Plant Foliar Geometry as a Biomimetic Template for Antenna Design
Abstract
:1. Introduction
2. Materials and Methods
- The image of the leaf geometry (for each species in Table 1) is taken from the Manual of Leaf Architecture [33]. This is in order to obtain a wide range of leaf images. Then, we take the image set in this leaf manual by considering the front view and knowing the name and family of each leaf architecture. Furthermore, this leaf manual provides an extensive selection of many kinds of leaf architectures found in nature.
- The original leaf image (taken from nature) is converted to black and white. The black and white image can be generated using color filter software.
- CAD design software (for example SolidWorks) is used to generate the image. SolidWorks processes the image in black and white. The function “Sketch Picture” of SolidWorks can be used to detect the black and white leaf geometry. Then, a collection of samples or points is generated to provide a tridimensional model by using a compatible format with CST solver.
- The processed images are exported to the CST electromagnetic solver to set dimensions and substrate properties. The substrate FR4 is considered in each design geometry with the next electrical properties: dimensions of 100 mm × 100 mm, a thickness of 1.6 mm, relative permittivity εr = 4.2 and tangent loss of 0.025.
- Each leaf geometry of Table 1 is characterized in the CST solver. The CST software uses the method of finite differences in the time domain (FDTD) to provide the radiation pattern and the reflection coefficient of each leaf geometry. Different radiation pattern cuts (horizontal and vertical) can be extracted from the 3D pattern obtained.
3. Results
4. Discussion
- Each leaf architecture (in this work) considers vein characteristics of the first order. Therefore, more vein characteristics (of higher order) can be considered in order to obtain better performance features.
- This study only considers the response of the leaf geometry found in nature. It could be interesting to try to generate a geometry that considers the optimization of the design parameters in order to improve performance. Furthermore, some of the interesting characteristics found in this study could be used (or mixed) to try to create new design geometries or super-geometries. Therefore, we consider that future work searching the optimization of biomimetic designs based on plant leaf architectures will further support the development of specific applications in antenna design.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Rochaix, J.D. Regulation and dynamics of the light-harvesting system. Annu. Rev. Plant Biol. 2014, 65, 287–309. [Google Scholar] [CrossRef]
- Lokstein, H.; Renger, G.; Götze, J.P. Photosynthetic light-harvesting (antenna) complexes—Structures and functions. Molecules 2021, 26, 3378. [Google Scholar] [CrossRef]
- Givnish, T.J. Comparative studies of leaf form: Assessing the relative roles of selective pressures and phylogenetic constraints. New Phytol. 1987, 106, 131–160. [Google Scholar] [CrossRef]
- Tomlinson, P.B. Tree architecture: New approaches help to define the elusive biological property of tree form. Am. Sci. 1983, 71, 141–149. [Google Scholar] [PubMed]
- Çelİk, K.; Kurt, E. Design and implementation of a bioinspired leaf shaped hybrid rectenna as a green energy manufacturing concept. Turk. J. Electr. Eng. Comput. Sci. 2022, 30, 1995–2012. [Google Scholar] [CrossRef]
- Çelik, K.; Kurt, E. Design and implementation of a dual band bioinspired leaf rectenna for RF energy harvesting applications. Int. J. RF Microw. Comput.-Aided Eng. 2021, 31, e22868. [Google Scholar] [CrossRef]
- Cruz, J.D.N.; Freire, R.C.S.; Serres, A.J.R.; De Moura, L.C.M.; Da Costa, A.P.; Silva, P.H.D.F. Parametric study of printed monopole antenna bioinspired on the inga marginata leaves for UWB applications. J. Microw. Optolectronics Electromagn. Appl. 2017, 16, 312–322. [Google Scholar] [CrossRef]
- da Silva, P.F.; Santana, E.E.; Cruz, C.A.; Aquino, V.S.; Castro, L.S.; Serres, A.J.; Freire, R.C.S.; Silva, P.H.F. Compact bioinspired antenna for WLAN 5 GHz application. Wirel. Pers. Commun. 2021, 119, 329–341. [Google Scholar] [CrossRef]
- Keshwala, U.; Rawat, S.; Ray, K. Plant shaped antenna with trigonometric half sine tapered leaves for THz applications. Opt.–Int. J. Light Electron Opt. 2020, 223, 165648. [Google Scholar] [CrossRef]
- Geubbels, L.A.M.; Federico, G.; Vidojkovic, V.; Anguera, J.; Bronckers, L.A. Plantenna: Using Plant Leaves to Increase Antenna Performance. In Proceedings of the 2022 16th European Conference on Antennas and Propagation (EuCAP), Madrid, Spain, 27 March–1 April 2022; Available online: https://ieeexplore.ieee.org/document/9769173 (accessed on 1 November 2023).
- Rupp, A.I.K.S.; Gruber, P. Biomimetic groundwork for thermal exchange structures inspired by plant leaf design. Biomimetics 2019, 4, 75. [Google Scholar] [CrossRef]
- Roth-Nebelsick, A.; Krause, M. The Plant Leaf: A Biomimetic Resource for Multifunctional and Economic Design. Biomimetics 2023, 8, 145. [Google Scholar] [CrossRef]
- Pimm, S.L.; Joppa, L.N. How many plant species are there, where are they, and at what rate are they going extinct? Ann. Mo. Bot. Gard. 2015, 100, 170–176. [Google Scholar] [CrossRef]
- Sack, L.; Dietrich, E.M.; Streeter, C.M.; Sánchez-Gómez, D.; Holbrook, N.M. Leaf palmate venation and vascular redundancy confer tolerance of hydraulic disruption. Proc. Natl. Acad. Sci. USA 2008, 105, 1567–1572. [Google Scholar] [CrossRef]
- Sack, L.; Tyree, M.T. Leaf hydraulics and its implications in plant structure and function. In Vascular Transport in Plants; Academic Press: Cambridge, MA, USA, 2005; pp. 93–114. [Google Scholar]
- Givnish, T. On the adaptive significance of leaf form. In Topics in Plant Population Biology; Palgrave: London, UK, 1979; pp. 375–407. [Google Scholar]
- Falster, D.S.; Westoby, M. Leaf size and angle vary widely across species: What consequences for light interception? New Phytol. 2003, 158, 509–525. [Google Scholar] [CrossRef] [PubMed]
- Wright, I.J.; Reich, P.B.; Westoby, M.; Ackerly, D.D.; Baruch, Z.; Bongers, F.; Cavender-Bares, J.; Chapin, T.; Cornelissen, J.H.C.; Diemer, M.; et al. The worldwide leaf economics spectrum. Nature 2004, 428, 821–827. [Google Scholar] [CrossRef] [PubMed]
- Júnior, P.F.S.; Freire, R.C.S.; Serres, A.J.R.; Catunda, S.Y.; Silva, P.H.d.F. Bioinspired transparent antenna for WLAN application in 5 GHz. Microw. Opt. Technol. Lett. 2017, 59, 2879–2884. [Google Scholar] [CrossRef]
- Keshwala, U.; Rawat, S.; Ray, K. Design and analysis of eight petal flower shaped fractal antenna for THz applications. Opt. –Int. J. Light Electron Opt. 2021, 241, 166942. [Google Scholar] [CrossRef]
- Abolade, J.O.; Konditi, D.B.O.; Dharmadhikary, V.M. Compact hexa-band bio-inspired antenna using asymmetric microstrip feeding technique for wireless applications. Heliyon 2021, 7, e06247. [Google Scholar] [CrossRef]
- Abolade, J.O.; Konditi, D.B.O.; Dharmadhikary, V.M. A comparative study of compact multi-band bio-inspired asymmetric microstrip fed antennas (BioAs-MPAs) for wireless applications. Int. J. Antennas Propag. Hindawi 2021, 2021, 6676689. [Google Scholar]
- Hajiyat, Z.R.M.; Ismail, A.; Sali, A.; Hamidon, M.N. Antenna in 6G wireless communication system: Specifications, challenges and research directions. Opt.–Int. J. Light Electron Opt. 2021, 231, 166415. [Google Scholar] [CrossRef]
- Bhaskar, V.S.; Tan, E.L.; Holden, L.K.H. Design of wideband bowtie slot antenna using sectorially modified Gielis curves. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 2237–2240. [Google Scholar] [CrossRef]
- Yang, K.; Song, Z.; Gielis, J.; Caratelli, D. A super-formula based compact ultra-wideband antenna and its application to indoor real-time positioning systems. Microw. Opt. Technol. Lett. 2022, 64, 2103–2109. [Google Scholar] [CrossRef]
- VBhaskar, S.; Tan, E.L. Design of dual-band omnidirectional planar microstrip antenna using Gielis curves. In Proceedings of the IEEE International Symposium on Antennas and Propagation, Montreal, QC, Canada, 5–10 July 2020. [Google Scholar]
- Gric, T.; Gorodetsky, A.; Trofimov, A.; Rafailov, E. Tunable plasmonic properties and absorption enhancement in terahertz photoconductive antenna based on optimized plasmonic nanostructures. J. Infrared Millim. Terahertz Waves 2018, 39, 1028–1038. [Google Scholar] [CrossRef]
- Rmili, H.; Oueslati, D.; Trad, I.B.; Floch, J.M.; Dobaie, A.; Mittra, R. Investigation of a random-fractal antenna based on a natural tree-leaf geometry. Int. J. Antennas Propag. Hindawi 2017, 2017, 2084835. [Google Scholar] [CrossRef]
- Silva, P.F., Jr.; Freire, R.C.S.; Serres, A.J.R.; Silva, P.H.d.F.; Silva, J.C. Wearable textile bioinspired antenna for 2G, 3G and 4G systems. Microw. Opt. Technol. Lett. 2016, 58, 2818–2823. [Google Scholar] [CrossRef]
- Wang, L.; Yu, J.; Xie, T.; Yu, Z.; Liang, B.; Xu, X. The design of a multi-band bionic antenna for mobile terminals. Int. J. RF Microw. Comput.-Aided Eng. 2021, 31, e22620. [Google Scholar] [CrossRef]
- Penick, C.A.; Cope, G.; Morankar, S.; Mistry, Y.; Grishin, A.; Chawla, N.; Bhate, D. The comparative approach to bio-inspired design: Integrating biodiversity and biologists into the design process. Integr. Comp. Biol. 2022, 62, 1153–1163. [Google Scholar] [CrossRef] [PubMed]
- Commercial Software. Available online: https://www.cst.com (accessed on 1 November 2023).
- Ellis, B.; Daly, D.C.; Hickey, L.J.; Johnson, K.R.; Mitchell, J.D.; Wilf, P.; Wing, S.L. Manual of Leaf Architecture; CABI Publishing: Oxon, UK, 2009. [Google Scholar]
1 | Tillia Mandshurica Malvaceae | 11 | Acer franchetii Sapindaceae | ||
2 | Davilla rugosa Dilleniaceae | 12 | Tetrapterys macrocarpa Malpighiaceae | ||
3 | Stemonoporus nitidus Dipterocarpaceae | 13 | Eucryphia glutinosa Cunoniaceae | ||
4 | Bauhinia madagascariensis Fabaceae | 14 | Licania michauxii Chrysobalanaceae | ||
5 | Tetracentron sinense Trochodendraceae | 15 | Morus microphylla Moraceae | ||
6 | Buchanania arborescens Anacardiaceae | 16 | Comocladia dodonaea Anacardiaceae | ||
7 | Aristotelia racemosa Elaeocarpaceae | 17 | Sorindeia gilletii Anacardiaceae | ||
8 | Bombacopsis rupicola Malvaceae | 18 | Leepierceia preartocarpoides Proteales | ||
9 | Rhynchoglossum azureum Gesneriaceae | 19 | Adenia heterophylla Passifloraceae | ||
10 | Nothofagus procera Nothofagaceae | 20 | Potentilla recta Rosaceae | ||
21 | Dryandra longifolia Proteaceae | 31 | Carrierea calycina Salicaceae | ||
22 | Cucurbita cylindrata Cucurbitaceae | 32 | Dalechampia cissifolia Euphorbiaceae | ||
23 | Quercus alba Fagaceae | 33 | Croton hircinus Euphorbiaceae | ||
24 | Rubus mesogaeus Rosaceae | 34 | Dombeya elegans Malvaceae | ||
25 | Cissampelos owariensis Menispermaceae | 35 | Tetrameles nudiflora Datiscaceae | ||
26 | Phyllanthus poumensis Phyllanthaceae | 36 | Phoebe costaricana Lauraceae | ||
27 | Cercidiphyllum japonicum Cercidiphyllaceae | 37 | Platanus racemosa Platanaceae | ||
28 | Acer saccharinum Sapindaceae | 38 | Trichosanthes formosana Cucurbitaceae | ||
29 | Liquidambar styraciflua Hamamelidaceae | 39 | Paliurus ramosissimus Rhamnaceae | ||
30 | Ostrya guatemalensis Betulaceae | 40 | Sarcorhachis naranjoana Piperaceae | ||
41 | Topobea watsonii Melastomataceae | 51 | Cleistanthus oligophlebius Phyllanthaceae | ||
42 | Paranomus sceptrum Proteaceae | 52 | Rhamnidium elaeocarpum Rhamnaceae | ||
43 | Potamogeton amplifolius Potamogetonaceae | 53 | Cotinus obovatus Anacardiaceae | ||
44 | Maianthemum dilatatum Ruscaceae | 54 | Santiria samarensis Burseraceae | ||
45 | Cercidiphyllum japonicum Cercidiphyllaceae | 55 | Aextoxicon punctatum Aextoxicaceae | ||
46 | Casearia ilicifolia Salicaceae | 56 | Antigonon cinerascens Polygonaceae | ||
47 | Mahonia wilcoxii Berberidaceae | 57 | Capsicodendron pimenteira Canellaceae | ||
48 | Cornus officinalis Cornaceae | 58 | Tapura guianensis Dichapetalaceae | ||
49 | Isoptera lissophylla Dipterocarpaceae | 59 | Comocladia glabra Anacardiaceae | ||
50 | Tococa aristata Melastomataceae | 60 | Viburnum setigerum Adoxaceae | ||
61 | Bixa orellana Bixaceae | 71 | Popowia congensis Annonaceae | ||
62 | Philactis zinnioides Asteraceae | 72 | Banisteriopsis laevifolia Malpighiaceae | ||
63 | Vitex limonifolia Lamiaceae | 73 | Microcos tomentosa Malvaceae | ||
64 | Kermadecia sinuata Proteaceae | 74 | Crataegus brainerdii Rosaceae | ||
65 | Glochidion bracteatum Phyllanthaceae | 75 | Tetracera podotricha Dilleniaceae | ||
66 | Populus jackii Salicaceae | 76 | Celtis cerasifera Cannabaceae | ||
67 | Apeiba macropetala Malvaceae | 77 | Guarea tuberculata Meliaceae | ||
68 | Tilia heterophylla Malvaceae | 78 | Cedrela angustifolia Meliaceae | ||
69 | Alchornea polyantha Euphorbiaceae | 79 | Diospyros maritima Ebenaceae | ||
70 | Pseudolmedia laevis Moraceae | 80 | Eriolaena malvacea Malvaceae | ||
81 | Macaranga bicolor Euphorbiaceae | 91 | Tetracera rotundifolia Dilleniaceae | ||
82 | Odontadenia geminata Apocynaceae | 92 | Calophyllum calaba Clusiaceae | ||
83 | Flacourtia rukam Salicaceae | 93 | Cissus caesia Vitaceae | ||
84 | Brasenia schreberi Cabombaceae | 94 | Desfontainea spinosa Desfontaineaceae | ||
85 | Mahoberberis neubertii Berberidaceae | 95 | Aphaerema spicata Salicaceae | ||
86 | Fraxinus floribunda Oleaceae | 96 | Cyclea merrillii Menispermaceae | ||
87 | Parinari campestris Chrysobalanaceae | 97 | Eucryphia glandulosa Cunoniaceae | ||
88 | Melanolepis multiglandulosa Euphorbiaceae | 98 | Diploclisia kunstleri Menispermaceae | ||
89 | Stenocarpus sinuatus Proteaceae | 99 | Buxus glomerata Buxaceae | ||
90 | Couepia paraensis Chrysobalanaceae | 100 | Croton hircinus Euphorbiaceae |
Spp. | Frequency Values (GHz) |
---|---|
1 | 1.26, 1.95, 3.06, 3.72, 4.44, 5.58, 6.18, 7.23, 7.83, 8.97, 9.54, 10.77 |
2 | 1.05, 1.98, 3.24, 4.23, 5.25, 6.15, 7.2, 8.37, 9.18, 10.26 |
3 | 0.99, 1.29, 2.25, 3.36, 3.9, 5.61, 7.5, 8.07, 8.46, 9.03, 10.08 |
4 | 2.01, 7.71, 9.72 |
5 | 1.02, 2.22, 5.52, 6, 6.78, 7.59 |
6 | 4.53, 5.16, 7.95, 8.55, 9.06, 10.29 |
7 | 0.84, 3.09, 4.38, 5.1, 5.73, 6.75 |
8 | 2.67, 4.23, 4.98, 5.61, 7.08, 8.61 |
9 | 0.78, 1.44, 2.01, 2.46, 3.12, 4.05, 4.41, 5.28, 6.63, 7.17, 8.97, 10.8 |
10 | 0.87, 1.62, 2.4, 3.06, 3.63, 4.17, 5.76, 6.57, 7.26, 7.92, 8.46, 8.91, 9.54, 10.17 |
11 | 2.16, 2.7, 6.06, 7.05, 9.72, 10.92 |
12 | 0.87, 1.62, 2.19, 2.61, 3.3, 4.11, 9.27 |
13 | 0.87, 1.59, 2.34, 3.15, 4.44, 5.82, 6.51, 7.5, 7.89, 9.24, 10.02 |
14 | 4.53, 4.89, 5.61, 8.49, 9.66 |
15 | 0.72, 1.98, 2.61, 3.51, 4.23, 5.34, 5.91, 6.9, 7.56, 8.22, 8.97, 9.72 |
16 | 0.84, 1.5, 3.66, 4.68, 6.06, 6.72, 8.43, 9.57, 9.99 |
17 | 2.07, 2.64, 3.15, 4.26, 4.92, 5.46, 6, 7.38, 8.13, 9.09, 9.78 |
18 | 0.78, 1.47, 2.07, 2.76, 3.81, 4.92, 6.57, 7.68, 8.4, 9.21, 10.17 |
19 | 1.14, 2.67, 3.54, 4.68, 6.03, 6.51, 7.08, 7.65, 8.25, 9.54 |
20 | 1.11, 1.77, 3.12, 5.7, 7.74, 8.85, 9.72 |
21 | 8.88, 10.47 |
22 | 2.16, 2.88, 5.28, 6.33, 6.96, 7.56, 9, 9.84 |
23 | 2.49, 3.18, 3.84, 4.62, 5.88, 7.65, 8.49, 9.54 |
24 | 0.75, 1.41, 2.16, 3.39, 4.32, 4.77, 6.69, 7.44, 7.95, 8.61, 9.66, 10.38 |
25 | 1.2, 1.71, 2.49, 3.06, 3.87, 6.27, 8.73, 11.61 |
26 | 1.98, 2.49, 2.94, 3.48, 3.9, 4.53, 5.04, 5.52, 6.48, 7.08, 8.31, 9, 9.813731 |
27 | 1.14, 2.13, 2.91, 3.63, 7.23, 7.59, 8.19, 8.79, 9.27, 9.96 |
28 | 0.96, 2.43, 2.97, 3.36, 4.17, 5.4, 7.41, 10.77 |
29 | 2.01, 4.23, 5.58, 6.06, 7.35, 7.92, 8.37, 9.09, 9.57, 10.83 |
30 | 0.96, 2.19, 3.45, 4.08, 5.73, 7.32, 7.98, 8.55, 9.09, 9.66 |
31 | 2.07, 2.46, 2.91, 4.95, 5.67, 6.54, 7.47, 8.52, 9.3, 10.17 |
32 | 5.22, 6.39, 7.29, 8.16, 9.45, 10.41, 10.95 |
33 | 3.06, 4.08, 5.04, 6.93, 7.41, 8.16, 9.3, 9.99 |
34 | 0.96, 3.12, 5.7, 9.57 |
35 | 0.72, 2.79, 4.8, 5.55, 6.06, 6.69, 7.71, 9.21, 9.66, 10.38 |
36 | 0.99, 1.62, 2.07, 5.67, 6.48, 7.44, 8.13, 8.94 |
37 | 2.19, 3.75, 4.23, 4.77, 5.34, 5.82, 6.42, 7.17, 8.73, 9.63, 10.47 |
38 | 1.62, 4.98, 5.73, 6.03, 7.38, 8.97, 9.75 |
39 | 1.26, 2.34, 3.24, 3.63, 4.65, 5.43, 6.75, 7.26, 7.8, 8.36, 8.91, 9.51, 10.02 |
40 | 1.05, 3.09, 3.48, 4.17, 4.65, 5.22, 6.51, 7.14, 8.55, 9.06, 9.66, 10.65 |
41 | 2.97, 4.26, 5.46, 6.6, 7.83, 9.12 |
42 | 1.59, 2.34, 2.76, 5.31, 5.94, 6.48, 7.56, 8.7, 9.84 |
43 | 1.32, 2.55, 6.12, 7.35, 8.55, 9.54 |
44 | 1.29, 2.7, 3.9, 4.95, 6.36, 7.59, 8.31, 9, 9.57, 10.95 |
45 | 1.71, 6.75, 7.5, 8.19, 8.91 |
46 | 0.9, 1.74, 2.46, 3.3, 4.62, 5.91, 6.51, 6.99, 7.47, 8.28, 9, 9.75 |
47 | 1.08, 1.95, 2.76, 4.14, 5.34, 5.91, 6.51, 8.4, 9.9 |
48 | 0.96, 1.53, 2.43, 3.06, 3.54, 4.35, 4.98, 5.64, 7.8, 9.57, 10.65 |
49 | 1.2, 1.83, 2.34, 3.27, 4.02, 4.83, 6.36, 6.99, 8.25, 8.97, 10.32 |
50 | 6.36, 7.56, 8.4, 8.82, 9.48, 9.87 |
51 | 1.23, 2.61, 4.56, 5.94, 7.74, 9.12, 9.84 |
52 | 1.2, 2.28, 2.91, 4.41, 5.31, 7.2, 8.19, 9.36 |
53 | 0.81, 1.77, 2.7, 3.27, 4.11, 5.04, 5.67, 6.21, 7.47, 8.43, 9.48 |
54 | 0.93, 1.59, 2.16, 2.67, 3.48, 4.56, 5.28, 6.33, 6.96, 7.86, 9.03, 9.87 |
55 | 3.39, 3.93, 4.62, 5.4, 8.73 |
56 | 2.76, 3.42, 4.2, 4.74, 5.19, 6.3, 7.44, 8.46, 8.88, 9.81 |
57 | 2.04, 2.49, 3.21, 4.23, 5.91, 6.57, 9, 9.81 |
58 | 4.41, 5.46, 6.06, 7.59, 8.1, 8.67, 9.66 |
59 | 0.93, 1.83, 2.7, 3.57, 4.38, 5.01, 5.64, 6.24, 7.2, 8.76 |
60 | 1.02, 1.95, 3.03, 3.66, 4.17, 4.89, 5.25, 6.63, 8.1, 8.79, 9.51 |
61 | 1.68, 2.22, 2.88, 3.69, 4.32, 4.71, 6.21, 10.02 |
62 | 2.1, 9.48 |
63 | 0.66, 1.26, 2.31, 3.27, 3.9, 4.89, 5.4, 5.85, 6.676, 7.56, 8.67, 9.42 |
64 | 2.01, 2.97, 3.63, 4.17, 5.13, 5.88, 6.81, 7.83, 8.55, 9.36, 9.9 |
65 | 1.05, 1.98, 3.54, 4.05, 5.49, 6, 6.57, 7.38, 7.92, 8.76, 9.69 |
66 | 1.02, 1.86, 2.64, 3.18, 4.38, 4.95, 5.91, 6.57, 9.12, 9.63 |
67 | 0.78, 1.47, 3.18, 3.72, 4.41, 5.88, 6.84, 8.79, 9.96 |
68 | 0.84, 2.52, 3.06, 4.2, 4.71, 6.18, 6.51, 7.38 |
69 | 1.77, 2.25, 3.09, 3.63, 4.86, 5.43, 6.12, 6.84, 7.74, 8.94, 10.05 |
70 | 0.9, 1.65, 2.43, 3.45, 4.53, 5.61, 6.45, 7.62, 8.67, 9.6, 10.62 |
71 | 0.93, 1.8, 2.46, 3.51, 4.32, 5.34, 6.3, 7.35, 7.89, 8.46, 9.24, 9.57, 10.41 |
72 | 0.81, 2.07, 4.47, 5.19, 6, 6.84, 7.86, 9.09, 9.6, 10.86 |
73 | 0.81, 2.31, 3.161, 3.78, 4.83, 5.67, 6.54, 7.59, 7.92, 8.58, 9.9, 10.41 |
74 | 2.43, 3.48, 4.14, 4.62, 5.19, 5.79, 6.12, 7.35, 7.83, 8.61, 9.54, 10.02 |
75 | 0.69, 2.34, 2.88, 4.11, 4.71, 6.66, 8.55, 9.06, 9.45, 10.92 |
76 | 0.96, 1.596, 1.89, 4.08, 4.74, 5.37, 6, 6.75, 8.79, 9.48, 10.29 |
77 | 0.9, 1.59, 2.19, 2.55, 3.84, 4.41, 5.28, 6.54, 7.11, 8.46, 9.57, 10.8 |
78 | 0.84, 2.49, 3, 3.96, 5.64, 5.97, 6.51, 8.37, 9.69, 10.32 |
79 | 0.96, 1.68, 3.03, 3.99, 5.94, 6.93, 8.01, 9.01, 9.96, 10.44 |
80 | 2.07, 4.38, 5.46, 6.54, 7.8, 8.22, 9.12, 9.78, 10.23, 10.74 |
81 | 0.93, 1.71, 3.03, 4.65, 5.28, 5.97, 8.49 |
82 | 0.84, 1.59, 2.16, 3.15, 3.72, 4.32, 5.46, 6.51, 7.71, 9.42 |
83 | 0.84, 1.44, 1.95, 2.49, 3.48, 4.05, 4.56, 5.46, 6.45, 6.96, 7.53, 8.64, 9.45, 10.47 |
84 | 0.9, 1.56, 4.14, 5.13, 5.85, 6.78, 7.2, 8.01, 10.77 |
85 | 0.84, 3.21, 3.72, 6.27, 6.75, 8.31, 8.91 |
86 | 1.68, 2.58, 3.39, 4.53, 5.64, 5.94, 6.9, 7.77, 9.21, 10.02 |
87 | 0.78, 2.04, 3.87, 4.74, 6.57, 7.11, 7.68, 8.28, 8.88, 9.33, 10.2 |
88 | 2.28, 3.3, 3.66, 4.35, 4.83, 5.61, 8.43, 9.93 |
89 | 0.57, 1.11, 1.65, 2.4, 4.08, 4.71, 5.46, 6, 6.87, 7.89, 9.24, 10.38 |
90 | 0.96, 1.83, 2.55, 3.09, 3.96, 4.8, 6, 7.44, 8.37, 9.57 |
91 | 0.72, 1.26, 1.86, 2.4, 2.94, 3.54, 4.11, 5.61, 6.3, 6.93, 7.56, 8.52, 8.94, 9.51, 9.99 |
92 | 0.63, 1.23, 1.83, 2.46, 2.97, 3.51, 4.47, 4.89, 5.97, 6.84, 7.35, 8.13, 9.33, 9.63, 10.86 |
93 | 1.5, 2.61, 3.45, 4.14, 4.71, 5.88, 7.5, 8.58, 9.81 |
94 | 0.9, 1.71, 2.46, 2.79, 3.42, 5.04, 6.57, 7.17, 7.27, 9.18, 10.29 |
95 | 1.56, 2.6, 4.95, 5.67, 6.54, 7.38, 8.25, 8.94, 9.6, 10.11 |
96 | 1.2, 2.82, 7.29, 7.98, 8.4, 9.24, 9.9, 10.65 |
97 | 0.75, 1.98, 2.7, 3.12, 3.75, 4.92, 6.06, 6.72, 7.2, 7.83, 8.61, 9.45, 10.26 |
98 | 0.75, 1.26, 1.98, 2.76, 3.24, 4.32, 5.97, 6.69, 7.5, 9.33, 10.08 |
99 | 4.11, 5.1, 5.55, 6.15, 6.75, 7.5, 8.67, 9.72 |
100 | 2.22, 2.82, 3.12, 4.83, 5.19, 6.81, 7.65, 8.64, 9.66, 10.35 |
1 | 3 | 4 | 5 | 7 | 9 | 10 | |||
11 | 12 | 13 | 15 | 16 | 18 | 19 | 20 | ||
22 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | ||
31 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | ||
42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | ||
52 | 53 | 54 | 56 | 59 | 60 | ||||
61 | 63 | 65 | 66 | 67 | 68 | 70 | |||
71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 |
81 | 82 | 83 | 84 | 85 | 87 | 88 | 89 | 90 | |
91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 100 |
1 | 2 | 3 | 5 | 9 | 10 | ||||
12 | 13 | 15 | 16 | 18 | 19 | 20 | |||
24 | 25 | 26 | 27 | ||||||
36 | 38 | 39 | 40 | ||||||
42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | ||
51 | 52 | 53 | 54 | 59 | 60 | ||||
61 | 63 | 65 | 66 | 67 | 69 | 70 | |||
71 | 76 | 77 | 79 | ||||||
81 | 82 | 83 | 84 | 86 | 89 | 90 | |||
91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 |
1 | 2 | 3 | 4 | 5 | 7 | 8 | 9 | 10 | |
11 | 12 | 13 | 15 | 16 | 17 | 18 | 19 | 20 | |
22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | |
31 | 33 | 34 | 35 | 36 | 37 | 39 | 40 | ||
41 | 42 | 43 | 44 | 46 | 47 | 48 | 49 | ||
51 | 52 | 53 | 54 | 55 | 56 | 57 | 59 | 60 | |
61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 |
71 | 72 | 73 | 74 | 75 | 77 | 78 | 79 | 80 | |
81 | 82 | 83 | 85 | 86 | 87 | 88 | 89 | 90 | |
91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 100 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | |
31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 |
41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 |
51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 |
61 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | |
71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 |
81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 |
91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 |
1 | 2 | 3 | 4 | 6 | 8 | 9 | 10 | ||
11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 |
41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 |
51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 |
61 | 62 | 63 | 64 | 65 | 66 | 67 | 69 | 70 | |
71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 |
81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 |
91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 |
Frequency | Leaf Geometries or Antenna Elements | ||||
---|---|---|---|---|---|
2.4 GHz | 9 | 10 | 13 | 23 | 25 |
28 | 39 | 42 | 46 | 49 | |
57 | 63 | 70 | 71 | 73 | |
74 | 75 | 78 | 83 | 89 | |
91 | 92 | ||||
5 GHz | 7 | 8 | 17 | 18 | 33 |
38 | 44 | 53 | 59 | 66 | |
95 | 97 | 99 | |||
Both | 26 | 31 | 48 | 94 |
Plant Leaf or Antenna Element | Geometry | Design Impact | Operation Frequencies below 10 GHz (GHz) |
---|---|---|---|
Tetrapterys macrocarpa Malpighiaceae | elliptic | six frequency bands below 5 GHz | 0.87, 1.62, 2.19, 2.61, 3.3, 4.11, 9.27 |
Quercus alba Fagaceae | pinnately lobed | widest frequency band | 2.49, 3.18, 3.84, 4.62, 5.88, 7.65, 8.49, 9.54 |
Cissampelos owariensis Menispermaceae | circular base | better radiation characteristics | 1.2, 1.71, 2.49, 3.06, 3.87, 6.27, 8.73, 11.61 |
Liquidambar styraciflua Hamamelidaceae | lobed leaves | seven frequency bands below 10 GHz | 2.01, 4.23, 5.58, 6.06, 7.35, 7.92, 8.37, 9.09, 9.57, 10.83 |
Sarcoshachis naranjoana Piperaceae | ovate | eight frequency bands below 10 GHz | 1.26, 2.34, 3.24, 3.63, 4.65, 5.43, 6.75, 7.26, 7.8, 8.36, 8.91, 9.51, 10.02 |
Paranomus spectrum Proteaceae | obovate | best behavior for high frequencies | 1.59, 2.34, 2.76, 5.31, 5.94, 6.48, 7.56, 8.7, 9.84 |
Cesearia ilicifolia Salicaceae | toothed | more freq. bands (below 10 GHz) | 0.9, 1.74, 2.46, 3.3, 4.62, 5.91, 6.51, 6.99, 7.47, 8.28, 9.00, 9.75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lozano, J.I.; Panduro, M.A.; Méndez-Alonzo, R.; Alonso-Arevalo, M.A.; Conte, R.; Reyna, A. Plant Foliar Geometry as a Biomimetic Template for Antenna Design. Biomimetics 2023, 8, 531. https://doi.org/10.3390/biomimetics8070531
Lozano JI, Panduro MA, Méndez-Alonzo R, Alonso-Arevalo MA, Conte R, Reyna A. Plant Foliar Geometry as a Biomimetic Template for Antenna Design. Biomimetics. 2023; 8(7):531. https://doi.org/10.3390/biomimetics8070531
Chicago/Turabian StyleLozano, Jose Ignacio, Marco A. Panduro, Rodrigo Méndez-Alonzo, Miguel A. Alonso-Arevalo, Roberto Conte, and Alberto Reyna. 2023. "Plant Foliar Geometry as a Biomimetic Template for Antenna Design" Biomimetics 8, no. 7: 531. https://doi.org/10.3390/biomimetics8070531
APA StyleLozano, J. I., Panduro, M. A., Méndez-Alonzo, R., Alonso-Arevalo, M. A., Conte, R., & Reyna, A. (2023). Plant Foliar Geometry as a Biomimetic Template for Antenna Design. Biomimetics, 8(7), 531. https://doi.org/10.3390/biomimetics8070531