Effect of the Mechanical Properties of Soft Counter-Faces on the Adhesive Capacity of Mushroom-Shaped Biomimetic Microstructures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mushroom-Shaped Microstructure and Flat Reference Samples
2.2. Counterface (Substrate)
2.3. Experimental Procedure
2.4. Contact Environment
2.5. Tests Operational Conditions
3. Results and Discussion
3.1. Dry Contact Condition
3.2. Wet Contact Environment—Distilled Water
3.3. Wet Contact Environment—Glycerol
4. Conclusions
- ▪
- In smooth and rigid counter-faces tested under dry contact conditions, mushroom-shaped micro-structures generated almost 6 times more adhesion strength than a smooth control reference. This result is in full agreement with other results reported in the literature [20], although different test-rigs and samples shapes were used.
- ▪
- Under dry contact conditions, soft counter-faces led to lower adhesion than hard counter-faces. This different behavior seemed to be related to the change in the interfacial stress distribution [21].
- ▪
- Under wet conditions, soft counter-faces led to higher adhesion than hard counter-faces. This result can be explained by both additional capillary forces due to the formation of liquid bridges and, possibly, more suction effect favored by the elastic deformation of the mushroom cap and counter-face [24].
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gorb, S.N.; Varenberg, M. Mushroom-shaped geometry of contact elements in biological adhesive systems. J. Adhes. Sci. Technol. 2007, 21, 1175–1183. [Google Scholar] [CrossRef]
- Parness, A.; Soto, D.; Esparza, N.; Gravish, N.; Wilkinson, M.; Autumn, K.; Cutkosky, M. A microfabricated wedge-shaped adhesive array displaying gecko-like dynamic adhesion, directionality and long lifetime. J. R. Soc. Interface 2009, 6, 1223–1232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jagota, A.; Hui, C.-Y. Adhesion, friction, and compliance of bio-mimetic and bio-inspired structured interfaces. Mater. Sci. Eng. R Rep. 2011, 72, 253–292. [Google Scholar] [CrossRef]
- Gorb, S.; Varenberg, M.; Peressadko, A.; Tuma, J. Biomimetic mushroom-shaped fibrillar adhesive microstructure. J. R. Soc. Interface 2007, 4, 271–275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aksak, B.; Murphy, M.P.; Sitti, M. Adhesion of Biologically Inspired Vertical and Angled Polymer Microfiber Arrays. Langmuir 2007, 23, 3322–3332. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.M.; Callow, J.A. (Eds.) Biological Adhesives; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar] [CrossRef]
- Santos, D.; Spenko, M.; Parness, A.; Kim, S.; Cutkosky, M. Directional adhesion for climbing: Theoretical and practical considerations. J. Adhes. Sci. Technol. 2007, 21, 1317–1341. [Google Scholar] [CrossRef] [Green Version]
- Carbas, R.J.C.; da Silva, L.F.M.; Marques, E.A.S.; Lopes, A.M. Effect of post-cure on the glass transition temperature and mechanical properties of epoxy adhesives. J. Adhes. Sci. Technol. 2013, 27, 2542–2557. [Google Scholar] [CrossRef]
- Heepe, L.; Varenberg, M.; Itovich, Y.; Gorb, S.N. Suction component in adhesion of mushroom-shaped microstructure. J. R. Soc. Interface 2011, 8, 585–589. [Google Scholar] [CrossRef] [Green Version]
- Murphy, M.P.; Kim, S.; Sitti, M. Enhanced Adhesion by Gecko-Inspired Hierarchical Fibrillar Adhesives. ACS Appl. Mater. Interfaces 2009, 1, 849–855. [Google Scholar] [CrossRef]
- Meng, F.; Liu, Q.; Wang, X.; Tan, D.; Xue, L.; Barnes, W.J.P. Tree frog adhesion biomimetics: Opportunities for the development of new, smart adhesives that adhere under wet conditions. Philosophical Transactions of the Royal Society A: Mathematical. Phys. Eng. Sci. 2019, 377, 20190131. [Google Scholar] [CrossRef]
- Varenberg, M.; Gorb, S. A beetle-inspired solution for underwater adhesion. J. R. Soc. Interface 2008, 5, 383–385. [Google Scholar] [CrossRef]
- Kovalev, A.E.; Varenberg, M.; Gorb, S.N. Wet versus dry adhesion of biomimetic mushroom-shaped microstructures. Soft Matter 2012, 8, 7560. [Google Scholar] [CrossRef]
- Ranc, H.; Servais, C.; Chauvy, P.-F.; Debaud, S.; Mischler, S. Effect of surface structure on frictional behaviour of a tongue/palate tribological system. Tribol. Int. 2006, 39, 1518–1526. [Google Scholar] [CrossRef]
- Tuma, J. Patent “Process for creating adhesion elements on a substrate material”. WO2005087033A1, 22 September 2005. [Google Scholar]
- Peressadko, A.; Gorb, S.N. When less is more: Experimental evidence for tenacity enhancement by division of contact area. J. Adhes. 2004, 80, 247–261. [Google Scholar] [CrossRef]
- Badler, D.; Kasem, H. Synergetic effect of the simultaneous use of different biomimetic adhesive micro-structures on tribological performances. Biotribology 2020, 22, 100124. [Google Scholar] [CrossRef]
- Gorb, S.N. Visualisation of Native Surfaces by Two-Step Molding. Microsc. Today 2007, 15, 44–47. [Google Scholar] [CrossRef] [Green Version]
- Kasem, H.; Cohen, Y. Effect of counterface roughness on the friction of bionic wall-shaped microstructures for gecko-like attachments. Bioinspir. Biomim. 2017, 12, 046010. [Google Scholar] [CrossRef]
- Kasem, H.; Varenberg, M. Effect of counterface roughness on adhesion of mushroom-shaped microstructure. J. R. Soc. Interface 2013, 10, 20130620. [Google Scholar] [CrossRef]
- Voigt, D.; Schuppert, J.M.; Dattinger, S.; Gorb, S.N. Sexual dimorphism in the attachment ability of the Colorado potato beetle Leptinotarsa decemlineata (Coleoptera: Chrysomelidae) to rough substrates. J. Insect Physiol. 2008, 54, 765–776. [Google Scholar] [CrossRef]
- Carbone, G.; Pierroac, E.; Gorb, S.N. Origin of the superior adhesive performance of mushroom-shaped microstructured surfaces. Soft Matter 2011, 7, 5545. [Google Scholar] [CrossRef]
- Afferrante, L.; Carbone, G. The Mechanisms of Detachment of Mushroom-Shaped Micro-Pillars: From Defect Propagation to Membrane Peeling. Macromol. React. Eng. 2013, 7, 609–615. [Google Scholar] [CrossRef]
- Heepe, L.; Wolff, J.O.; Gorb, S.N. Influence of ambient humidity on the attachment ability of ladybird beetles (Coccinella septempunctata). Beilstein J. Nanotechnol. 2016, 7, 1322–1329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Persson, B.N.J. On the mechanism of adhesion in biological systems. J. Chem. Phys. 2003, 118, 7614. [Google Scholar] [CrossRef] [Green Version]
- Kasem, H.; Tsipenyuk, A.; Varenberg, M. Biomimetic wall-shaped hierarchical microstructure for gecko-like attachment. Soft Matter 2015, 11, 2909–2915. [Google Scholar] [CrossRef] [Green Version]
- Badler, D.; Goltsberg, R.; Ammar, A.A.; Kasem, H. Experimental study of adhesion, friction, and peeling of biomimetic combined micro-mushroom and micro-spatulae textures. Tribol. Int. 2023, 186, 108609. [Google Scholar] [CrossRef]
Surface Material | Ra um | Rq um | Rz um | Rpk nm | Rvk nm | Wettability Angle |
---|---|---|---|---|---|---|
PVS | 0.12 | 0.15 | 2.22 | 142.52 | 201.19 | 114.5 |
SILFLO© | 0.59 | 0.85 | 13.78 | 1246.42 | 1022.09 | 108.05 |
EPOXY | 0.27 | 0.35 | 2.95 | 366.30 | 474.30 | 97.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gonen, M.; Kasem, H. Effect of the Mechanical Properties of Soft Counter-Faces on the Adhesive Capacity of Mushroom-Shaped Biomimetic Microstructures. Biomimetics 2023, 8, 327. https://doi.org/10.3390/biomimetics8030327
Gonen M, Kasem H. Effect of the Mechanical Properties of Soft Counter-Faces on the Adhesive Capacity of Mushroom-Shaped Biomimetic Microstructures. Biomimetics. 2023; 8(3):327. https://doi.org/10.3390/biomimetics8030327
Chicago/Turabian StyleGonen, May, and Haytam Kasem. 2023. "Effect of the Mechanical Properties of Soft Counter-Faces on the Adhesive Capacity of Mushroom-Shaped Biomimetic Microstructures" Biomimetics 8, no. 3: 327. https://doi.org/10.3390/biomimetics8030327
APA StyleGonen, M., & Kasem, H. (2023). Effect of the Mechanical Properties of Soft Counter-Faces on the Adhesive Capacity of Mushroom-Shaped Biomimetic Microstructures. Biomimetics, 8(3), 327. https://doi.org/10.3390/biomimetics8030327