Machemer, H. Ciliary Activity and the Origin of Metachrony in Paramecium: Effects of Increased Viscosity. J. Exp. Biol. 1972, 57, 239–259. [Google Scholar] [CrossRef]
- Blake, J.R.; Sleigh, M.A. Mechanics of Ciliary Locomotion. Biol. Rev. Camb. Philos. Soc. 1974, 49, 85–125. [Google Scholar] [CrossRef]
- Mellor, J.S.; Hyams, J.S. Metachronism of Cilia of the Digestive Epithelium of Cirriformia Tentaculata. Micron 1978, 9, 91–94. [Google Scholar] [CrossRef]
- Satir, P. The Fixation of the Metaehronal Wave. J. Cell Biol. 1963, 18, 345–365. [Google Scholar] [CrossRef]
- Knight-Jones, E.W. Relations between Metachronism and the Direction of Ciliary Beat in Metazoa. J. Cell Sci. 1954, s3–s95, 503–521. [Google Scholar] [CrossRef]
- Fulford, G.R.; Blake, J.R. Muco-Ciliary Transport in the Lung. J. Theor. Biol. 1986, 121, 381–402. [Google Scholar] [CrossRef]
- Gueron, S.; Levit-Gurevich, K. Energetic Considerations of Ciliary Beating and the Advantage of Metachronal Coordination. Proc. Natl. Acad. Sci. USA 1999, 96, 12240–12245. [Google Scholar] [CrossRef]
- Guirao, B.; Joanny, J.F. Spontaneous Creation of Macroscopic Flow and Metachronal Waves in an Array of Cilia. Biophys. J. 2007, 92, 1900–1917. [Google Scholar] [CrossRef]
- Blake, J.R. Mechanics of Muco-Ciliary Transport. IMA J. Appl. Math. 1984, 32, 69–87. [Google Scholar] [CrossRef]
- Mitran, S.M. Metachronal Wave Formation in a Model of Pulmonary Cilia. Comput. Struct. 2007, 85, 763–774. [Google Scholar] [CrossRef]
- Norton, M.M.; Robinson, R.J.; Weinstein, S.J. Model of Ciliary Clearance and the Role of Mucus Rheology. Phys. Rev. E-Stat. Nonlinear Soft Matter. Phys. 2011, 83, 011921. [Google Scholar] [CrossRef]
- Chateau, S.; Favier, J.; Poncet, S.; D’Ortona, U. Why Antiplectic Metachronal Cilia Waves Are Optimal to Transport Bronchial Mucus. Phys. Rev. E 2019, 100, 042405. [Google Scholar] [CrossRef]
- Khaderi, S.N.; Craus, C.B.; Hussong, J.; Schorr, N.; Belardi, J.; Westerweel, J.; Prucker, O.; Rühe, J.; Den Toonder, J.M.J.; Onck, P.R. Magnetically-Actuated Artificial Cilia for Microfluidic Propulsion. Lab Chip 2011, 11, 2002–2010. [Google Scholar] [CrossRef]
- Elgeti, J.; Gompper, G. Emergence of Metachronal Waves in Cilia Arrays. Proc. Natl. Acad. Sci. USA 2013, 110, 4470–4475. [Google Scholar] [CrossRef]
- Cui, Z.; Wang, Y.; Zhang, S.; Wang, T.; den Toonder, J.M. Miniaturized Metachronal Magnetic Artificial Cilia. Proc. Natl. Acad. Sci. USA 2023, 120, e2304519120. [Google Scholar] [CrossRef]
- Zhang, X.; Guo, J.; Fu, X.; Zhang, D.; Zhao, Y. Tailoring Flexible Arrays for Artificial Cilia Actuators. Adv. Intell. Syst. 2021, 3, 2000225. [Google Scholar] [CrossRef]
- Burn, A.; Schneiter, M.; Ryser, M.; Gehr, P.; Rička, J.; Frenz, M. A Quantitative Interspecies Comparison of the Respiratory Mucociliary Clearance Mechanism. Eur. Biophys. J. 2022, 51, 51–65. [Google Scholar] [CrossRef]
- Milana, E.; Zhang, R.; Vetrano, M.R.; Peerlinck, S.; de Volder, M.; Onck, P.R.; Reynaerts, D.; Gorissen, B. Metachronal Patterns in Artificial Cilia for Low Reynolds Number Fluid Propulsion. Sci. Adv. 2020, 6, eabd2508. [Google Scholar] [CrossRef]
- Toonder, J.D.; Bos, F.; Broer, D.; Filippini, L.; Gillies, M.; De Goede, J.; Mol, T.; Reijme, M.; Talen, W.; Wilderbeek, H.; et al. Artificial Cilia for Active Micro-Fluidic Mixing. Lab Chip 2008, 8, 533–541. [Google Scholar] [CrossRef]
- Wang, W.; Liu, Q.; Tanasijevic, I.; Reynolds, M.F.; Cortese, A.J.; Miskin, M.Z.; Cao, M.C.; Muller, D.A.; Molnar, A.C.; Lauga, E. Cilia Metasurfaces for Electronically Programmable Microfluidic Manipulation. Nature 2022, 605, 681–686. [Google Scholar] [CrossRef]
- Dai, B.; Li, S.; Xu, T.; Wang, Y.; Zhang, F.; Gu, Z.; Wang, S. Arti Fi Cial Asymmetric Cilia Array of Dielectric Elastomer for Cargo Transportation. ACS Appl. Mater. Interfaces 2018, 10, 6–11. [Google Scholar] [CrossRef]
- Demirörs, A.F.; Aykut, S.; Ganzeboom, S.; Meier, Y.A.; Hardeman, R.; de Graaf, J.; Mathijssen, A.J.T.M.T.M.; Poloni, E.; Carpenter, J.A.; Ünlü, C.; et al. Amphibious Transport of Fluids and Solids by Soft Magnetic Carpets. Adv. Sci. 2021, 8, 2102510. [Google Scholar] [CrossRef]
- Gorissen, B.; De Volder, M.; Reynaerts, D. Pneumatically-Actuated Artificial Cilia Array for Biomimetic Fluid Propulsion. Lab Chip 2015, 15, 4348–4355. [Google Scholar] [CrossRef]
- Zhang, R.; den Toonder, J.; Onck, P.R. Transport and Mixing by Metachronal Waves in Nonreciprocal Soft Robotic Pneumatic Artificial Cilia at Low Reynolds Numbers. Phys. Fluids 2021, 33, 092009. [Google Scholar] [CrossRef]
- Van Oosten, C.L.; Bastiaansen, C.W.M.; Broer, D.J. Printed Artificial Cilia from Liquid-Crystal Network Actuators Modularly Driven by Light. Nat. Mater. 2009, 8, 677–682. [Google Scholar] [CrossRef]
- Palagi, S.; Mark, A.G.; Reigh, S.Y.; Melde, K.; Qiu, T.; Zeng, H.; Parmeggiani, C.; Martella, D.; Sanchez-Castillo, A.; Kapernaum, N.; et al. Structured Light Enables Biomimetic Swimming and Versatile Locomotion of Photoresponsive Soft Microrobots. Nat. Mater. 2016, 15, 647–653. [Google Scholar] [CrossRef]
- Li, S.; Lerch, M.M.; Waters, J.T.; Deng, B.; Martens, R.S.; Yao, Y.; Kim, D.Y.; Bertoldi, K.; Grinthal, A.; Balazs, A.C.; et al. Self-Regulated Non-Reciprocal Motions in Single-Material Microstructures. Nature 2022, 605, 76–83. [Google Scholar] [CrossRef]
- Miao, J.; Zhang, T.; Li, G.; Shang, W.; Shen, Y. Magnetic Artificial Cilia Carpets for Transport, Mixing, and Directional Diffusion. Adv. Eng. Mater. 2021, 24, 2101399. [Google Scholar] [CrossRef]
- Chen, G.; Dai, Z.; Li, S.; Huang, Y.; Xu, Y.; She, J.; Zhou, B. Magnetically Responsive Film Decorated with Microcilia for Robust and Controllable Manipulation of Droplets. ACS Appl. Mater. Interfaces 2021, 13, 1754–1765. [Google Scholar] [CrossRef]
- Lin, Y.; Hu, Z.; Zhang, M.; Xu, T.; Feng, S.; Jiang, L.; Zheng, Y. Magnetically Induced Low Adhesive Direction of Nano/Micropillar Arrays for Microdroplet Transport. Adv. Funct. Mater. 2018, 28, 1800163. [Google Scholar] [CrossRef]
- Zhou, Y.; Huang, S.; Tian, X. Magnetoresponsive Surfaces for Manipulation of Nonmagnetic Liquids: Design and Applications. Adv. Funct. Mater. 2020, 30, 1906507. [Google Scholar] [CrossRef]
- Dong, X.; Lum, G.Z.; Hu, W.; Zhang, R.; Ren, Z.; Onck, P.R.; Sitti, M. Bioinspired Cilia Arrays with Programmable Nonreciprocal Motion and Metachronal Coordination. Sci. Adv. 2020, 6, eabc9323. [Google Scholar] [CrossRef]
- Hanasoge, S.; Hesketh, P.J.; Alexeev, A. Metachronal Motion of Artificial Magnetic Cilia. Soft Matter. 2018, 14, 3689–3693. [Google Scholar] [CrossRef]
- Zhang, R.; den Toonder, J.; Onck, P.R. Metachronal Patterns by Magnetically-Programmable Artificial Cilia Surfaces for Low Reynolds Number Fluid Transport and Mixing. Soft Matter. 2022, 18, 3902–3909. [Google Scholar] [CrossRef]
- Zhang, S.; Cui, Z.; Wang, Y.; Den Toonder, J.M.J.; Toonder, J. den Metachronal Actuation of Microscopic Magnetic Artificial Cilia Generates Strong Microfluidic Pumping. Lab Chip 2020, 20, 3569–3581. [Google Scholar] [CrossRef]
- Choksi, S.P.; Lauter, G.; Swoboda, P.; Roy, S. Switching on Cilia: Transcriptional Networks Regulating Ciliogenesis. Development 2014, 141, 1427–1441. [Google Scholar] [CrossRef]
- Gilpin, W.; Bull, M.S.; Prakash, M. The Multiscale Physics of Cilia and Flagella. Nat. Rev. Phys. 2020, 2, 74–88. [Google Scholar] [CrossRef]
- Elgeti, J.; Winkler, R.G.; Gompper, G. Physics of Microswimmers—Single Particle Motion and Collective Behavior: A Review. Rep. Prog. Phys. 2015, 78, 056601. [Google Scholar] [CrossRef]
- Wang, C.; Tang, H.; Zhang, X. Fluid-Structure Interaction of Bio-Inspired Flexible Slender Structures: A Review of Selected Topics. Bioinspir. Biomim. 2022, 17, 041002. [Google Scholar] [CrossRef]
- Pazour, G.J.; Quarmby, L.; Smith, A.O.; Desai, P.B.; Schmidts, M. Cilia in Cystic Kidney and Other Diseases. Cell Signal. 2019, 69, 109519. [Google Scholar] [CrossRef]
- Hirokawa, N.; Okada, Y.; Tanaka, Y. Fluid Dynamic Mechanism Responsible for Breaking the Left-Right Symmetry of the Human Body: The Nodal Flow. Annu. Rev. Fluid Mech. 2009, 41, 53–72. [Google Scholar] [CrossRef]
- Ul Islam, T.; Bellouard, Y.; Den Toonder, J.M.J. Highly Motile Nanoscale Magnetic Artificial Cilia. Proc. Natl. Acad. Sci. USA 2021, 118, e2104930118. [Google Scholar] [CrossRef]
- Vanaki, S.M.; Holmes, D.; Saha, S.C.; Chen, J.; Brown, R.J.; Jayathilake, P.G. Muco-Ciliary Clearance: A Review of Modelling Techniques. J. Biomech. 2020, 99, 109578. [Google Scholar] [CrossRef]
- Odor, D.L.; Blandau, R.J. Observations on the Solitary Cilium of Rabbit Oviductal Epithelium: Its Motility and Ultrastructure. Am. J. Anat. 1985, 174, 437–453. [Google Scholar] [CrossRef]
- Osterman, N.; Vilfan, A. Finding the Ciliary Beating Pattern with Optimal Efficiency. Proc. Natl. Acad. Sci. USA 2011, 108, 15727–15732. [Google Scholar] [CrossRef]
- Chateau, S.; Favier, J.; D’Ortona, U.; Poncet, S. Transport Efficiency of Metachronal Waves in 3D Cilium Arrays Immersed in a Two-Phase Flow. J. Fluid Mech. 2017, 824, 931–961. [Google Scholar] [CrossRef]
- Hanasoge, S.; Hesketh, P.J.; Alexeev, A. Metachronal Actuation of Microscale Magnetic Artificial Cilia. ACS Appl. Mater. Interfaces 2020, 12, 46963–46971. [Google Scholar] [CrossRef]
- Lyons, R.; Saridogan, E.; Djahanbakhch, O. The reproductive significance of human Fallopian tube cilia. Hum. Reprod. Update 2006, 12, 363–372. [Google Scholar] [CrossRef]
- Sitti, M.; Wiersma, D.S. Pros and Cons: Magnetic versus Optical Microrobots. Adv. Mater. 2020, 32, 1906766. [Google Scholar] [CrossRef]
- Liu, Z.; Li, M.; Dong, X.; Ren, Z.; Hu, W.; Sitti, M. Creating Three-Dimensional Magnetic Functional Microdevices via Molding-Integrated Direct Laser Writing. Nat. Commun. 2022, 13, 2016. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, K.; Liang, D.; Yan, L.; Ni, K.; Huang, H.; Li, B.; Guo, Z.; Wang, J.; Ma, X.; et al. Hybrid Magnetic Micropillar Arrays for Programmable Actuation. Adv. Mater. 2020, 32, 2001879. [Google Scholar] [CrossRef]
- Kim, J.; Chung, S.E.; Choi, S.E.; Lee, H.; Kim, J.; Kwon, S. Programming Magnetic Anisotropy in Polymeric Microactuators. Nat. Mater. 2011, 10, 747–752. [Google Scholar] [CrossRef]
- Zarzar, L.; Kim, P.; Aizenberg, J. Bio-inspired design of submerged hydrogel-actuated polymer microstructures operating in response to pH. Adv. Mater. 2011, 23, 1442–1446. [Google Scholar] [CrossRef]
- Zhang, S.; Cui, Z.; Wang, Y.; Den Toonder, J. Metachronal μ-Cilia for On-Chip Integrated Pumps and Climbing Robots. ACS Appl. Mater. Interfaces 2021, 13, 20845–20857. [Google Scholar] [CrossRef]
- Gu, H.; Boehler, Q.; Cui, H.; Secchi, E.; Savorana, G.; De Marco, C.; Gervasoni, S.; Peyron, Q.; Huang, T.Y.; Pane, S.; et al. Magnetic Cilia Carpets with Programmable Metachronal Waves. Nat. Commun. 2020, 11, 2637. [Google Scholar] [CrossRef]
- Tsumori, F.; Marume, R.; Saijou, A.; Kudo, K.; Osada, T.; Miura, H. Metachronal Wave of Artificial Cilia Array Actuated by Applied Magnetic Field. JPN J. Appl. Phys. 2016, 55, 06GP19. [Google Scholar] [CrossRef]
- Milana, E.; Gorissen, B.; Peerlinck, S.; De Volder, M.; Reynaerts, D. Artificial Soft Cilia with Asymmetric Beating Patterns for Biomimetic Low-Reynolds-Number Fluid Propulsion. Adv. Funct. Mater. 2019, 29, 1900462. [Google Scholar] [CrossRef]
- Hussong, J.; Breugem, W.P.; Westerweel, J. A Continuum Model for Flow Induced by Metachronal Coordination between Beating Cilia. J. Fluid Mech. 2011, 684, 137–162. [Google Scholar] [CrossRef]
- Hall, J.; Clarke, N. The Mechanics of Cilium Beating: Quantifying the Relationship between Metachronal Wavelength and Fluid Flow Rate. J. Fluid Mech. 2020, 891, A20. [Google Scholar] [CrossRef]
- Khaderi, S.N.; Den Toonder, J.M.J.; Onck, P.R. Microfluidic Propulsion by the Metachronal Beating of Magnetic Artificial Cilia: A Numerical Analysis. J. Fluid Mech. 2011, 688, 44–65. [Google Scholar] [CrossRef]
- Khaderi, S.N.; den Toonder, J.M.J.; Onck, P.R. Fluid Flow Due to Collective Non-Reciprocal Motion of Symmetrically-Beating Artificial Cilia. Biomicrofluidics 2012, 6, 014106. [Google Scholar] [CrossRef]
- Mesdjian, O.; Wang, C.; Gsell, S.; D’Ortona, U.; Favier, J.; Viallat, A.; Loiseau, E. Longitudinal to Transverse Metachronal Wave Transitions in an in Vitro Model of Ciliated Bronchial Epithelium. Phys. Rev. Lett. 2022, 129, 38101. [Google Scholar] [CrossRef]
- Pedersoli, L.; Zhang, S.; Briatico-Vangosa, F.; Petrini, P.; Cardinaels, R.; den Toonder, J.; Peneda Pacheco, D. Engineered Modular Microphysiological Models of the Human Airway Clearance Phenomena. Biotechnol. Bioeng. 2021, 118, 3898–3913. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, Y.; Onck, P.; den Toonder, J. A Concise Review of Microfluidic Particle Manipulation Methods. Microfluid. Nanofluidics 2020, 24, 24. [Google Scholar] [CrossRef]
- Ben, S.; Tai, J.; Ma, H.; Peng, Y.; Zhang, Y.; Tian, D.; Liu, K.; Jiang, L. Cilia-Inspired Flexible Arrays for Intelligent Transport of Viscoelastic Microspheres. Adv. Funct. Mater. 2018, 28, 1706666. [Google Scholar] [CrossRef]
- Ben, S.; Yao, J.; Ning, Y.; Zhao, Z.; Zha, J.; Tian, D.; Liu, K.; Jiang, L. A Bioinspired Magnetic Responsive Cilia Array Surface for Microspheres Underwater Directional Transport. Sci. China Chem. 2020, 63, 347–353. [Google Scholar] [CrossRef]
- Kim, J.H.; Kang, S.M.; Lee, B.J.; Ko, H.; Bae, W. Remote Manipulation of Droplets on a Flexible Magnetically Responsive Film. Nat. Publ. Gr. 2015, 5, 17843. [Google Scholar] [CrossRef]
- Ben, S.; Zhou, T.; Ma, H.; Yao, J.; Ning, Y.; Tian, D.; Liu, K.; Jiang, L. Multifunctional Magnetocontrollable Superwettable-Microcilia Surface for Directional Droplet Manipulation. Adv. Sci. 2019, 6, 1900834. [Google Scholar] [CrossRef]
- Song, Y.; Jiang, S.; Li, G.; Zhang, Y.; Wu, H.; Xue, C.; You, H.; Zhang, D.; Cai, Y.; Zhu, J.; et al. Cross-Species Bioinspired Anisotropic Surfaces for Active Droplet Transportation Driven by Unidirectional Microcolumn Waves. ACS Appl. Mater. Interfaces 2020, 12, 42264–42273. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, Z.; Wang, Z.; Liang, Y.; Cui, Z.; Zhao, J.; Li, X.; Ren, L. Multistimuli-Responsive Microstructured Superamphiphobic Surfaces with Large-Range, Reversible Switchable Wettability for Oil. ACS Appl. Mater. Interfaces 2019, 11, 28478–28486. [Google Scholar] [CrossRef]
- Jiang, S.; Hu, Y.; Wu, H.; Li, R.; Zhang, Y.; Chen, C.; Xue, C.; Xu, B.; Zhu, W.; Li, J.; et al. Three-Dimensional Multifunctional Magnetically Responsive Liquid Manipulator Fabricated by Femtosecond Laser Writing and Soft Transfer. Nano Lett. 2020, 20, 7519–7529. [Google Scholar] [CrossRef]
- Zeng, H.; Wasylczyk, P.; Parmeggiani, C.; Martella, D.; Burresi, M.; Wiersma, D.S. Light-Fueled Microscopic Walkers. Adv. Mater. 2015, 27, 3883–3887. [Google Scholar] [CrossRef]
- Zeng, H.; Wani, O.M.; Wasylczyk, P.; Priimagi, A. Light-Driven, Caterpillar-Inspired Miniature Inching Robot. Macromol. Rapid Commun. 2018, 39, 1700224. [Google Scholar] [CrossRef]
- Zheng, Q.; Wu, Z.L. Light-Steered Locomotion of Muscle-like Hydrogel by Self-Coordinated Shape Change and Friction Modulation. Nat. Commun. 2020, 11, 5166. [Google Scholar] [CrossRef]
- Joyee, E.B.; Pan, Y. A Fully Three-Dimensional Printed Inchworm-Inspired Soft Robot with Magnetic Actuation. Soft Robot. 2019, 6, 333–345. [Google Scholar] [CrossRef]
- Alapan, Y.; Karacakol, A.C.; Guzelhan, S.N.; Isik, I.; Sitti, M. Reprogrammable Shape Morphing of Magnetic Soft Machines. Sci. Adv. 2020, 6, eabc6414. [Google Scholar] [CrossRef]
- Venkiteswaran, V.K.; Samaniego, L.F.P.; Sikorski, J.; Misra, S. Bio-Inspired Terrestrial Motion of Magnetic Soft Millirobots. IEEE Robot. Autom. Lett. 2019, 4, 1753–1759. [Google Scholar] [CrossRef]
- Xu, T.; Zhang, J.; Salehizadeh, M.; Onaizah, O.; Diller, E. Millimeter-Scale Flexible Robots with Programmable Three-Dimensional Magnetization and Motions. Sci. Robot. 2019, 4, eaav4494. [Google Scholar] [CrossRef]
- Hu, W.; Lum, G.Z.; Mastrangeli, M.; Sitti, M. Small-Scale Soft-Bodied Robot with Multimodal Locomotion. Nature 2018, 554, 81–85. [Google Scholar] [CrossRef]
- Palagi, S.; Fischer, P. Bioinspired Microrobots. Nat. Rev. Mater. 2018, 3, 113–124. [Google Scholar] [CrossRef]
- Jiang, H.; Gu, H.; Nelson, B.J.; Zhang, T. Numerical Study of Metachronal Wave-Modulated Locomotion in Magnetic Cilia Carpets. Adv. Intell. Syst. 2023, 5, 2300212. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, Z.; Wang, Y.; den Toonder, J.M.J. Metachronal Motion of Biological and Artificial Cilia. Biomimetics 2024, 9, 198. https://doi.org/10.3390/biomimetics9040198
Cui Z, Wang Y, den Toonder JMJ. Metachronal Motion of Biological and Artificial Cilia. Biomimetics. 2024; 9(4):198. https://doi.org/10.3390/biomimetics9040198
Chicago/Turabian StyleCui, Zhiwei, Ye Wang, and Jaap M. J. den Toonder. 2024. "Metachronal Motion of Biological and Artificial Cilia" Biomimetics 9, no. 4: 198. https://doi.org/10.3390/biomimetics9040198
APA StyleCui, Z., Wang, Y., & den Toonder, J. M. J. (2024). Metachronal Motion of Biological and Artificial Cilia. Biomimetics, 9(4), 198. https://doi.org/10.3390/biomimetics9040198