A Crisscross-Strategy-Boosted Water Flow Optimizer for Global Optimization and Oil Reservoir Production
Abstract
:1. Introduction
- An enhanced WFO algorithm is proposed by introducing the CC mechanism.
- The performance of the CCWFO algorithm is verified in detail, through comparison experiments with 10 other conventional and state-of-the-art optimization algorithms on the CEC2017 benchmark function, and the experimental results obtained are additionally subjected to W and F tests.
- The proposed algorithm is used to solve production optimization problems based on three-channel reservoirs.
2. Overview of the Original WFO
3. Proposed CCWFO
3.1. Crisscross Strategy
3.1.1. Horizontal Crossover Search
Algorithm 1 Horizontal crossover search |
Bhc = randperm () For = Bhc () = Bhc () For Generate four random number , (0,1), , (−1,1) Generate and by Equations (4) and (5) End End For IF () < () End End End |
3.1.2. Vertical Crossover Search
Algorithm 2 Vertical crossover search |
Bvc = randperm () Generate a random number (0,1) For IF < = Bvc () = Bvc () For Generate a random number (0,1) Generate by Equation (6) End End End For IF () < () End End End |
3.2. The Proposed CCWFO
Algorithm 3 Pseudo-code of CCWFO |
Set parameters: The maximum iteration number , the problem dimension , and the population size Initialize population = 1 For Evaluate the fitness value of Find the global min End While ( IF For /* Laminar flow */ For Generate by Equations (1) and (2) End Evaluate the fitness value of Update , End Else For /* Turbulent flow */ For Generate by Equation (3) End Evaluate the fitness value of Update , End End IF For /*CC*/ Perform Horizontal crossover search to update Perform Vertical crossover search to update Update End ; End While Return End |
4. Global Optimization Experimental Results and Analysis
4.1. Benchmark Function
4.2. Performance Comparison with Other Algorithms
5. Application to Oilfield Production
5.1. Three-Channel Model
5.2. Analysis and Discussion of Experimental Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Lin, A.; Wu, Q.; Heidari, A.A.; Xu, Y.; Chen, H.; Geng, W.; Li, C. Predicting intentions of students for master programs using a chaos-induced sine cosine-based fuzzy K-nearest neighbor classifier. IEEE Access 2019, 7, 67235–67248. [Google Scholar] [CrossRef]
- Huang, H.; Heidari, A.A.; Xu, Y.; Wang, M.; Liang, G.; Chen, H.; Cai, X. Rationalized sine cosine optimization with efficient searching patterns. IEEE Access 2020, 8, 61471–61490. [Google Scholar] [CrossRef]
- Zhu, W.; Li, Z.; Heidari, A.A.; Wang, S.; Chen, H.; Zhang, Y. An Enhanced RIME Optimizer with Horizontal and Vertical Crossover for Discriminating Microseismic and Blasting Signals in Deep Mines. Sensors 2023, 23, 8787. [Google Scholar] [CrossRef] [PubMed]
- A vertical and horizontal crossover sine cosine algorithm with pattern search for optimal power flow in power systems. Energy 2023, 271, 127000. [CrossRef]
- Lin, C.; Wang, P.; Heidari, A.A.; Zhao, X.; Chen, H. A Boosted Communicational Salp Swarm Algorithm: Performance Optimization and Comprehensive Analysis. J. Bionic Eng. 2023, 20, 1296–1332. [Google Scholar] [CrossRef]
- Zhang, K.; Zhao, X.; Chen, G.; Zhao, M.; Wang, J.; Yao, C.; Sun, H.; Yao, J.; Wang, W.; Zhang, G. A double-model differential evolution for constrained waterflooding production optimization. J. Pet. Sci. Eng. 2021, 207, 109059. [Google Scholar] [CrossRef]
- Zhao, W.; Wang, L.; Mirjalili, S. Artificial hummingbird algorithm: A new bio-inspired optimizer with its engineering applications. Comput. Methods Appl. Mech. Eng. 2022, 388, 114194. [Google Scholar] [CrossRef]
- Polyak, B.T. The conjugate gradient method in extremal problems. USSR Comput. Math. Math. Phys. 1969, 9, 94–112. [Google Scholar] [CrossRef]
- Dantzig, G.B. Linear Programming. Oper. Res. 2002, 50, 42–47. [Google Scholar] [CrossRef]
- Potra, F.A.; Wright, S.J. Interior-point methods. J. Comput. Appl. Math. 2000, 124, 281–302. [Google Scholar] [CrossRef]
- Nelder, J.A.; Mead, R. A simplex method for function minimization. Comput. J. 1965, 7, 308–313. [Google Scholar] [CrossRef]
- Poli, R.; Kennedy, J.; Blackwell, T. Particle swarm optimization. Swarm Intell. 2007, 1, 33–57. [Google Scholar] [CrossRef]
- Dorigo, M.; Birattari, M.; Stutzle, T. Ant colony optimization. IEEE Comput. Intell. Mag. 2006, 1, 28–39. [Google Scholar] [CrossRef]
- Heidari, A.A.; Mirjalili, S.; Faris, H.; Aljarah, I.; Mafarja, M.; Chen, H. Harris hawks optimization: Algorithm and applications. Future Gener. Comput. Syst. 2019, 97, 849–872. [Google Scholar] [CrossRef]
- Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey wolf optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [Google Scholar] [CrossRef]
- Karaboga, D.; Basturk, B. Artificial Bee Colony (ABC) Optimization Algorithm for Solving Constrained Optimization Problems. In Foundations of Fuzzy Logic and Soft Computing; Melin, P., Castillo, O., Aguilar, L.T., Kacprzyk, J., Pedrycz, W., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2007; Volume 4529, pp. 789–798. ISBN 978-3-540-72917-4. [Google Scholar]
- Yang, Y.; Chen, H.; Heidari, A.A.; Gandomi, A.H. Hunger games search: Visions, conception, implementation, deep analysis, perspectives, and towards performance shifts. Expert Syst. Appl. 2021, 177, 114864. [Google Scholar] [CrossRef]
- Li, S.; Chen, H.; Wang, M.; Heidari, A.A.; Mirjalili, S. Slime mould algorithm: A new method for stochastic optimization. Future Gener. Comput. Syst. 2020, 111, 300–323. [Google Scholar] [CrossRef]
- Ahmadianfar, I.; Heidari, A.A.; Gandomi, A.H.; Chu, X.; Chen, H. Run beyond the metaphor: An efficient optimization algorithm based on Runge Kutta method. Expert Syst. Appl. 2021, 181, 115079. [Google Scholar] [CrossRef]
- Ahmadianfar, I.; Heidari, A.A.; Noshadian, S.; Chen, H.; Gandomi, A.H. INFO: An efficient optimization algorithm based on weighted mean of vectors. Expert Syst. Appl. 2022, 195, 116516. [Google Scholar] [CrossRef]
- Holland, J.H. Genetic algorithms. Sci. Am. 1992, 267, 66–73. [Google Scholar] [CrossRef]
- Yao, X.; Liu, Y.; Lin, G. Evolutionary programming made faster. IEEE Trans. Evol. Comput. 1999, 3, 82–102. [Google Scholar] [CrossRef]
- Tang, D. Spherical evolution for solving continuous optimization problems. Appl. Soft Comput. 2019, 81, 105499. [Google Scholar] [CrossRef]
- Price, K.; Storn, R.M.; Lampinen, J.A. Differential Evolution: A practical Approach to Global Optimization; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Wolpert, D.H.; Macready, W.G. No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1997, 1, 67–82. [Google Scholar] [CrossRef]
- Golzari, A.; Haghighat Sefat, M.; Jamshidi, S. Development of an adaptive surrogate model for production optimization. J. Pet. Sci. Eng. 2015, 133, 677–688. [Google Scholar] [CrossRef]
- Foroud, T.; Baradaran, A.; Seifi, A. A comparative evaluation of global search algorithms in black box optimization of oil production: A case study on Brugge field. J. Pet. Sci. Eng. 2018, 167, 131–151. [Google Scholar] [CrossRef]
- Yin, F.; Xue, X.; Zhang, C.; Zhang, K.; Han, J.; Liu, B.; Wang, J.; Yao, J. Multifidelity Genetic Transfer: An Efficient Framework for Production Optimization. SPE J. 2021, 26, 1614–1635. [Google Scholar] [CrossRef]
- Desbordes, J.K.; Zhang, K.; Xue, X.; Ma, X.; Luo, Q.; Huang, Z.; Hai, S.; Jun, Y. Dynamic production optimization based on transfer learning algorithms. J. Pet. Sci. Eng. 2022, 208, 109278. [Google Scholar] [CrossRef]
- Luo, K. Water Flow Optimizer: A Nature-Inspired Evolutionary Algorithm for Global Optimization. IEEE Trans. Cybern. 2022, 52, 7753–7764. [Google Scholar] [CrossRef]
- Cheng, M.-M.; Zhang, J.; Wang, D.-G.; Tan, W.; Yang, J. A Localization Algorithm Based on Improved Water Flow Optimizer and Max-Similarity Path for 3-D Heterogeneous Wireless Sensor Networks. IEEE Sens. J. 2023, 23, 13774–13788. [Google Scholar] [CrossRef]
- Xue, X.; Gong, X.; Mańdziuk, J.; Yao, J.; El-Alfy, E.-S.M.; Wang, J. Theory-Guided Convolutional Neural Network with an Enhanced Water Flow Optimizer. In Proceedings of the Neural Information Processing, Changsha, China, 20–23 November 2023; Luo, B., Cheng, L., Wu, Z.-G., Li, H., Li, C., Eds.; Springer Nature: Singapore, 2024; pp. 448–461. [Google Scholar]
- de Matos Macêdo, F.J.; da Rocha Neto, A.R. A Binary Water Flow Optimizer Applied to Feature Selection. In Proceedings of the Intelligent Data Engineering and Automated Learning–IDEAL 2022, Manchester, UK, 24–26 November 2022; Yin, H., Camacho, D., Tino, P., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2022; pp. 94–103. [Google Scholar]
- Meng, A.; Chen, Y.; Yin, H.; Chen, S. Crisscross optimization algorithm and its application. Knowl. Based Syst. 2014, 67, 218–229. [Google Scholar] [CrossRef]
- Shan, W.; Hu, H.; Cai, Z.; Chen, H.; Liu, H.; Wang, M.; Teng, Y. Multi-strategies Boosted Mutative Crow Search Algorithm for Global Tasks: Cases of Continuous and Discrete Optimization. J. Bionic Eng. 2022, 19, 1830–1849. [Google Scholar] [CrossRef]
- Hu, H.; Shan, W.; Tang, Y.; Heidari, A.A.; Chen, H.; Liu, H.; Wang, M.; Escorcia-Gutierrez, J.; Mansour, R.F.; Chen, J. Horizontal and vertical crossover of sine cosine algorithm with quick moves for optimization and feature selection. J. Comput. Des. Eng. 2022, 9, 2524–2555. [Google Scholar] [CrossRef]
- Wu, G.; Mallipeddi, R.; Suganthan, P.N. Problem Definitions and Evaluation Criteria for the CEC 2017 Competition on Constrained Real-Parameter Optimization; Technical Report; National University of Defense Technology: Changsha, China; Kyungpook National University: Daegu, Republic of Korea; Nanyang Technological University: Singapore, 2017. [Google Scholar]
- Mirjalili, S.; Lewis, A. The Whale Optimization Algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [Google Scholar] [CrossRef]
- Mirjalili, S. Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowl.-Based Syst. 2015, 89, 228–249. [Google Scholar] [CrossRef]
- Heidari, A.A.; Aljarah, I.; Faris, H.; Chen, H.; Luo, J.; Mirjalili, S. An enhanced associative learning-based exploratory whale optimizer for global optimization. Neural Comput. Appl. 2019, 32, 5185–5211. [Google Scholar] [CrossRef]
- Liang, H.; Liu, Y.; Shen, Y.; Li, F.; Man, Y. A hybrid bat algorithm for economic dispatch with random wind power. IEEE Trans. Power Syst. 2018, 33, 5052–5061. [Google Scholar] [CrossRef]
- Nenavath, H.; Jatoth, R.K. Hybridizing sine cosine algorithm with differential evolution for global optimization and object tracking. Appl. Soft Comput. 2018, 62, 1019–1043. [Google Scholar] [CrossRef]
- Abd Elaziz, M.; Oliva, D.; Xiong, S. An improved opposition-based sine cosine algorithm for global optimization. Expert Syst. Appl. 2017, 90, 484–500. [Google Scholar] [CrossRef]
- Chen, G.; Zhang, K.; Xue, X.; Zhang, L.; Yao, J.; Sun, H.; Fan, L.; Yang, Y. Surrogate-assisted evolutionary algorithm with dimensionality reduction method for water flooding production optimization. J. Pet. Sci. Eng. 2020, 185, 106633. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
population size | 30 |
problem dimension | 30 |
number of runs | 30 |
maximum number of evaluations | 300,000 |
Function | Function Name | Class | Optimum |
---|---|---|---|
F1 | Shifted and Rotated Bent Cigar Function | Unimodal | 100 |
F3 | Shifted and Rotated Zakharov Function | Unimodal | 300 |
F4 | Shifted and Rotated Rosenbrock’s Function | Multimodal | 400 |
F5 | Shifted and Rotated Rastrigin’s Function | Multimodal | 500 |
F6 | Shifted and Rotated Expanded Scaffer’s F6 Function | Multimodal | 600 |
F7 | Shifted and Rotated Lunacek Bi-Rastrigin Function | Multimodal | 700 |
F8 | Shifted and Rotated Non-Continuous Rastrigin’s Function | Multimodal | 800 |
F9 | Shifted and Rotated Lévy Function | Multimodal | 900 |
F10 | Shifted and Rotated Schwefel’s Function | Multimodal | 1000 |
F11 | Hybrid Function 1 (N = 3) | Hybrid | 1100 |
F12 | Hybrid Function 2 (N = 3) | Hybrid | 1200 |
F13 | Hybrid Function 3 (N = 3) | Hybrid | 1300 |
F14 | Hybrid Function 4 (N = 4) | Hybrid | 1400 |
F15 | Hybrid Function 5 (N = 4) | Hybrid | 1500 |
F16 | Hybrid Function 6 (N = 4) | Hybrid | 1600 |
F17 | Hybrid Function 6 (N = 5) | Hybrid | 1700 |
F18 | Hybrid Function 6 (N = 5) | Hybrid | 1800 |
F19 | Hybrid Function 6 (N = 5) | Hybrid | 1900 |
F20 | Hybrid Function 6 (N = 6) | Hybrid | 2000 |
F21 | Composition Function 1 (N = 3) | Composition | 2100 |
F22 | Composition Function 2 (N = 3) | Composition | 2200 |
F23 | Composition Function 3 (N = 4) | Composition | 2300 |
F24 | Composition Function 4 (N = 4) | Composition | 2400 |
F25 | Composition Function 5 (N = 5) | Composition | 2500 |
F26 | Composition Function 6 (N = 5) | Composition | 2600 |
F27 | Composition Function 7 (N = 6) | Composition | 2700 |
F28 | Composition Function 8 (N = 6) | Composition | 2800 |
F29 | Composition Function 9 (N = 3) | Composition | 2900 |
F30 | Composition Function 10 (N = 3) | Composition | 3000 |
Name | Parameters |
---|---|
CCWFO | = 0.3; = 0.7 |
WFO | = 0.3; = 0.7 |
SMA | / |
WOA | = [2, 0]; = [−1, −2]; = 1 |
PSO | = 6; = 0.9, = 0.2; = 2; = 2 |
GWO | = [2, 0] |
MFO | = 1; = [−1, 1]; = [−1, −2] |
BMWOA | = [2, 0]; = [−1, −2]; = 1 |
RCBA | = 0; = 2; = 0.5 |
SCADE | = [0.2, 0.8]; = 0.8; = 2 |
OBSCA | = 2 |
RANK | +/=/− | AVG | |
---|---|---|---|
CCWFO | 1 | ~ | 1.3793 |
WFO | 2 | 14/11/4 | 1.8621 |
SMA | 5 | 29/0/0 | 5.3793 |
WOA | 9 | 29/0/0 | 7.7931 |
PSO | 3 | 24/4/1 | 4.3793 |
GWO | 4 | 29/0/0 | 4.8966 |
MFO | 7 | 29/0/0 | 7.4138 |
BMWOA | 8 | 29/0/0 | 7.4828 |
RCBA | 6 | 27/2/0 | 7.2759 |
SCADE | 11 | 29/0/0 | 9.4828 |
OBSCA | 10 | 29/0/0 | 8.6552 |
WFO | SMA | WOA | PSO | GWO | |
---|---|---|---|---|---|
F1 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 3.39 × 10−1 | 1.73 × 10−6 |
F3 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 |
F4 | 4.07 × 10−5 | 1.73 × 10−6 | 1.73 × 10−6 | 8.61 × 10−1 | 1.73 × 10−6 |
F5 | 4.29 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.92 × 10−6 |
F6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 |
F7 | 5.79 × 10−5 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.92 × 10−6 |
F8 | 1.49 × 10−5 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 3.18 × 10−6 |
F9 | 1.92 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 |
F10 | 6.88 × 10−1 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 3.52 × 10−6 |
F11 | 2.41 × 10−4 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 |
F12 | 8.92 × 10−5 | 1.73 × 10−6 | 1.73 × 10−6 | 3.32 × 10−4 | 1.73 × 10−6 |
F13 | 6.16 × 10−4 | 1.73 × 10−6 | 1.73 × 10−6 | 7.16 × 10−4 | 1.73 × 10−6 |
F14 | 5.04 × 10−1 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 |
F15 | 7.81 × 10−1 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 |
F16 | 6.42 × 10−3 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 2.22 × 10−4 |
F17 | 8.22 × 10−3 | 1.73 × 10−6 | 1.92 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 |
F18 | 7.04 × 10−1 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 |
F19 | 8.97 × 10−2 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 |
F20 | 2.13 × 10−1 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.92 × 10−6 |
F21 | 6.16 × 10−4 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.24 × 10−5 |
F22 | 6.64 × 10−4 | 8.19 × 10−5 | 1.73 × 10−6 | 1.82 × 10−5 | 2.37 × 10−5 |
F23 | 1.13 × 10−5 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 |
F24 | 2.88 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 2.05 × 10−4 |
F25 | 8.45 × 10−1 | 1.73 × 10−6 | 1.73 × 10−6 | 6.16 × 10−4 | 1.73 × 10−6 |
F26 | 1.11 × 10−1 | 1.13 × 10−5 | 1.73 × 10−6 | 8.69 × 10−5 | 2.22 × 10−4 |
F27 | 1.96 × 10−2 | 1.73 × 10−6 | 1.73 × 10−6 | 1.48 × 10−2 | 1.92 × 10−6 |
F28 | 1.95 × 10−1 | 1.73 × 10−6 | 1.73 × 10−6 | 8.73 × 10−1 | 1.73 × 10−6 |
F29 | 1.65 × 10−1 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 |
F30 | 5.58 × 10−1 | 1.73 × 10−6 | 1.73 × 10−6 | 9.75 × 10−1 | 1.73 × 10−6 |
MFO | BMWOA | RCBA | SCADE | OBSCA | |
F1 | 1.73 × 10−6 | 1.73 × 10−6 | 2.60 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 |
F3 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 |
F4 | 1.73 × 10−6 | 1.73 × 10−6 | 1.15 × 10−4 | 1.73 × 10−6 | 1.73 × 10−6 |
F5 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 |
F6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 |
F7 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 |
F8 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 |
F9 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 |
F10 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 |
F11 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 |
F12 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 |
F13 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 |
F14 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 |
F15 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 |
F16 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 |
F17 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 |
F18 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 |
F19 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 |
F20 | 1.92 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 |
F21 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 4.07 × 10−5 |
F22 | 1.73 × 10−6 | 5.75 × 10−6 | 1.73 × 10−6 | 2.13 × 10−6 | 2.35 × 10−6 |
F23 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 |
F24 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 |
F25 | 1.92 × 10−6 | 1.73 × 10−6 | 8.77 × 10−1 | 1.73 × 10−6 | 1.73 × 10−6 |
F26 | 1.73 × 10−6 | 3.88 × 10−6 | 3.18 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 |
F27 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 |
F28 | 1.73 × 10−6 | 1.73 × 10−6 | 7.19 × 10−1 | 1.73 × 10−6 | 1.73 × 10−6 |
F29 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 |
F30 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 | 1.73 × 10−6 |
Properties | Value |
---|---|
Reservoir grid | 25 × 25 × 1 |
Depth | 4800 ft |
Initial pressure | 4000 psi |
Porosity | 0.2 |
Compressibility | 6.9 × 10−5 psi−1 |
Initial water saturation | 0.2 |
Viscosity | 2.2 cP |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Z.; Luo, S. A Crisscross-Strategy-Boosted Water Flow Optimizer for Global Optimization and Oil Reservoir Production. Biomimetics 2024, 9, 20. https://doi.org/10.3390/biomimetics9010020
Zhao Z, Luo S. A Crisscross-Strategy-Boosted Water Flow Optimizer for Global Optimization and Oil Reservoir Production. Biomimetics. 2024; 9(1):20. https://doi.org/10.3390/biomimetics9010020
Chicago/Turabian StyleZhao, Zongzheng, and Shunshe Luo. 2024. "A Crisscross-Strategy-Boosted Water Flow Optimizer for Global Optimization and Oil Reservoir Production" Biomimetics 9, no. 1: 20. https://doi.org/10.3390/biomimetics9010020
APA StyleZhao, Z., & Luo, S. (2024). A Crisscross-Strategy-Boosted Water Flow Optimizer for Global Optimization and Oil Reservoir Production. Biomimetics, 9(1), 20. https://doi.org/10.3390/biomimetics9010020