Review of Computational Fluid Dynamics Analysis in Biomimetic Applications for Underwater Vehicles
Abstract
:1. Introduction
Biological Species | Reynolds Number | Reference | AUV Models | Reynolds Number | Reference |
---|---|---|---|---|---|
American eel | 1006 | [12] | Pirajuba | 3.5 × 106 | [13] |
Bluegill sunfish | 1440 | [14] | Spray | 4 × 105–6 × 105 | [15] |
Yellowfin tuna | 1.9 × 104 | [12] | Slocum | 5.2 × 105–7.5 × 105 | [16] |
Cownose ray | 105 | [17] | Seaglider | 4.9 × 105 | [18] |
Scomber scombrus | 3.2 × 105 | [19] | SeaExplorer | 4.9 × 105–9.9 × 105 | [16] |
Manta ray | 5.1 × 105 | [20] | Petrel-II | 7.2 × 105–1.8 × 106 | [21] |
Greenland shark | 106 | [22] | Petrel-L | 7.7 × 105 | [23] |
longfin inshore squid | 4.4 × 105–1.5 × 106 | [24] | Petrel-4000 | 1.2 × 106 | [25] |
Basking shark | 6.9 × 106 | [26] | ALBAC | 7 × 105–1.4 × 106 | [27] |
Humpback whale | 8.8 × 106 | [7] | Miniature | 5.5 × 104 | [28] |
Dolphin | 2.3 × 106–1.6 × 107 | [29] | ALEX | 9.9 × 104–4.9 × 105 | [30] |
1.1. CFD Methodologies in Underwater Vehicle Design
1.2. Review Framework
2. Applications of Biomimetic Propulsion
2.1. Biomimetic Hydrofoil-like Tail Fin Propulsion
Type of Hydrofoil | Dimensional | Reynolds Number | Numerical Method | Reference |
---|---|---|---|---|
NACA0012 | 3D | 100–600 | LBM-IBM | [55] |
NACA0012 | 2D and 3D | 4.4 × 106 | k-ω | [56] |
NACA0005 | 2D | 5 × 102–5 × 104 | SST | [57] |
NACA0012 | 2D | 45,000 | URANS | [58] |
NACA0012 | 2D | 307,000 | k-ω | [59] |
NACA0012 | 2D | 40,000 | k-ω | [60] |
NACA0015 | 2D | 300,000 | URANS | [61] |
NACA0012 | 2D | 105–8 × 105 | k-ω | [62] |
NACA0013 | 3D | 11,000 | URANS | [63] |
NACA0012 | 2D | 42,000 | URANS | [64] |
NACA0012 | 2D | 40,000 | URANS | [65] |
NACA0012 | 3D | 200 | LBM-IBM | [66] |
NACA0012 | 3D | 50,000 | k-ε | [67] |
NACA0012 | 2D | 400 | LBM-IBM | [68] |
NACA0012 | 2D | 1500 | IBM | [69] |
NACA0012 | 2D | 5000 | IBM | [70] |
NACA0012 | 2D | 5000 | IBM | [71] |
NACA0012 | 2D | 500 | LBM-IBM | [72] |
NACA0012 | 2D | 195,000 | SST | [73] |
NACA0012 | 2D | 2000 | DSD/SST | [74] |
NACA0012 | 2D | 4000 | IBM | [75] |
NACA0012 | 2D | 20,000 | URANS | [76] |
NACA0012 | 2D | 9000–13,600 | IBM | [77] |
NACA0015 | 2D | 260,000 | URANS | [78] |
NACA0012 | 2D | 500–5000 | BEM | [79] |
NACA0015 | 2D | 3000 | FVM | [80] |
NACA0012 | 2D | 42,000 | k-ε | [81] |
NACA0012 | 2D | 40,000 | k-ω | [82] |
2.2. Biomimetic Robotic Fish Propulsion
2.3. Biomimetic Batoid-like Propulsion
2.4. Biomimetic Dolphin Propulsion
2.5. Biomimetic Squid Propulsion
3. Applications of Biomimetic Drag Reduction
4. Applications of Biomimetic Noise Reduction
5. Discussion
5.1. Challenges and Prospects in Biomimetic Propulsion
5.2. Challenges and Prospects in Biomimetic Drag Reduction and Noise Reduction
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Reddy, N.S.; Sen, S.; Kumar, D.; Shome, S.N. Caudal Fin Load Characteristics with Different Motion Patterns toward Developing Biorobotic Fish-Fin Actuator. In Proceedings of the 2015 Conference on Advances in Robotics, Goa, India, 2–4 July 2015; ACM: New York, NY, USA, 2015; pp. 1–6. [Google Scholar]
- Xie, O.; Li, B.; Yan, Q. Computational and Experimental Study on Dynamics Behavior of a Bionic Underwater Robot with Multi-Flexible Caudal Fins. Ind. Robot. Int. J. 2018, 45, 267–274. [Google Scholar] [CrossRef]
- Zhao, Z.; Dou, L. Modeling and Simulation of the Intermittent Swimming Gait with the Muscle-Contraction Model of Pre-Strains. Ocean Eng. 2020, 207, 107391. [Google Scholar] [CrossRef]
- Roper, D.T.; Sharma, S.; Sutton, R.; Culverhouse, P. A Review of Developments towards Biologically Inspired Propulsion Systems for Autonomous Underwater Vehicles. Proc. Inst. Mech. Eng. Part M J. Eng. Marit. Environ. 2011, 225, 77–96. [Google Scholar] [CrossRef]
- Fish, F.E. Advantages of Aquatic Animals as Models for Bio-Inspired Drones over Present AUV Technology. Bioinspir. Biomim. 2020, 15, 025001. [Google Scholar] [CrossRef] [PubMed]
- Ayancik, F.; Fish, F.E.; Moored, K.W. Three-Dimensional Scaling Laws of Cetacean Propulsion Characterize the Hydrodynamic Interplay of Flukes’ Shape and Kinematics. J. R. Soc. Interface 2020, 17, 20190655. [Google Scholar] [CrossRef]
- Sun, T.; Chen, G.; Yang, S.; Wang, Y.; Wang, Y.; Tan, H.; Zhang, L. Design and Optimization of a Bio-Inspired Hull Shape for AUV by Surrogate Model Technology. Eng. Appl. Comput. Fluid Mech. 2021, 15, 1057–1074. [Google Scholar] [CrossRef]
- Dong, H.; Wu, Z.; Tan, M.; Yu, J. Hydrodynamic Analysis and Verification of an Innovative Whale Shark-like Underwater Glider. J. Bionic Eng. 2020, 17, 123–133. [Google Scholar] [CrossRef]
- Yan, Z.; Zhang, J.; Zeng, J.; Tang, J. Three-Dimensional Path Planning for Autonomous Underwater Vehicles Based on a Whale Optimization Algorithm. Ocean Eng. 2022, 250, 111070. [Google Scholar] [CrossRef]
- Groves, N.C.; Huang, T.T.; Chang, M.S. Geometric Characteristics of DARPA SUBOFF Models; David Taylor Research Center: Bethesda, MD, USA, 1989. [Google Scholar]
- Huang, T.T.; Liu, H.L.; Groves, N.C.; Forlini, T.J.; Blanton, J.N.; Gowing, S. Measurements of Flows over an Axisymmetric Body with Various Appendages in a Wind Tunnel: The DARPA SUBOFF Experimental Program. In Proceedings of the 19th Symposium on Naval Hydrodynamics, Washington, DC, USA, 23–28 August 1992; National Academy Press: Seoul, Republic of Korea, 1994. [Google Scholar]
- Akanyeti, O.; Di Santo, V.; Goerig, E.; Wainwright, D.K.; Liao, J.C.; Castro-Santos, T.; Lauder, G.V. Fish-Inspired Segment Models for Undulatory Steady Swimming. Bioinspir. Biomim. 2022, 17, 046007. [Google Scholar] [CrossRef]
- Barros, E.A.D.; Freire, L.O.; Dantas, J.L.D. Development of the Pirajuba AUV. IFAC Proc. Vol. 2010, 43, 102–107. [Google Scholar] [CrossRef]
- Mittal, R.; Dong, H.; Bozkurttas, M.; Lauder, G.; Madden, P. Locomotion with Flexible Propulsors: II. Computational Modeling of Pectoral Fin Swimming in Sunfish. Bioinspir. Biomim. 2006, 1, S35–S41. [Google Scholar] [CrossRef]
- Sherman, J.; Davis, R.E.; Owens, W.B.; Valdes, J. The Autonomous Underwater Glider “Spray”. IEEE J. Ocean. Eng. 2001, 26, 437–446. [Google Scholar] [CrossRef]
- Şerifoğlu, M.O.; Tutak, B. Drag Force-Internal Volume Relationship for Underwater Gliders and Drag Coefficient Estimation Using Machine Learning. Ocean Eng. 2022, 262, 112325. [Google Scholar] [CrossRef]
- Bianchi, G.; Cinquemani, S.; Schito, P.; Braghin, F. CFD Model of an AUV Inspired by the Cownose Ray. In Proceedings of the NATO Science and Technology Organization—Applied Vehicle Technology Panel (STO-MP-AVT-366); Politecnico di Milano, Department of Mechanics: Milan, Italy, 2022. [Google Scholar]
- Seaglider Product Specification 2014. Available online: https://www.kongsberg.com/globalassets/maritime/km-products/documents/seaglider_product_specification.pdf (accessed on 28 November 2023).
- Düzbastilar, F.O.; Şentürk, U. Appropriateness of Three Fish Species (Scomber Scombrus, Sarda Sarda, and Thunnus Thynnus) from the Scombridae Family in Terms of Shape and Hydromechanics in Designing the Body of a Robotic Fish. Ocean Eng. 2022, 266, 112902. [Google Scholar] [CrossRef]
- Liu, Q.; Chen, H.; Wang, Z.; He, Q.; Chen, L.; Li, W.; Li, R.; Cui, W. A Manta Ray Robot with Soft Material Based Flapping Wing. J. Mar. Sci. Eng. 2022, 10, 962. [Google Scholar] [CrossRef]
- Song, Y.; Xie, X.; Wang, Y.; Yang, S.; Ma, W.; Wang, P. Energy Consumption Prediction Method Based on LSSVM-PSO Model for Autonomous Underwater Gliders. Ocean Eng. 2021, 230, 108982. [Google Scholar] [CrossRef]
- Lydersen, C.; Fisk, A.T.; Kovacs, K.M. A Review of Greenland Shark (Somniosus microcephalus) Studies in the Kongsfjorden Area, Svalbard Norway. Polar Biol. 2016, 39, 2169–2178. [Google Scholar] [CrossRef]
- Yang, M.; Wang, Y.; Wang, S.; Yang, S.; Song, Y.; Zhang, L. Motion Parameter Optimization for Gliding Strategy Analysis of Underwater Gliders. Ocean Eng. 2019, 191, 106502. [Google Scholar] [CrossRef]
- Olcay, A.; Tabatabaei, M.; Okbaz, A.; Heperkan, H.; Fırat, E.; Ozbolat, V.; Gokhan Gokcen, M.; Sahin, B. Experimental and Numerical Investigation of a Longfin Inshore Squid’s Flow Characteristics. JAFM 2017, 10, 21–30. [Google Scholar] [CrossRef]
- Liang, Y.; Zhang, L.; Wang, Y.; Yang, Y.; Yang, S.; Niu, W. Dynamic-Thermal Modeling and Motion Analysis for Deep-Sea Glider with Passive Buoyancy Compensation Liquid. Ocean Eng. 2021, 238, 109704. [Google Scholar] [CrossRef]
- Sims, D.W. Filter-Feeding and Cruising Swimming Speeds of Basking Sharks Compared with Optimal Models: They Filter-Feed Slower than Predicted for Their Size. J. Exp. Mar. Biol. Ecol. 2000, 249, 65–76. [Google Scholar] [CrossRef]
- Kawaguchi, K.; Ura, T.; Tomoda, Y.; Kobayashi, H. Development and Sea Trials of a Shuttle Type AUV “ALBAC”. In International Symposium on Unmanned Untethered Submersible Technology; University of New Hampshire-Marine Systems: Portsmouth, NH, USA, 1993; p. 7. [Google Scholar]
- Zhang, F.; Thon, J.; Thon, C.; Tan, X. Miniature Underwater Glider: Design and Experimental Results. IEEE/ASME Trans. Mechatron. 2014, 19, 394–399. [Google Scholar] [CrossRef]
- Feng, D.; Yang, W.; Zhang, Z.; Wang, X.; Yao, C. Numerical Study on Hydrodynamic Behavior of Flexible Multi-Stage Propulsion Foil. AIP Adv. 2021, 11, 035326. [Google Scholar] [CrossRef]
- Arima, M.; Ichihashi, N.; Miwa, Y. Modelling and Motion Simulation of an Underwater Glider with Independently Controllable Main Wings. In Proceedings of the OCEANS 2009-EUROPE, Bremen, Germany, 11–14 May 2009; IEEE: Piscataway, NJ, USA, 2009; pp. 1–6. [Google Scholar]
- Liu, Y.; Zhou, Z.; Zhu, L.; Wang, S. Numerical Investigation of Flows around an Axisymmetric Body of Revolution by Using Reynolds-Stress Model Based Hybrid Reynolds-Averaged Navier–Stokes/Large Eddy Simulation. Phys. Fluids 2021, 33, 085115. [Google Scholar] [CrossRef]
- Qu, Y.; Wu, Q.; Zhao, X.; Huang, B.; Fu, X.; Wang, G. Numerical Investigation of Flow Structures around the DARPA SUBOFF Model. Ocean Eng. 2021, 239, 109866. [Google Scholar] [CrossRef]
- Amiri, M.M.; Esperança, P.T.; Vitola, M.A.; Sphaier, S.H. How Does the Free Surface Affect the Hydrodynamics of a Shallowly Submerged Submarine? Appl. Ocean Res. 2018, 76, 34–50. [Google Scholar] [CrossRef]
- Chen, L.; Wang, S.; Ding, J.; Wang, Y.; Bennett, P.; Cheng, J.; Yang, Q.; Liu, D. Open Water Characteristics of Marine Propeller with Superhydrophobic Surfaces. Ocean Eng. 2023, 269, 113440. [Google Scholar] [CrossRef]
- Liu, J.; Wang, M.; Yu, F.; Gao, S.; Yan, T.; He, B. Numerical Study on the Hull–Propeller Interaction of Autonomous Underwater Vehicle. Ocean Eng. 2023, 271, 113777. [Google Scholar] [CrossRef]
- Tong, X.D.; Chen, H.Y.; Dong, X.Q.; Chen, Y. Experimental and Numerical Investigations on the Unsteady Thrust of a Propeller in Presence of an Upstream Rudder. Ocean Eng. 2021, 237, 109644. [Google Scholar] [CrossRef]
- Jia, D.; Zou, Y.; Pang, F.; Miao, X.; Li, H. Experimental Study on the Characteristics of Flow-Induced Structure Noise of Underwater Vehicle. Ocean Eng. 2022, 262, 112126. [Google Scholar] [CrossRef]
- Niu, C.; Liu, Y.; Shang, D.; Qin, Q.; Liu, W. Hydrodynamic Noise Reduction Mechanism of a Superhydrophobic Surface with Different Slip Velocities. J. Sound Vib. 2022, 531, 116976. [Google Scholar] [CrossRef]
- Ren, Y.; Qin, Y.; Pang, F.; Wang, H.; Su, Y.; Li, H. Investigation on the Flow-Induced Structure Noise of a Submerged Cone-Cylinder-Hemisphere Combined Shell. Ocean Eng. 2023, 270, 113657. [Google Scholar] [CrossRef]
- Yuan, M.; Li, Y.; Li, Y.; Pang, S.; Zhang, J. A Fast Way of Single-Beacon Localization for AUVs. Appl. Ocean Res. 2022, 119, 103037. [Google Scholar] [CrossRef]
- Liu, K.; Wang, H.; Xu, X.; Song, T.; Meng, Q. Development and Trials of a Novel Deep-Sea Multi-Joint Autonomous Underwater Vehicle. Ocean Eng. 2022, 265, 112558. [Google Scholar] [CrossRef]
- Shitashima, K.; Maeda, Y.; Sakamoto, A. Detection and Monitoring of Leaked CO2 through Sediment, Water Column and Atmosphere in a Sub-Seabed CCS Experiment. Int. J. Greenh. Gas Control 2015, 38, 135–142. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, J.; Liu, Y.; Wang, Y.; Wang, S.; Wu, Z.; Wang, F.; Hao, L.; Zheng, Y. Research on the Influence of Balance Weight Parameters on the Motion Performance of the Seafloor Mapping AUV in Vertical Plane. Ocean Eng. 2015, 109, 217–225. [Google Scholar] [CrossRef]
- Bogue, R. Underwater Robots: A Review of Technologies and Applications. Ind. Robot. Int. J. 2015, 42, 186–191. [Google Scholar] [CrossRef]
- Nauert, F.; Kampmann, P. Inspection and Maintenance of Industrial Infrastructure with Autonomous Underwater Robots. Front. Robot. AI 2023, 10, 1240276. [Google Scholar] [CrossRef]
- Sverdrup-Thygeson, J.; Kelasidi, E.; Pettersen, K.Y.; Gravdahl, J.T. The Underwater Swimming Manipulator—A Bioinspired Solution for Subsea Operations. IEEE J. Ocean. Eng. 2018, 43, 402–417. [Google Scholar] [CrossRef]
- Li, G.; Liu, G.; Leng, D.; Fang, X.; Li, G.; Wang, W. Underwater Undulating Propulsion Biomimetic Robots: A Review. Biomimetics 2023, 8, 318. [Google Scholar] [CrossRef]
- Gutarra, S.; Moon, B.C.; Rahman, I.A.; Palmer, C.; Lautenschlager, S.; Brimacombe, A.J.; Benton, M.J. Effects of Body Plan Evolution on the Hydrodynamic Drag and Energy Requirements of Swimming in Ichthyosaurs. Proc. R. Soc. B. 2019, 286, 20182786. [Google Scholar] [CrossRef]
- Gao, L.; Li, P.; Qin, H.; Deng, Z. Mechatronic Design and Maneuverability Analysis of a Novel Robotic Shark. J. Marine Sci. Appl. 2022, 21, 82–91. [Google Scholar] [CrossRef]
- Weng, J.; Zhu, Y.; Du, X.; Yang, G.; Hu, D. Theoretical and Numerical Studies on a Five-Ray Flexible Pectoral Fin during Labriform Swimming. Bioinspir. Biomim. 2019, 15, 016007. [Google Scholar] [CrossRef]
- Mei, L.; Yan, W.; Zhou, J.; Shi, W. Thrust Enhancement of DTMB 5415 with Elastic Flapping Foil in Regular Head Waves. J. Mar. Sci. Eng. 2023, 11, 632. [Google Scholar] [CrossRef]
- Wu, B.; Shu, C.; Lee, H.; Wan, M. The Effects of Caudal Fin’s Bending Stiffness on a Self-Propelled Carangiform Swimmer. Phys. Fluids 2022, 34, 041901. [Google Scholar] [CrossRef]
- Cole, J.A.; Loubimov, G.; Kinzel, M. Comparison of Computational Methods for Hydrodynamic Performance Prediction of Oscillating Marine Propulsors. Ocean Eng. 2021, 242, 110002. [Google Scholar] [CrossRef]
- Karbasian, H.R.; Esfahani, J.A. Enhancement of Propulsive Performance of Flapping Foil by Fish-like Motion Pattern. Comput. Fluids 2017, 156, 305–316. [Google Scholar] [CrossRef]
- Han, J.; Yuan, Z.; Chen, G. Effects of Kinematic Parameters on Three-Dimensional Flapping Wing at Low Reynolds Number. Phys. Fluids 2018, 30, 081901. [Google Scholar] [CrossRef]
- Martin, A.K.; Anathakrishanan, P.; Krishnankutty, P. Ship Hull Wake Effect on the Hydrodynamic Performance of a Heave–Pitch Combined Oscillating Fin. Ships Offshore Struct. 2021, 16, 714–724. [Google Scholar] [CrossRef]
- Hu, Q.-Q.; Yu, Y.-L. The Hydrodynamic Effects of Undulating Patterns on Propulsion and Braking Performances of Long-Based Fin. AIP Adv. 2022, 12, 035319. [Google Scholar] [CrossRef]
- Wei, C.; Hu, Q.; Liu, Y.; Yin, S.; Chen, Z.; Ji, X. Performance Evaluation and Optimization for Two-Dimensional Fish-like Propulsion. Ocean Eng. 2021, 233, 109191. [Google Scholar] [CrossRef]
- Vignesh, D.; Krishnankutty, P. Numerical Study on Bio-Mimetic Flapping Foil Propulsion System in Open Water Condition. In Proceedings of the OCEANS 2022—Chennai, Chennai, India, 21–24 February 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1–5. [Google Scholar]
- Vijayakumaran, H.; Krishnankutty, P. Computational Fluid Dynamics Study of a Flexible Flapping Hydrofoil Propulsor. In Proceedings of the Volume 2: CFD and VIV, Busan, Republic of Korea, 19–24 June 2016; American Society of Mechanical Engineers: New York, NY, USA, 2016; p. V002T08A005. [Google Scholar]
- Alberti, L.; Carnevali, E.; Costa, D.; Crivellini, A. A Computational Fluid Dynamics Investigation of a Flapping Hydrofoil as a Thruster. Biomimetics 2023, 8, 135. [Google Scholar] [CrossRef]
- Liu, J.; Yu, F.; He, B.; Yan, T. Hydrodynamic Numerical Simulation and Prediction of Bionic Fish Based on Computational Fluid Dynamics and Multilayer Perceptron. Eng. Appl. Comput. Fluid Mech. 2022, 16, 858–878. [Google Scholar] [CrossRef]
- Zhou, K.; Liu, J.; Chen, W. Study on the Hydrodynamic Performance of Typical Underwater Bionic Foils with Spanwise Flexibility. Appl. Sci. 2017, 7, 1120. [Google Scholar] [CrossRef]
- Qi, Z.; Zhai, J.; Li, G.; Peng, J. Effects of Non-Sinusoidal Pitching Motion on the Propulsion Performance of an Oscillating Foil. PLoS ONE 2019, 14, e0218832. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, F.; Wang, D.; Jiang, X. Numerical Investigation of a New Three-Degree-of-Freedom Motion Trajectory on Propulsion Performance of Flapping Foils for UUVs. Ocean Eng. 2021, 224, 108763. [Google Scholar] [CrossRef]
- Lin, T.; Xia, W.; Pecora, R.; Wang, K.; Hu, S. Performance Improvement of Flapping Propulsions from Spanwise Bending on a Low-Aspect-Ratio Foil. Ocean Eng. 2023, 284, 115305. [Google Scholar] [CrossRef]
- Ci, X.; Fan, S.; Jin, Y. Design and Operation Optimization of the Flapping Fin for AUV Propulsion. In Proceedings of the 2019 IEEE Underwater Technology (UT), Kaohsiung, Taiwan, 16–19 April 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–9. [Google Scholar]
- Sui, Y.; Chew, Y.-T.; Roy, P.; Low, H.-T. A Hybrid Immersed-Boundary and Multi-Block Lattice Boltzmann Method for Simulating Fluid and Moving-Boundaries Interactions. Int. J. Numer. Meth. Fluids 2007, 53, 1727–1754. [Google Scholar] [CrossRef]
- Shao, X.; Pan, D.; Deng, J.; Yu, Z. Hydrodynamic Performance of a Fishlike Undulating Foil in the Wake of a Cylinder. Phys. Fluids 2010, 22, 111903. [Google Scholar] [CrossRef]
- Thekkethil, N.; Sharma, A.; Agrawal, A. Unified Hydrodynamics Study for Various Types of Fishes-like Undulating Rigid Hydrofoil in a Free Stream Flow. Phys. Fluids 2018, 30, 077107. [Google Scholar] [CrossRef]
- Khalid, M.S.U.; Wang, J.; Dong, H.; Liu, M. Flow Transitions and Mapping for Undulating Swimmers. Phys. Rev. Fluids 2020, 5, 063104. [Google Scholar] [CrossRef]
- Yang, S.; Liu, C.; Wu, J. Effect of Motion Trajectory on the Aerodynamic Performance of a Flapping Airfoil. J. Fluids Struct. 2017, 75, 213–232. [Google Scholar] [CrossRef]
- Ma, Q.; Ding, L.; Huang, D. A Study on the Influence of Schooling Patterns on the Energy Harvest of Double Undulatory Airfoils. Renew. Energy 2021, 174, 674–687. [Google Scholar] [CrossRef]
- Tian, F.-B. Hydrodynamic Effects of Mucus on Swimming Performance of an Undulatory Foil by Using the DSD/SST Method. Comput. Mech. 2020, 65, 751–761. [Google Scholar] [CrossRef]
- Namshad, T.; Shrivastava, M.; Agrawal, A.; Sharma, A. Effect of Wavelength of Fish-like Undulation of a Hydrofoil in a Free-Stream Flow. Sādhanā 2017, 42, 585–595. [Google Scholar] [CrossRef]
- Chen, W.; Zhang, Y.; Gao, F. Experimental and Numerical Studies on the Torsion Stiffness Effect of a Semi-Active Flapping Hydrofoil Propulsion. Ocean Eng. 2022, 265, 112578. [Google Scholar] [CrossRef]
- Mivehchi, A.; Zhang, Q.; Kurt, M.; Quinn, D.B.; Moored, K.W. Scaling Laws for the Propulsive Performance of a Purely Pitching Foil in Ground Effect. J. Fluid Mech. 2021, 919, R1. [Google Scholar] [CrossRef]
- Dahmani, F.; Sohn, C.H. Effect of Convergent Duct Geometry on the Energy Extraction Performance of Tandem Oscillating Hydrofoils System. J. Fluids Struct. 2020, 95, 102949. [Google Scholar] [CrossRef]
- Gupta, S.; Sharma, A.; Agrawal, A.; Thompson, M.C.; Hourigan, K. Hydrodynamics of a Fish-like Body Undulation Mechanism: Scaling Laws and Regimes for Vortex Wake Modes. Phys. Fluids 2021, 33, 101904. [Google Scholar] [CrossRef]
- Costa, D.; Palmieri, G.; Scaradozzi, D.; Callegari, M. Experimental Validation of a Bio-Inspired Thruster. J. Dyn. Syst. Meas. Control 2021, 143, 081004. [Google Scholar] [CrossRef]
- Wang, H.; Du, X.; Zhang, B. Propulsive Performance Analysis of Underwater Flapping Multi-Foil. In Proceedings of the OCEANS 2019—Marseille, Marseille, France, 17–20 June 2019; pp. 1–5. [Google Scholar]
- Mannam, N.P.B.; Krishnankutty, P.; Vijayakumaran, H.; Sunny, R.C. Experimental and Numerical Study of Penguin Mode Flapping Foil Propulsion System for Ships. J. Bionic Eng. 2017, 14, 770–780. [Google Scholar] [CrossRef]
- Gupta, S.; Agrawal, A.; Hourigan, K.; Thompson, M.C.; Sharma, A. Anguilliform and Carangiform Fish-Inspired Hydrodynamic Study for an Undulating Hydrofoil: Effect of Shape and Adaptive Kinematics. Phys. Rev. Fluids 2022, 7, 094102. [Google Scholar] [CrossRef]
- Abbaspour, M.; Ebrahimi, M. Comparative Numerical Analysis of the Flow Pattern and Performance of a Foil in Flapping and Undulating Oscillations. J. Mar. Sci. Technol. 2015, 20, 257–277. [Google Scholar] [CrossRef]
- You, J.; Lee, J.; Hong, S.; You, D. Optimization of Biomimetic Propulsive Kinematics of a Flexible Foil Using Integrated Computational Fluid Dynamics–Computational Structural Dynamics Simulations. J. Fluids Eng. 2019, 141, 061106. [Google Scholar] [CrossRef]
- Li, S.; Yang, W.; Xu, L.; Li, C. An Environmental Perception Framework for Robotic Fish Formation Based on Machine Learning Methods. Appl. Sci. 2019, 9, 3573. [Google Scholar] [CrossRef]
- Lin, Y.-C.; Zhang, D.-N. Experimental and Numerical Investigations on Undulatory Motion of a Soft-Fin-Based Underwater Robot. J. Mech. 2022, 38, 273–283. [Google Scholar] [CrossRef]
- Li, L.; Li, G.; Li, R.; Xiao, Q.; Liu, H. Multi-Fin Kinematics and Hydrodynamics in Pufferfish Steady Swimming. Ocean Eng. 2018, 158, 111–122. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, Q.; Yang, Q.; Fu, T.; Li, S. The Relative Perception System of Underwater Bionic Vehicles Based on the Artificial Lateral Line Pressure Sensor Array. Flow Meas. Instrum. 2023, 93, 102404. [Google Scholar] [CrossRef]
- Wright, M.; Xiao, Q.; Zhu, Q. Combined Hydrodynamic and Control Analysis on Optimal Kinematic Parameters for Bio-Inspired Autonomous Underwater Vehicle Manoeuvring. Front. Phys. 2023, 11, 1220596. [Google Scholar] [CrossRef]
- Haq, M.U.; Gang, Z.; Sun, Z.Z.; Aftab, S.M. Force Analysis of IPMC Actuated Fin and Wing Assembly of a Micro Scanning Device through Two-Way Fluid Structure Interaction Approach. JERA 2015, 21, 19–32. [Google Scholar] [CrossRef]
- Ren, K.; Yu, J.; Li, H.; Feng, H. Numerical Investigation on the Swimming Mode and Stable Spacing with Two Self-Propelled Fish Arranged in Tandem. Ocean Eng. 2022, 259, 111861. [Google Scholar] [CrossRef]
- Lamas, M.I.; Rodriguez, C.G. Hydrodynamics of Biomimetic Marine Propulsion and Trends in Computational Simulations. J. Mar. Sci. Eng. 2020, 8, 479. [Google Scholar] [CrossRef]
- Khan, A.H.; Ruiz Hussmann, K.; Powalla, D.; Hoerner, S.; Kruusmaa, M.; Tuhtan, J.A. An Open 3D CFD Model for the Investigation of Flow Environments Experienced by Freshwater Fish. Ecol. Inform. 2022, 69, 101652. [Google Scholar] [CrossRef]
- Fouladi, K.; Coughlin, D.J. CFD Investigation of Trout-Like Configuration Holding Station near an Obstruction. Fluids 2021, 6, 204. [Google Scholar] [CrossRef]
- Chung, H.; Cao, S.; Philen, M.; Beran, P.S.; Wang, K.G. CFD-CSD Coupled Analysis of Underwater Propulsion Using a Biomimetic Fin-and-Joint System. Comput. Fluids 2018, 172, 54–66. [Google Scholar] [CrossRef]
- Wright, M.; Luo, Y.; Xiao, Q.; Post, M.; Gorma, W.; Durrant, A.; Yue, H. CFD-FSI Analysis on Motion Control of Bio-Inspired Underwater AUV System Utilizing PID Control. In Proceedings of the 2020 IEEE/OES Autonomous Underwater Vehicles Symposium (AUV), St. Johns, NL, Canada, 30 September–2 October 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–6. [Google Scholar]
- Li, R.; Xiao, Q.; Liu, Y.; Li, L.; Liu, H. Computational Investigation on a Self-Propelled Pufferfish Driven by Multiple Fins. Ocean Eng. 2020, 197, 106908. [Google Scholar] [CrossRef]
- Zangeneh, R.; Musa, S.M. Hydrodynamic Analysis of Biomimetic Robot Fish Using OpenFOAM. In Proceedings of the 2021 IEEE Conference on Technologies for Sustainability (SusTech), Irvine, CA, USA, 22–24 April 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–5. [Google Scholar]
- Palit, S.; Sinha, S.; Aylmer Britto, R.; Arockia Selvakumar, A. CFD Analysis of Flow around Fish. J. Phys. Conf. Ser. 2019, 1276, 012010. [Google Scholar] [CrossRef]
- Chowdhury, A.R.; Xue, W.; Behera, M.R.; Panda, S.K. Hydrodynamics Study of a BCF Mode Bioinspired Robotic-Fish Underwater Vehicle Using Lighthill’s Slender Body Model. J. Mar. Sci. Technol. 2016, 21, 102–114. [Google Scholar] [CrossRef]
- Vignesh, D.; Jadhav, P.S.; Thondiyath, A.; Vijayakumar, R.; Krishnankutty, P. Numerical Estimation of Hydrodynamic Derivatives of a Biomimetic Autonomous Underwater Vehicle by Captive Model Tests. In Proceedings of the Volume 5: Ocean Engineering, American Society of Mechanical Engineers, Melbourne, Australia, 11–16 June 2023; p. V005T06A094. [Google Scholar]
- Li, N.; Liu, H.; Su, Y. Numerical Study on the Hydrodynamics of Thunniform Bio-Inspired Swimming under Self-Propulsion. PLoS ONE 2017, 12, e0174740. [Google Scholar] [CrossRef]
- Li, X.; Gu, J.; Su, Z.; Yao, Z. Hydrodynamic Analysis of Fish Schools Arranged in the Vertical Plane. Phys. Fluids 2021, 33, 121905. [Google Scholar] [CrossRef]
- Pan, Y.; Dong, H. Computational Analysis of Hydrodynamic Interactions in a High-Density Fish School. Phys. Fluids 2020, 32, 121901. [Google Scholar] [CrossRef]
- Tian, R.; Li, L.; Wang, W.; Chang, X.; Ravi, S.; Xie, G. CFD Based Parameter Tuning for Motion Control of Robotic Fish. Bioinspir. Biomim. 2020, 15, 026008. [Google Scholar] [CrossRef]
- Ji, D.; Rehman, F.U.; Ajwad, S.A.; Shahani, K.; Sharma, S.; Sutton, R.; Li, S.; Ye, Z.; Zhu, H.; Zhu, S. Design and Development of Autonomous Robotic Fish for Object Detection and Tracking. Int. J. Adv. Robot. Syst. 2020, 17, 172988142092528. [Google Scholar] [CrossRef]
- Zou, T.; Jian, X.; Al-Tamimi, M.; Wu, X.; Wu, J. Development of a Low-Cost Soft Robot Fish With Biomimetic Swimming Performance. J. Mech. Robot. 2024, 16, 061004. [Google Scholar] [CrossRef]
- Zhang, T.; Tian, R.; Yang, H.; Wang, C.; Sun, J.; Zhang, S.; Xie, G. From Simulation to Reality: A Learning Framework for Fish-Like Robots to Perform Control Tasks. IEEE Trans. Robot. 2022, 38, 3861–3878. [Google Scholar] [CrossRef]
- Chen, H.; Li, W.; Cui, W.; Yang, P.; Chen, L. Multi-Objective Multidisciplinary Design Optimization of a Robotic Fish System. J. Mar. Sci. Eng. 2021, 9, 478. [Google Scholar] [CrossRef]
- Mitra, S.; Sehgal, V.; Rathore, S.; Puri, R.; Chouhan, S.; Sharma, A. Design and Control Strategy of Bio-Inspired Underwater Vehicle with Flexible Propulsor. J. Mod. Mech. Eng. Technol. 2021, 8, 57–65. [Google Scholar] [CrossRef]
- Mysa, R.C.; Valdivia, Y.; Alvarado, P. The Effect of Batoid Inspired Undulating Motions on the Propulsive Forces of a Circular Planform. Phys. Fluids 2021, 33, 061901. [Google Scholar] [CrossRef]
- Huang, Q.-G.; Ma, Y.-L.; Chao, L.-M.; Pan, G. Numerical Investigations on the Thrust Generation of a Manta-Inspired Foil. Mod. Phys. Lett. B 2020, 34, 2050195. [Google Scholar] [CrossRef]
- Huang, Q.; Zhang, D.; Pan, G. Computational Model Construction and Analysis of the Hydrodynamics of a Rhinoptera Javanica. IEEE Access 2020, 8, 30410–30420. [Google Scholar] [CrossRef]
- Bao, P.; Shi, L.; Zhang, Z.; Guo, S. Kinematics Simulation Based on Fluent of a Bionic Manta Ray Robot. In Proceedings of the 2021 IEEE International Conference on Unmanned Systems (ICUS), Beijing, China, 15–17 October 2021; pp. 249–254. [Google Scholar]
- Luo, Y.; Xu, T.; Huang, Q.; Hou, Z.; Pan, G. A Numerical Investigation on Thrust and Torque Production of a Batoid Fish with Asymmetric Pectoral Fins Flapping. Ocean Eng. 2022, 263, 112342. [Google Scholar] [CrossRef]
- Gao, P.; Huang, Q.; Pan, G.; Song, D.; Gao, Y. Research on Swimming Performance of Fish in Different Species. Phys. Fluids 2023, 35, 061909. [Google Scholar] [CrossRef]
- Menzer, A.; Li, C.; Fish, F.; Gong, Y.; Dong, H. Modeling and Computation of Batoid Swimming Inspired Pitching Impact on Wake Structure and Hydrodynamic Performance. In Proceedings of the Volume 2: Multiphase Flow (MFTC); Computational Fluid Dynamics (CFDTC); Micro and Nano Fluid Dynamics (MNFDTC), Toronto, ON, Canada, 3–5 August 2022; American Society of Mechanical Engineers: New York, NY, USA; p. V002T05A003. [Google Scholar]
- Safari, H.; Abbaspour, M.; Darbandi, M. Numerical Study to Evaluate the Important Parameters Affecting the Hydrodynamic Performance of Manta Ray’s in Flapping Motion. Appl. Ocean Res. 2021, 109, 102559. [Google Scholar] [CrossRef]
- Lee, J.; H Kwon, D. Parameter Analysis of Batoid Fin Motions Using Fluid–Structure Interaction-Based Simulation and Design of Experiments. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2011, 225, 1863–1873. [Google Scholar] [CrossRef]
- Rayapureddi, R.; Mitra, S. Novel Hydrodynamic Analysis Towards Capabilities Improvement of Bio-Inspired Underwater Vehicles Using Momentum Redistribution Method. J. Bionic Eng. 2022, 19, 314–330. [Google Scholar] [CrossRef]
- Huang, H.; Sheng, C.; Wu, J.; Wu, G.; Zhou, C.; Wang, H. Hydrodynamic Analysis and Motion Simulation of Fin and Propeller Driven Manta Ray Robot. Appl. Ocean Res. 2021, 108, 102528. [Google Scholar] [CrossRef]
- Abbaspour, M.; Safari, H.; Darbandi, M. Details Study on the Kinematic Characteristics of Manta Ray Section in Flapping Motion and Exploring Its Application in Wave Glider Propulsion System. Sustain. Energy Technol. Assess. 2022, 53, 102710. [Google Scholar] [CrossRef]
- Bianchi, G.; Cinquemani, S.; Resta, F. Bio-Inspired Design of an Underwater Robot Exploiting Fin Undulation Propulsion. Appl. Sci. 2021, 11, 2556. [Google Scholar] [CrossRef]
- Bianchi, G.; Cinquemani, S.; Schito, P.; Resta, F. A Numerical Model for the Analysis of the Locomotion of a Cownose Ray. J. Fluids Eng. 2022, 144, 031203. [Google Scholar] [CrossRef]
- Isogai, K. Effect of Flexibility of the Caudal Fin on the Propulsive Performance of Dolphins. Trans. Jpn. Soc. Aeronaut Space Sci. 2014, 57, 21–30. [Google Scholar] [CrossRef]
- Li, K.; Yu, J.; Wu, Z.; Tan, M. Hydrodynamic Analysis of a Gliding Robotic Dolphin Based on Computational Fluid Dynamics. In Proceedings of the 2016 35th Chinese Control Conference (CCC), Chengdu, China, 27–29 July 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 6008–6013. [Google Scholar]
- Xue, Z.; Li, L.; Song, Y. The Research of Maneuverability Modeling and Environmental Monitoring Based on a Robotic Dolphin. Appl. Bionics Biomech. 2021, 2021, 4203914. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Li, Z.; Zhou, X.; Xia, D. Numerical Exploration on Pitching Motion of Robotic Dolphin Realized by Pectoral Fin. In Proceedings of the 2021 IEEE International Conference on Mechatronics and Automation (ICMA), Takamatsu, Japan, 8–11 August 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 628–632. [Google Scholar]
- Wu, Z.; Yu, J.; Yuan, J.; Tan, M. Analysis and Verification of a Miniature Dolphin-like Underwater Glider. Ind. Robot. Int. J. 2016, 43, 628–635. [Google Scholar] [CrossRef]
- Wu, Z.; Yang, X.; Zhou, C.; Yuan, J.; Yu, J. Dynamics Modeling and Simulation for a Gliding Robotic Dolphin. In Proceedings of the 2016 IEEE International Conference on Robotics and Biomimetics (ROBIO), Qingdao, China, 3–7 December 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 829–834. [Google Scholar]
- Wu, Z.; Yu, J.; Yuan, J.; Tan, M.; Zhang, J. Mechatronic Design and Implementation of a Novel Gliding Robotic Dolphin. In Proceedings of the 2015 IEEE International Conference on Robotics and Biomimetics (ROBIO), Zhuhai, China, 6–9 December 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 267–272. [Google Scholar]
- Wu, Z.; Yu, J.; Su, Z.; Yuan, J.; Tan, M. Design and CFD Analysis for a Biomimetic Dolphin-like Underwater Glider. In Proceedings of the Assistive Robotics, Hangzhou, China, October 2015; World Scientific: Singapore; pp. 736–743. [Google Scholar]
- Wang, J.; Pavlov, V.; Lou, Z.; Dong, H. Computational Investigation of Thrust Production of a Dolphin at Various Swimming Speeds. In Proceedings of the Volume 1: Aerospace Engineering Division Joint Track; Computational Fluid Dynamics, Virtual, Online, 10–12 August 2021; American Society of Mechanical Engineers: New York, NY, USA; p. V001T02A044. [Google Scholar]
- Han, P.; Wang, J.; Fish, F.E.; Dong, H. Kinematics and Hydrodynamics of a Dolphin in Forward Swimming. In Proceedings of the AIAA AVIATION 2020 FORUM, Virtual Event, 15–19 June 2020; American Institute of Aeronautics and Astronautics, 2020. [Google Scholar]
- Wang, X.; Wei, P.; Yuan, Y.; Zhang, Z.; Feng, D. Evaluation of Dolphin Swimming Speed and Thrust Based on CFD. IJOPE 2018, 28, 120–127. [Google Scholar] [CrossRef]
- Xia, D.; Li, Z.; Lei, M.; Yan, H.; Zhou, Z. A Comparative and Collaborative Study of the Hydrodynamics of Two Swimming Modes Applicable to Dolphins. Biomimetics 2023, 8, 311. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, H.; Li, G.; Uchida, Y.; Nakamura, M.; Ikeda, T.; Liu, H. Measurement of Time-Varying Kinematics of a Dolphin in Burst Accelerating Swimming. PLoS ONE 2019, 14, e0210860. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Zhang, W.; Han, P.; Fish, F.E.; Dong, H. Thrust Generation and Propulsive Efficiency in Dolphin-like Swimming Propulsion. Bioinspir. Biomim. 2023, 18, 056001. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, J.; Wan, D. CFD Investigations of Evolution and Propulsion of Low Speed Vortex Ring. Ocean Eng. 2020, 195, 106687. [Google Scholar] [CrossRef]
- Bi, X.; Zhu, Q. Dynamics of a Squid-Inspired Swimmer in Free Swimming. Bioinspir. Biomim. 2019, 15, 016005. [Google Scholar] [CrossRef]
- Anderson, E.J.; Grosenbaugh, M.A. Jet Flow in Steadily Swimming Adult Squid. J. Exp. Biol. 2005, 208, 1125–1146. [Google Scholar] [CrossRef]
- Zhu, Q.; Xiao, Q. Physics and Applications of Squid-Inspired Jetting. Bioinspir. Biomim. 2022, 17, 041001. [Google Scholar] [CrossRef]
- Tabatabaei Malazi, M.; Olcay, A.B. Investigation of a Longfin Inshore Squid’s Swimming Characteristics and an Underwater Locomotion during Acceleration. Appl. Ocean Res. 2016, 55, 76–88. [Google Scholar] [CrossRef]
- Olcay, A.B.; Malazi, M.T. The Effects of a Longfin Inshore Squid’s Fins on Propulsive Efficiency during Underwater Swimming. Ocean Eng. 2016, 128, 173–182. [Google Scholar] [CrossRef]
- Luo, Y.; Xiao, Q.; Zhu, Q.; Pan, G. Pulsed-Jet Propulsion of a Squid-Inspired Swimmer at High Reynolds Number. Phys. Fluids 2020, 32, 111901. [Google Scholar] [CrossRef]
- Luo, Y.; Xiao, Q.; Zhu, Q.; Pan, G. Thrust and Torque Production of a Squid-Inspired Swimmer with a Bent Nozzle for Thrust Vectoring. Bioinspir. Biomim. 2022, 17, 066011. [Google Scholar] [CrossRef]
- Luo, Y.; Hou, Z.; Xu, T.; Cao, Y.; Pan, G. Impact of Jet Velocity Profile on the Propulsive Performance and Vortex Ring Formation of Pulsed Jet Propulsion. Ocean Eng. 2023, 285, 115213. [Google Scholar] [CrossRef]
- Hou, T.G.; Yang, X.B.; Wang, T.M.; Liang, J.H.; Li, S.W.; Fan, Y.B. Locomotor Transition: How Squid Jet from Water to Air. Bioinspir. Biomim. 2020, 15, 036014. [Google Scholar] [CrossRef]
- Li, Z.; Xia, D.; Lei, M.; Yan, H. Numerical Investigation on Self-Propelled Hydrodynamics of Squid-like Multiple Tentacles with Synergistic Expansion. Ocean Eng. 2023, 287, 115808. [Google Scholar] [CrossRef]
- Li, Z.; Xia, D.; Zhou, Z. The Role of Double-Tentacled Cooperative Kinematics on the Hydrodynamics of a Self-Propelled Swimmer. J. Appl. Fluid Mech. 2023, 16, 1193–1207. [Google Scholar] [CrossRef]
- Dai, W.; Alkahtani, M.; Hemmer, P.R.; Liang, H. Drag-Reduction of 3D Printed Shark-Skin-like Surfaces. Friction 2019, 7, 603–612. [Google Scholar] [CrossRef]
- Bechert, D.W.; Bruse, M.; Hage, W. Experiments with Three-Dimensional Riblets as an Idealized Model of Shark Skin. Exp. Fluids 2000, 28, 403–412. [Google Scholar] [CrossRef]
- Liu, M.; Ma, L. Drag Reduction Methods at Solid-Liquid Interfaces. Friction 2022, 10, 491–515. [Google Scholar] [CrossRef]
- Tian, G.; Zhang, Y.; Feng, X.; Hu, Y. Focus on Bioinspired Textured Surfaces toward Fluid Drag Reduction: Recent Progresses and Challenges. Adv. Eng. Mater. 2022, 24, 2100696. [Google Scholar] [CrossRef]
- Liu, G.; Yuan, Z.; Qiu, Z.; Feng, S.; Xie, Y.; Leng, D.; Tian, X. A Brief Review of Bio-Inspired Surface Technology and Application toward Underwater Drag Reduction. Ocean Eng. 2020, 199, 106962. [Google Scholar] [CrossRef]
- Tabatabaei Malazi, M. Design Optimization of a Longfin Inshore Squid Using a Genetic Algorithm. Ocean Eng. 2023, 279, 114583. [Google Scholar] [CrossRef]
- He, X.; Liu, Y.; Zhan, H.; Liu, Y.; Zhao, L.; Feng, S. Bidirectional Underwater Drag Reduction on Bionic Flounder Two-Tier Structural Surfaces. Biomimetics 2023, 8, 116. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Zhou, H.; Feng, X.; Tian, G.; Lian, Z. Effect of the Biomimetic Spine-Covered Protrusions (BSCPs) Height and Arrangement on SUBOFF Bare Hull Model Drag. Arab. J. Sci. Eng. 2023, 48, 2873–2888. [Google Scholar] [CrossRef]
- Tian, G.; Shi, J.; Hu, Y.; Zhou, H.; Feng, X. Numerical-Experimental Study on the Influence of the Biomimetic Spine-Covered Protrusions (BSCPs) Structure on the Base Pressure and Near-Wake Flow of Underwater Vehicles. Arab. J. Sci. Eng. 2022, 47, 6821–6835. [Google Scholar] [CrossRef]
- Feng, X.; Fan, D.; Tian, G.; Zhang, Y. Coupled Bionic Drag-Reducing Surface Covered by Conical Protrusions and Elastic Layer Inspired from Pufferfish Skin. ACS Appl. Mater. Interfaces 2022, 14, 32747–32760. [Google Scholar] [CrossRef]
- Ren, X.; Yang, L.; Li, C.; Cheng, G.; Liu, N. Design and Analysis of Underwater Drag Reduction Property of Biomimetic Surface with Micro-Nano Composite Structure. In Advances in Mechanical Design; Tan, J., Ed.; Mechanisms and Machine Science; Springer: Singapore, 2020; Volume 77, pp. 546–559. ISBN 978-981-329-940-5. [Google Scholar]
- Rostamzadeh-Renani, M.; Rostamzadeh-Renani, R.; Baghoolizadeh, M.; Khabazian Azarkhavarani, N. The Effect of Vortex Generators on the Hydrodynamic Performance of a Submarine at a High Angle of Attack Using a Multi-Objective Optimization and Computational Fluid Dynamics. Ocean Eng. 2023, 282, 114932. [Google Scholar] [CrossRef]
- Natarajan, E.; Inácio Freitas, L.; Rui Chang, G.; Abdulaziz Majeed Al-Talib, A.; Hassan, C.S.; Ramesh, S. The Hydrodynamic Behaviour of Biologically Inspired Bristled Shark Skin Vortex Generator in Submarine. Mater. Today Proc. 2021, 46, 3945–3950. [Google Scholar] [CrossRef]
- Xu, Y.; Shi, W.; Stark, C. Hydrodynamic Investigation of a Remora-Inspired Autonomous Underwater Vehicle Docking Onto a Benchmark Submarine. In Proceedings of the Volume 5B: Ocean Engineering; Honoring Symposium for Professor Günther F. Clauss on Hydrodynamics and Ocean Engineering, Hamburg, Germany, 5–10 June 2022; American Society of Mechanical Engineers: New York, NY, USA, 2022; p. V05BT06A038. [Google Scholar]
- Xu, Y.; Shi, W.; Song, Y.; Hou, H. Hydrodynamics of a Remora-Inspired Autonomous Underwater Vehicle Approaching and Docking to a Benchmark Submarine. Ocean Eng. 2024, 291, 116447. [Google Scholar] [CrossRef]
- Monfared Mosghani, M.; Alidoostan, M.A.; Binesh, A. Numerical Analysis of Drag Reduction of Fish Scales Inspired Ctenoid-Shape Microstructured Surfaces. Chem. Eng. Commun. 2023, 210, 970–985. [Google Scholar] [CrossRef]
- Yuasa, M.; Lyons, K.; Franck, J.A. Simulations of Flow over a Bio-Inspired Undulated Cylinder with Dynamically Morphing Topography. J. Fluids Struct. 2022, 111, 103567. [Google Scholar] [CrossRef]
- Lu, Y.; Yuan, J.; Si, Q.; Ji, P.; Tian, D.; Liu, J. Study on the Optimal Design of a Shark-like Shape AUV Based on the CFD Method. J. Mar. Sci. Eng. 2023, 11, 1869. [Google Scholar] [CrossRef]
- Shukla, S.; Thekkethil, N.; Sharma, A.; Agrawal, A.; Bhardwaj, R. Hydrodynamics Study on a Traveling Wave-Based Undulating Surface of a Hydrofoil in a Free-Stream Flow. Phys. Rev. Fluids 2022, 7, 084703. [Google Scholar] [CrossRef]
- Li, X.; Duan, J.; Sun, T. How Hydrofoil Leading-Edge Biomimetic Structure Affects Unsteady Cavitating Flow: A Numerical Study. Phys. Fluids 2023, 35, 013323. [Google Scholar] [CrossRef]
- Fish, F.E.; Weber, P.W.; Murray, M.M.; Howle, L.E. Marine Applications of the Biomimetic Humpback Whale Flipper. Mar. Technol. Soc. J. 2011, 45, 198–207. [Google Scholar] [CrossRef]
- Kant, R.; Bhattacharyya, A. A Bio-Inspired Twin-Protuberance Hydrofoil Design. Ocean Eng. 2020, 218, 108209. [Google Scholar] [CrossRef]
- Chrismianto, D.; Santosa, A.W.B.; Wirahutama, A. Analysis of Leading Edge Protuberances on Fully Submerged Hydrofoil of 15 m Pilot Boat. IOP Conf. Ser. Earth Environ. Sci. 2021, 698, 012032. [Google Scholar] [CrossRef]
- Mawignon, F.J.; Liu, J.; Qin, L.; Kouediatouka, A.N.; Ma, Z.; Lv, B.; Dong, G. The Optimization of Biomimetic Sharkskin Riblet for the Adaptation of Drag Reduction. Ocean Eng. 2023, 275, 114135. [Google Scholar] [CrossRef]
- Wu, X.; Wang, Y.; Xu, J.; Yu, H. Numerical Simulation of Drag Reduction Effect on the Surface of Bionic Fish-Scales. J. Phys. Conf. Ser. 2023, 2492, 012012. [Google Scholar] [CrossRef]
- Ma, K.; Zhang, R.; Guo, X.; Xu, M.; Pu, Y. Shape design and flow field characteristics of a robotic fish imitating the head of a hammerhead. Chin. J. Theor. Appl. Mech. 2021, 53, 3389–3398. [Google Scholar] [CrossRef]
- Yan, Z.; Li, M.; Du, Z.; Yang, X.; Luo, Y.; Chen, X.; Han, B. Study on a Tracked Amphibious Robot Bionic Fairing for Drag Reduction. Ocean Eng. 2023, 267, 113223. [Google Scholar] [CrossRef]
- Tang, J.; Liu, Y.; Yan, Y. Drag Reduction Characteristics of Bionic Non-smooth Surface for Underwater Vehicle. Acta Armamentarii 2022, 43, 1135–1143. [Google Scholar] [CrossRef]
- Smith, T.A.; Rigby, J. Underwater Radiated Noise from Marine Vessels: A Review of Noise Reduction Methods and Technology. Ocean Eng. 2022, 266, 112863. [Google Scholar] [CrossRef]
- Stark, C.; Shi, W. Hydroacoustic and Hydrodynamic Investigation of Bio-Inspired Leading-Edge Tubercles on Marine-Ducted Thrusters. R. Soc. Open Sci. 2021, 8, 210402. [Google Scholar] [CrossRef] [PubMed]
- Stark, C.; Shi, W.; Xu, Y.; Troll, M. Marine Ducted Thruster Underwater Radiated Noise Control Through Leading-Edge Tubercle Blade Modifications—A Numerical Hybrid Approach. In Proceedings of the Volume 5B: Ocean Engineering; Honoring Symposium for Professor Günther F. Clauss on Hydrodynamics and Ocean Engineering, Hamburg, Germany, 5–10 June 2022; American Society of Mechanical Engineers: New York, NY, USA, 2022; p. V05BT06A051. [Google Scholar]
- Stark, C.; Shi, W. The Influence of Leading-Edge Tubercles on the Sheet Cavitation Development of a Benchmark Marine Propeller. In Proceedings of the Volume 6: Ocean Engineering, Virtual, Online, 21–30 June 2021; American Society of Mechanical Engineers: New York, NY, USA, 2021; p. V006T06A025. [Google Scholar]
- Lau, A.S.H.; Huang, X. The Control of Aerodynamic Sound Due to Boundary Layer Pressure Gust Scattering by Trailing Edge Serrations. J. Sound Vib. 2018, 432, 133–154. [Google Scholar] [CrossRef]
- Jiang, H.; Huang, X. Spinning Wave Scattering From a Flow Pipe With Serrations. J. Vib. Acoust. 2021, 143, 041012. [Google Scholar] [CrossRef]
- Qin, D.; Pan, G.; Lee, S.; Huang, Q.; Shi, Y. Underwater Radiated Noise Reduction Technology Using Sawtooth Duct for Pumpjet Propulsor. Ocean Eng. 2019, 188, 106228. [Google Scholar] [CrossRef]
- Ishii, T.; Nagai, K.; Oinuma, H.; Kagaya, R.; Oishi, T. Experimental Study on Acoustic Performances of Notched Nozzle Using a Subscale Turbofan Engine. In Proceedings of the Volume 1: Aircraft Engine; Fans and Blowers; Marine, Oslo, Norway, 11–15 June 2018; American Society of Mechanical Engineers: New York, NY, USA, 2018; p. V001T01A036. [Google Scholar]
- Jiang, H.; Huang, X. Tonal Fan-Noise Radiation From Aero-Engine Bypass With Serrated End Treatments. J. Turbomach. 2019, 141, 101005. [Google Scholar] [CrossRef]
- Wang, Z.-N.; Tyacke, J.; Tucker, P.; Boehning, P. Parallel Computation of Aeroacoustics of Industrially Relevant Complex-Geometry Aeroengine Jets. Comput. Fluids 2019, 178, 166–178. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Y.; Shang, D. The Hydrodynamic Noise Suppression of a Scaled Submarine Model by Leading-Edge Serrations. J. Mar. Sci. Eng. 2019, 7, 68. [Google Scholar] [CrossRef]
- Li, F.; Huang, Q.; Pan, G.; Shi, Y. Effect of Hydrofoil Leading Edge Waviness on Hydrodynamic Performance and Flow Noise. Ocean Eng. 2021, 231, 108883. [Google Scholar] [CrossRef]
- Dang, Z.; Mao, Z.; Tian, W. Reduction of Hydrodynamic Noise of 3D Hydrofoil with Spanwise Microgrooved Surfaces Inspired by Sharkskin. J. Mar. Sci. Eng. 2019, 7, 136. [Google Scholar] [CrossRef]
- Niu, C.; Qin, Q.; Liu, Y.; Shang, D.; Liu, W. Control Effect of Superhydrophobic Grooves on Flow-Induced Noise Generated by Flow around Cylindrical Shell at Large Reynolds Number. Phys. Scr. 2023, 98, 105602. [Google Scholar] [CrossRef]
Category | Method | Description | Typical Applications |
---|---|---|---|
Numerical Methods | FVM | Solves equations using discrete control volumes. | Versatile, used in many commercial CFD software. |
FEM | Uses mesh of elements, effective for complex geometries. | Structural analysis, fluid dynamics. | |
BEM | Focuses on boundaries, reduces 3D problems to 2D. | Potential and external flow problems. | |
Turbulence Models | RANS | Averages Navier–Stokes over time for steady and turbulent flows. | Industrial applications, steady-state flows. |
URANS | Extends RANS to unsteady flows. | Vortex shedding, transient flows. | |
DES | Hybrid of RANS and LES for flows with separated regions. | Aerospace, automotive industries, and underwater vehicles. | |
LES | Resolves large-scale turbulent structures, models smaller scales. | Detailed turbulence research, complex flows. | |
DNS | Simulates all turbulent flow scales without modeling. | Fundamental turbulence research. | |
Mesh-free Methods | SPH | Particle-based method for simulating free-surface flows. | Astrophysics, engineering, and environmental modeling. |
Statistical Methods | LBM | Simulates fluid flow using particle distribution functions. | Complex, multiphase flows. |
Vortical Flow Methods | Vortex | Focuses on capturing vortical structures in incompressible flows. | Aerodynamics, turbulent flow simulations. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Wang, Q.; Zhang, S. Review of Computational Fluid Dynamics Analysis in Biomimetic Applications for Underwater Vehicles. Biomimetics 2024, 9, 79. https://doi.org/10.3390/biomimetics9020079
Zhang Z, Wang Q, Zhang S. Review of Computational Fluid Dynamics Analysis in Biomimetic Applications for Underwater Vehicles. Biomimetics. 2024; 9(2):79. https://doi.org/10.3390/biomimetics9020079
Chicago/Turabian StyleZhang, Zhijun, Qigan Wang, and Shujun Zhang. 2024. "Review of Computational Fluid Dynamics Analysis in Biomimetic Applications for Underwater Vehicles" Biomimetics 9, no. 2: 79. https://doi.org/10.3390/biomimetics9020079
APA StyleZhang, Z., Wang, Q., & Zhang, S. (2024). Review of Computational Fluid Dynamics Analysis in Biomimetic Applications for Underwater Vehicles. Biomimetics, 9(2), 79. https://doi.org/10.3390/biomimetics9020079