Design and Motion Analysis of a Soft-Limb Robot Inspired by Bacterial Flagella
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biological Characteristics
2.2. Design of Leg–Wheel Mechanism
2.3. Design of the Leg–Wheel Soft Robot
3. Kinematic Analysis
3.1. Kinematic Modeling of Leg–Wheel Mechanism
3.2. Contact Point Analysis
3.3. Kinematic Modeling of Wheeled Motion
3.4. Gait Planning
4. Verification by Simulation
4.1. Wheeled Motion Simulation
4.2. Gait Simulation
5. Experimental Tests
5.1. Wheeled Motion Experiment
5.2. Gait Experiment
5.3. Post-Overturning Motion Experiment
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Salvini-Plawen, L.; “mollusk”. Encyclopedia Britannica 22 March 2023. Available online: https://www.britannica.com/animal/mollusk (accessed on 7 May 2023).
- Allen, V.; Bates, K.T.; Li, Z.; Hutchinson, J.R. Linking the Evolution of Body Shape and Locomotor Biomechanics in Bird-Line Archosaurs. Nature 2013, 497, 104–107. [Google Scholar] [CrossRef]
- Fan, J.; Wang, S.; Yu, Q.; Zhu, Y. Swimming Performance of the Frog-Inspired Soft Robot. Soft Robot. 2020, 7, 615–626. [Google Scholar] [CrossRef]
- Shintake, J.; Cacucciolo, V.; Shea, H.; Floreano, D. Soft Biomimetic Fish Robot Made of Dielectric Elastomer Actuators. Soft Robot. 2018, 5, 466–474. [Google Scholar] [CrossRef]
- Pi, J.; Liu, J.; Zhou, K.; Qian, M. An Octopus-Inspired Bionic Flexible Gripper for Apple Grasping. Agriculture 2021, 11, 1014. [Google Scholar] [CrossRef]
- Hannan, M.W.; Walker, I.D. Analysis and Experiments with an Elephant’s Trunk Robot. Adv. Robot. 2001, 15, 847–858. [Google Scholar] [CrossRef] [PubMed]
- Xiao, W.; Liu, C.; Hu, D.; Yang, G.; Han, X. Soft Robotic Surface Enhances the Grasping Adaptability and Reliability of Pneumatic Grippers. Int. J. Mech. Sci. 2022, 219, 107094. [Google Scholar] [CrossRef]
- Hawkes, E.W.; Blumenschein, L.H.; Greer, J.D.; Okamura, A.M. A Soft Robot That Navigates Its Environment through Growth. Sci. Robot. 2017, 2, eaan3028. [Google Scholar] [CrossRef]
- Wu, S.; Hong, Y.; Zhao, Y.; Yin, J.; Zhu, Y. Caterpillar-Inspired Soft Crawling Robot with Distributed Programmable Thermal Actuation. Sci. Adv. 2023, 9, eadf8014. [Google Scholar] [CrossRef]
- Mazzolai, B.; Mondini, A.; Del Dottore, E.; Margheri, L.; Carpi, F.; Suzumori, K.; Cianchetti, M.; Speck, T.; Smoukov, S.K.; Burgert, I.; et al. Roadmap on Soft Robotics: Multifunctionality, Adaptability and Growth without Borders. Multifunct. Mater. 2022, 5, 032001. [Google Scholar] [CrossRef]
- Calisti, M.; Picardi, G.; Laschi, C. Fundamentals of Soft Robot Locomotion. J. R. Soc. Interface 2017, 14, 20170101. [Google Scholar] [CrossRef]
- Hu, W.; Lum, G.Z.; Mastrangeli, M.; Sitti, M. Small-Scale Soft-Bodied Robot with Multimodal Locomotion. Nature 2018, 554, 81–85. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Zou, W.; Ma, L.; Wang, Z. Biologically Inspired Jumping Robots: A Comprehensive Review. Robot. Auton. Syst. 2020, 124, 103362. [Google Scholar] [CrossRef]
- Wei, Z.; Song, G.; Qiao, G.; Zhang, Y.; Sun, H. Design and Implementation of a Leg–Wheel Robot: Transleg. J. Mech. Robot. 2017, 9, 051001. [Google Scholar] [CrossRef]
- LaBarbera, M. Why the Wheels Won’t Go. Am. Nat. 1983, 121, 395–408. [Google Scholar] [CrossRef]
- Berg, H.C. The Rotary Motor of Bacterial Flagella. Annu. Rev. Biochem. 2003, 72, 19–54. [Google Scholar] [CrossRef]
- Nakamura, S.; Minamino, T. Flagella-Driven Motility of Bacteria. Biomolecules 2019, 9, 279. [Google Scholar] [CrossRef]
- Lady of Hats English: A Gram-Negative Bacterial Flagellum. Available online: https://commons.wikimedia.org/wiki/File:Flagellum_base_diagram-en.svg (accessed on 8 May 2023).
- Nedeljković, M.; Sastre, D.E.; Sundberg, E.J. Bacterial Flagellar Filament: A Supramolecular Multifunctional Nanostructure. Int. J. Mol. Sci. 2021, 22, 7521. [Google Scholar] [CrossRef]
- Kato, T.; Makino, F.; Miyata, T.; Horváth, P.; Namba, K. Structure of the Native Supercoiled Flagellar Hook as a Universal Joint. Nat. Commun. 2019, 10, 5295. [Google Scholar] [CrossRef]
- Cohen, E.J.; Ferreira, J.L.; Ladinsky, M.S.; Beeby, M.; Hughes, K.T. Nanoscale-Length Control of the Flagellar Driveshaft Requires Hitting the Tethered Outer Membrane. Science 2017, 356, 197–200. [Google Scholar] [CrossRef]
- Tan, J.; Zhang, X.; Wang, X.; Xu, C.; Chang, S.; Wu, H.; Wang, T.; Liang, H.; Gao, H.; Zhou, Y.; et al. Structural Basis of Assembly and Torque Transmission of the Bacterial Flagellar Motor. Cell 2021, 184, 2665–2679. [Google Scholar] [CrossRef]
- Johnson, S.; Fong, Y.H.; Deme, J.C.; Furlong, E.J.; Kuhlen, L.; Lea, S.M. Symmetry Mismatch in the MS-Ring of the Bacterial Flagellar Rotor Explains the Structural Coordination of Secretion and Rotation. Nat. Microbiol. 2020, 5, 966–975. [Google Scholar] [CrossRef]
- Kelley, L.; Talke, K.; Longhini, P.; Catron, G. Tip-over Prevention: Adaptive Control Development and Experimentation. In Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA); IEEE: Seattle, WA, USA, 2015; pp. 4367–4372. [Google Scholar]
- Webster, R.J.; Jones, B.A. Design and Kinematic Modeling of Constant Curvature Continuum Robots: A Review. Int. J. Robot. Res. 2010, 29, 1661–1683. [Google Scholar] [CrossRef]
- Gravagne, I.A.; Rahn, C.D.; Walker, I.D. Good Vibrations: A Vibration Damping Setpoint Controller for Continuum Robots. In Proceedings of the Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164); IEEE: Seoul, Republic of Korea, 2001; Volume 4, pp. 3877–3884. [Google Scholar]
- Kim, Y.-S.; Jung, G.-P.; Kim, H.; Cho, K.-J.; Chu, C.-N. Wheel Transformer: A Wheel-Leg Hybrid Robot With Passive Transformable Wheels. IEEE Trans. Robot. 2014, 30, 1487–1498. [Google Scholar] [CrossRef]
- Chen, S.-C.; Huang, K.-J.; Chen, W.-H.; Shen, S.-Y.; Li, C.-H.; Lin, P.-C. Quattroped: A Leg–Wheel Transformable Robot. IEEE/ASME Trans. Mechatron. 2014, 19, 730–742. [Google Scholar] [CrossRef]
- Chen, W.-H.; Lin, H.-S.; Lin, Y.-M.; Lin, P.-C. TurboQuad: A Novel Leg–Wheel Transformable Robot With Smooth and Fast Behavioral Transitions. IEEE Trans. Robot. 2017, 33, 1025–1040. [Google Scholar] [CrossRef]
- Lynch, K.M.; Park, F.C. Modern Robotics: Mechanics, Planning, and Control; Cambridge University Press: Cambridge, UK, 2017; ISBN 978-1-107-15630-2. [Google Scholar]
- Chai, H.; Li, Y.; Song, R.; Zhang, G.; Zhang, Q.; Liu, S.; Hou, J.; Xin, Y.; Yuan, M.; Zhang, G.; et al. A Survey of the Development of Quadruped Robots: Joint Configuration, Dynamic Locomotion Control Method and Mobile Manipulation Approach. Biomim. Intell. Robot. 2022, 2, 100029. [Google Scholar] [CrossRef]
- Queiroz, C.; Goncalves, N.; Menezes, P. A Study on Static Gaits for A Four Leg Robot. In Proceedings of the Control-UK ACC International Conference, Cambridge, UK, 1 September 2000. [Google Scholar]
- Tolley, M.T.; Shepherd, R.F.; Mosadegh, B.; Galloway, K.C.; Wehner, M.; Karpelson, M.; Wood, R.J.; Whitesides, G.M. A Resilient, Untethered Soft Robot. Soft Robot. 2014, 1, 213–223. [Google Scholar] [CrossRef]
- Li, Y.; Ren, T.; Li, Y.; Liu, Q.; Chen, Y. Untethered-Bioinspired Quadrupedal Robot Based on Double-Chamber Pre-Charged Pneumatic Soft Actuators with Highly Flexible Trunk. Soft Robot. 2021, 8, 97–108. [Google Scholar] [CrossRef]
- Rao, P.; Peyron, Q.; Lilge, S.; Burgner-Kahrs, J. How to Model Tendon-Driven Continuum Robots and Benchmark Modelling Performance. Front. Robot. AI 2021, 7, 630245. [Google Scholar] [CrossRef]
- Khan, A.H.; Shao, Z.; Li, S.; Wang, Q.; Guan, N. Which Is the Best PID Variant for Pneumatic Soft Robots? An Experimental Study. IEEE/CAA J. Autom. Sin. 2020, 7, 451–460. [Google Scholar] [CrossRef]
- Russo, M.; Sadati, S.M.H.; Dong, X.; Mohammad, A.; Walker, I.D.; Bergeles, C.; Xu, K.; Axinte, D.A. Continuum Robots: An Overview. Adv. Intell. Syst. 2023, 5, 2200367. [Google Scholar] [CrossRef]
- Bajo, A.; Simaan, N. Hybrid Motion/Force Control of Multi-Backbone Continuum Robots. Int. J. Robot. Res. 2016, 35, 422–434. [Google Scholar] [CrossRef]
Parameters | Values |
---|---|
Length (Body) | 188 mm |
Length (Hip-to-hip) | 160 mm |
Width (Body) | 140 mm |
Width (Tip-to-tip) | 450 mm |
Height | 52 mm |
Weight | 715 g |
−1 | −1 | 1 | ||
−1 | −1 | −1 | ||
−1 | 1 | −1 | ||
−1 | 1 | 1 |
1 | 90 | −60 |
2 | 30 | −60 |
3 | 60 | −40 |
FL | −50 | −6.6286 | 475.8245 | 9.063 |
RL | −50 | 6.6286 | 475.8245 | 9.063 |
RR | −50 | 19.5868 | 96.9410 | 1.846 |
FR | −50 | −19.5868 | 96.9410 | 1.846 |
FL | −50 | 10 | 10 |
RL | −50 | −10 | 10 |
RR | −50 | −10 | −10 |
FR | −50 | 10 | −10 |
FL | −50 | −13.8865 | 49.4921 |
RL | −50 | 13.8865 | 49.4921 |
RR | −50 | 5.8975 | −14.4786 |
FR | −50 | −5.8975 | −14.4786 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, C.; Liu, Z.; Yu, S.; Fan, Z.; Wang, Y. Design and Motion Analysis of a Soft-Limb Robot Inspired by Bacterial Flagella. Biomimetics 2023, 8, 271. https://doi.org/10.3390/biomimetics8030271
Ye C, Liu Z, Yu S, Fan Z, Wang Y. Design and Motion Analysis of a Soft-Limb Robot Inspired by Bacterial Flagella. Biomimetics. 2023; 8(3):271. https://doi.org/10.3390/biomimetics8030271
Chicago/Turabian StyleYe, Changlong, Zhanpeng Liu, Suyang Yu, Zifu Fan, and Yinchao Wang. 2023. "Design and Motion Analysis of a Soft-Limb Robot Inspired by Bacterial Flagella" Biomimetics 8, no. 3: 271. https://doi.org/10.3390/biomimetics8030271
APA StyleYe, C., Liu, Z., Yu, S., Fan, Z., & Wang, Y. (2023). Design and Motion Analysis of a Soft-Limb Robot Inspired by Bacterial Flagella. Biomimetics, 8(3), 271. https://doi.org/10.3390/biomimetics8030271