Swarming Insects May Have Finely Tuned Characteristic Reynolds Numbers
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix B
Appendix C
References
- Okubo, A. Dynamical aspects of animal grouping: Swarms, schools, flocks, and herds. Adv. Biophys. 1986, 22, 1–94. [Google Scholar] [CrossRef] [PubMed]
- Kelley, D.H.; Ouellette, N.T. Emergent dynamics of laboratory insect swarms. Sci. Rep. 2013, 3, 1073. [Google Scholar] [CrossRef] [PubMed]
- Attanasi, A.; Cavagna, A.; Del Castello, L.; Giardina, I.; Melillo, S.; Parisi, L.; Pohl, O.; Rossaro, B.; Shen, E.; Silvestri, E.; et al. Collective behaviour without collective order in wild swarms of midges. PLoS Comp. Biol. 2014, 10, e1003697. [Google Scholar] [CrossRef] [PubMed]
- Attanasi, A.; Cavagna, A.; Del Castello, L.; Giardina, I.; Melillo, S.; Parisi, L.; Pohl, O.; Rossaro, B.; Shen, E.; Silvestri, E.; et al. Finite-size scaling as a way to probe near-criticality in natural swarms. Phys. Rev. Lett. 2014, 113, 238102. [Google Scholar] [CrossRef] [PubMed]
- Puckett, J.G.; Ouellette, N.T. Determining asymptotically large population sizes of insect swarms. J. R. Soc. Interface 2014, 11, 20140710. [Google Scholar] [CrossRef]
- Sullivan, R.T. Insect swarming and mating. Fla. Entomol. 1981, 64, 44–65. [Google Scholar] [CrossRef]
- Cavagna, A.; Giardina, I.; Gucciardino, M.A.; Iacomelli, G.; Lombardi, M.; Melillo, S.; Monacchia, G.; Parisi, L.; Peirce, M.J.; Spaccapelo, R. Characterization of lab-based swarms of Anopheles gambiae mosquitoes using 3D-video tracking. Sci. Rep. 2023, 13, 8745. [Google Scholar] [CrossRef]
- Reynolds, A.M.; Sinhuber, M.; Ouellette, N.T. Are midge swarms bound together by an effective velocity-dependent gravity? Eur. Phys. J. E 2017, 40, 46. [Google Scholar] [CrossRef]
- Reynolds, A.M. Langevin dynamics encapsulate the microscopic and emergent macroscopic properties of midge swarms. J. R. Soc. Interface 2018, 15, 20170806. [Google Scholar] [CrossRef]
- Reynolds, A.M. On the emergence of gravitational-like forces in insect swarms. J. R. Soc. Interface 2019, 16, 20190404. [Google Scholar] [CrossRef]
- Reynolds, A.M. Mosquito swarms shear harden. Eur. Phys. J. E 2023, 46, 126. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, A.M. Why insect swarms seem unduly complicated. Eur. Phys. J. Plus 2024, 139, 610. [Google Scholar] [CrossRef]
- Ni, R.; Ouellette, N.T. On the tensile strength of insect swarms. Phys. Biol. 2016, 13, 045002. [Google Scholar] [CrossRef] [PubMed]
- van der Vaart, K.; Sinhuber, M.; Reynolds, A.M.; Ouellette, N.T. Mechanical spectroscopy of insect swarms. Sci. Adv. 2019, 5, eaaw9305. [Google Scholar] [CrossRef] [PubMed]
- van der Vaart, K.; Sinhuber, M.; Reynolds, A.M.; Ouellette, N.T. Environmental perturbations induce correlations in midge swarms. J. R. Soc. Interface 2020, 17, 20200018. [Google Scholar] [CrossRef]
- Reynolds, A.M. On the origin of the tensile strength of insect swarms. Phys. Biol. 2019, 16, 046002. [Google Scholar] [CrossRef]
- Reynolds, A.M. Understanding the thermodynamic properties of insect swarms. Sci. Rep. 2011, 11, 14979. [Google Scholar] [CrossRef]
- Sinhuber, M.; van der Vaart, K.; Feng, Y.; Reynolds, A.M.; Ouellette, N.T. An equation state for insect swarms. Sci. Rep. 2021, 11, 3773. [Google Scholar] [CrossRef]
- Sawford, B.L. Reynolds number effects in Lagrangian stochastic models of turbulent dispersion. Phys. Fluids A 1991, 3, 1577–1586. [Google Scholar] [CrossRef]
- Reynolds, A.M. Third order Lagrangian stochastic modelling. Phys. Fluids 2003, 15, 2773–2777. [Google Scholar] [CrossRef]
- Reynolds, A.M.; Yeo, K.; Lee, C. Anisotropy of acceleration in turbulent flows. Phys. Rev. E 2004, 70, 017302. [Google Scholar] [CrossRef] [PubMed]
- Viggiano, B.; Friedrich, J.; Volk, R.; Bourgoin, M.; Cal, R.B.; Chevillard, L. Modelling Lagrangian velocity and acceleration in turbulent flows as infinitely differentiable stochastic processes. J. Fluid Mech. 2020, 900, A27. [Google Scholar] [CrossRef]
- Sinhuber, M.; van der Vaart, K.; Ni, R.; Puckett, J.G.; Kelley, D.H.; Ouellette, N.T. Three-dimensional time-resolved trajectories from laboratory insect swarms. Sci. Data 2019, 6, 190036. [Google Scholar] [CrossRef]
- Reynolds, A.M. Insect swarms can be bound together by repulsive forces. Eur. Phys. J. E 2020, 43, 39. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, A.M.; Ouellette, N.T. Swarm dynamics may give rise to Lévy flights. Sci. Rep. 2016, 6, 30515. [Google Scholar] [CrossRef]
- Reynolds, A.M. Spatial correlations in laboratory insect swarms. J. R. Soc. Interface 2024, 21, 20240450. [Google Scholar] [CrossRef]
- Ni, R.; Ouellette, N.T. Velocity correlations in laboratory insect swarms. Eur. Phys. J. Spec. Top. 2015, 224, 3271–3277. [Google Scholar] [CrossRef]
- Puckett, J.G.; Kelley, D.H.; Ouellette, N.T. Searching for effective forces in laboratory swarms. Sci. Rep. 2014, 4, 4766. [Google Scholar] [CrossRef]
- Smith, N.M.; Dickerson, A.K.; Murphy, D. Organismal aggregations exhibit fluidic behaviours: A review. Bioinspiration Biomim. 2019, 14, 031001. [Google Scholar] [CrossRef]
- Ouellette, N.T. The most active matter of all. Matter 2019, 1, 297–299. [Google Scholar] [CrossRef]
- Ouellette, N.T. A physics perspective on collective animal behavior. Phys. Biol. 2022, 19, 021004. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reynolds, A. Swarming Insects May Have Finely Tuned Characteristic Reynolds Numbers. Biomimetics 2024, 9, 660. https://doi.org/10.3390/biomimetics9110660
Reynolds A. Swarming Insects May Have Finely Tuned Characteristic Reynolds Numbers. Biomimetics. 2024; 9(11):660. https://doi.org/10.3390/biomimetics9110660
Chicago/Turabian StyleReynolds, Andy. 2024. "Swarming Insects May Have Finely Tuned Characteristic Reynolds Numbers" Biomimetics 9, no. 11: 660. https://doi.org/10.3390/biomimetics9110660
APA StyleReynolds, A. (2024). Swarming Insects May Have Finely Tuned Characteristic Reynolds Numbers. Biomimetics, 9(11), 660. https://doi.org/10.3390/biomimetics9110660