A Review of Robotic Fish Based on Smart Materials
Abstract
:1. Introduction
2. Hydrodynamic Analysis Model
2.1. Numerical Method
2.2. Analysis Method
3. BCF
3.1. SMA
3.2. IPMCs
3.3. Piezoelectric
3.4. DE
4. MPF
4.1. SMA
4.2. IPMCs
4.3. DE
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
List of Abbreviations
Abbreviation | Definition |
AUVs | Autonomous Underwater Vehicles |
BCF | Body and/or Caudal Fin Swing |
MPF | Median and/or Paired Fin Swing |
EBT | Elongated Body Theory |
WPT | Wave Plate Theory |
SMA | Shape Memory Alloys |
PZT | Lead Zirconate Titanate |
IPMC | Ionic Polymer Metal Composites |
CPG | Central Pattern Generator |
CFD | Computational Fluid Dynamics |
N–S | Navier–Stokes |
LAEBT | Large Amplitude Elongated Body Theory |
SMA | Shape Memory Alloy |
SME | Shape Memory Effect |
PVC | Polyvinyl Chloride |
ABS | Acrylonitrile-Butadiene-Styrene |
CFRP | Carbon Fibre-Reinforced Polymer |
MFC | Macro-Fibre Composite |
DEA | Dielectric Elastomer Actuator |
PMMA | Polymethyl Methacrylate |
PDMS | Polydimethylsiloxane |
PET | Polyethylene Terephthalate |
SIS DEA | Silicone-Based Dielectric Elastomer Actuator |
DE | Dielectric Elastomer |
RL | Reinforcement Learning |
References
- Chi, D.X.; Yan, G.Z. Biomimetic robot research and its perspective. Robot 2001, 5, 476–480. [Google Scholar]
- Kong, Q.F.; Wu, J.M.; Jia, Y.; Chen, G.J. Research on warship waterjet propulsion. Ship Sci. Technol. 2004, 3, 28–30. [Google Scholar]
- Triantafyllou, M.S.; Triantafyllou, G.S. An Efficient Swimming Machine. Sci. Am. 1995, 272, 40–45, 48. [Google Scholar] [CrossRef]
- Matthews, D.G.; Zhu, R.J.; Wang, J.S.; Dong, H.B.; Bart-Smith, H.; Lauder, G. Role of the caudal peduncle in a fish-inspired robotic model: How changing stiffness and angle of attack affects swimming performance. Bioinspiration Biomim. 2022, 17, 066017. [Google Scholar] [CrossRef]
- Liu, J.K.; Chen, Z.L.; Chen, W.S.; Wang, L.G. A new type of fin like propeller for underwater robot. Robot 2000, 5, 427–432. [Google Scholar]
- Katzschmann, R.K.; Delpreto, J.; Maccurdy, R.; Rus, D. Exploration of underwater life with an acoustically controlled soft robotic fish. Sci. Robot. 2018, 3, eaar3449. [Google Scholar] [CrossRef]
- Liang, J.H.; Wang, T.M.; Wen, L. Development of a two-joint robotic fish for real-world exploration. J. Field. Robot. 2010, 28, 70–79. [Google Scholar] [CrossRef]
- Wu, Z.X.; Liu, J.C.; Yu, J.Z.; Fang, H. Development of a Novel Robotic Dolphin and Its Application to Water Quality Monitoring. IEEE/ASME Trans. Mechatron. 2017, 22, 2130–2140. [Google Scholar] [CrossRef]
- Zhang, F.T.; Wang, J.X.; Thon, J.; Thon, C.; Litchman, E.; Tan, X.B. Gliding robotic fish for mo- 698 bile sampling of aquatic environments. In Proceedings of the 11th IEEE International Conference on Networking, Sensing and Control, Miami, FL, USA, 22 May 2014. [Google Scholar]
- Breder, C. Locomotion of fishes. Zoologica 1926, 4, 159–297. [Google Scholar] [CrossRef]
- Gray, J. Studies in animal locomotion IV. The propulsive powers of the dolphin. J. Exp. Biol. 1936, 13, 192–199. [Google Scholar] [CrossRef]
- Taylor, G.I. Analysis of the Swimming of Long and Narrow Animals. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1952, 214, 158–183. [Google Scholar]
- Lighthill, M.J. Note on the swimming of slender fish. J. Fluid Mech. 1960, 9, 305–317. [Google Scholar] [CrossRef]
- Wu, Y.T. Swimming of a Waving Plate. J. Fluid Mech. 1961, 10, 321–344. [Google Scholar] [CrossRef]
- Cheng, J.Y.; Zhuang, L.X.; Tong, B.G. Swimming of Three-Dimensional Waving Plate with Variable Amplitude. J. Hydrodyn. 1991, 6, 1–11. [Google Scholar]
- Horlock, J.H. Actuator Disk Theory; McGraw-Hill International Book Company: New York, NY, USA, 1978; Volume 85, p. 29. [Google Scholar]
- Lighthill, M.J. Large-Amplitude Elongated-Body Theory of Fish Locomotion. Proc. R. Soc. Lond. Ser. B Biol. Sci. 1971, 179, 125–138. [Google Scholar]
- Barrett, D. Propulsive Efficiency of a Flexible Hull Underwater Vehicle. Doctoral Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 1996. [Google Scholar]
- Anderson, J.M.; Chhabra, N.K. Maneuvering and Stability Performance of a Robotic Tuna1. Integr. Comp. Biol. 2002, 42, 118–126. [Google Scholar] [CrossRef]
- Kodati, P.; Hinkle, J.; Winn, A.; Deng, X.Y. Microautonomous Robotic Ostraciiform (MARCO): Hydrodynamics, Design, and Fabrication. IEEE Trans. Robot. 2008, 24, 105–117. [Google Scholar] [CrossRef]
- Zhou, C.L.; Low, K.H. Design and Locomotion Control of a Biomimetic Underwater Vehicle With Fin Propulsion. IEEE/ASME Trans. Mechatron. 2012, 17, 25–35. [Google Scholar] [CrossRef]
- Wen, L.; Wang, T.M.; Wu, G.H.; Liang, J.H. Quantitative Thrust Efficiency of a Self-Propulsive Robotic Fish: Experimental Method and Hydrodynamic Investigation. IEEE/ASME Trans. Mechatron. 2013, 18, 1027–1038. [Google Scholar] [CrossRef]
- Triantafyllou, M.S.; Techet, A.H.; Hover, F.S. Review of Experimental Work in Biomimetic Foils. IEEE J. Ocean. Eng. 2005, 29, 585–594. [Google Scholar] [CrossRef]
- Colgate, J.E.; Lynch, K.M. Mechanics and Control of Swimming: A Review. IEEE J. Ocean. Eng. 2004, 29, 660–673. [Google Scholar] [CrossRef]
- Bandyopadhyay, P.R. Trends in Biorobotic Autonomous Undersea Vehicles. IEEE J. Ocean. Eng. 2005, 30, 109–139. [Google Scholar] [CrossRef]
- Kato, N. Median And Paired Fin Controllers For Marine Vehicles. Appl. Mech. Rev. 2005, 58, 238–252. [Google Scholar] [CrossRef]
- Chu, W.S.; Lee, K.T.; Song, S.H.; Han, M.W.; Lee, J.Y.; Kim, H.S.; Kim, M.S.; Park, Y.J.; Cho, K.J.; Ahn, S.H. Review of biomimetic underwater robots using smart actuators. Int. J. Precis. Eng. Manuf. 2012, 13, 1281–1292. [Google Scholar] [CrossRef]
- Tsybina, Y.A.; Gordleeva, S.Y.; Zharinov, A.I.; Kastalskiy, I.A.; Ermolaeva, A.V.; Hramov, A.E.; Kazantsev, V.B. Toward biomorphic robotics: A review on swimming central pattern generators. Chaos Solitons Fractals 2022, 165, 112864. [Google Scholar] [CrossRef]
- Boyer, F.; Porez, M.; Leroyer, A.; Visonneau, M. Fast Dynamics of an Eel-Like Robot—Comparisons With Navier–Stokes Simulations. IEEE Trans. Robot. 2008, 24, 1274–1288. [Google Scholar] [CrossRef]
- Wang, J.X.; Tan, X.B. A dynamic model for tail-actuated robotic fish with drag coefficient adaptation. Mechatronics 2013, 23, 659–668. [Google Scholar] [CrossRef]
- Lamas, M.I.; Rodriguez, C.G. Hydrodynamics of Biomimetic Marine Propulsion and Trends in Computational Simulations. J. Mar. Sci. Eng. 2020, 8, 479. [Google Scholar] [CrossRef]
- Lamas, M.I.; Coruña, U.; Rodriguez, J.D.; Coruña, U.; Rodriguez, C.G.; Coruña, U. CFD Analysis of Biologically-Inspired Marine Propulsors. Brodogradnja 2012, 63, 125–133. [Google Scholar]
- Buren, T.V.; Floryan, D.; Brunner, D.; Senturk, U.; Smits, A.J. Impact of trailing edge shape on the wake and propulsive performance of pitching panels. Phys. Rev. Fluids 2017, 2, 014702. [Google Scholar] [CrossRef]
- Dabiri, J.O. Optimal Vortex Formation as a Unifying Principle in Biological Propulsion. Annu. Rev. Fluid Mech. 2009, 41, 17–33. [Google Scholar] [CrossRef]
- Huerahuarte, F.J. Bio-inspired aquatic flapping propulsion: Review and recent developments. Dyna 2016, 91, 560–563. [Google Scholar]
- Gazzola, M.; Argentina, M.; Mahadevan, L. Scaling macroscopic aquatic locomotion. Nat. Phys. 2014, 10, 758–761. [Google Scholar] [CrossRef]
- Lamas, M.I.; Rodríguez, J.D.; Rodríguez, C.G. Design aspects and two-dimensional CFD simulation of a marine propulsor based on a biologically-inspired undulating movement. J. Marit. Res. 2020, 7, 73–88. [Google Scholar]
- Barrett, D.S.; Yue, D.; Grosenbaugh, M.A.; Wolfgang, M.J.; Triantafyllou, M.S. Drag reduction in fish-like locomotion. J. Fluid Mech. 1999, 392, 183–212. [Google Scholar] [CrossRef]
- Triantafyllou, G.S.; Triantafyllou, M.S.; Grosenbaugh, M.A. Oscillating foils of high propulsive efficiency. J. Fluid Mech. 1998, 360, 41–72. [Google Scholar]
- Liu, H.; Kawachi, K. A Numerical Study of Undulatory Swimming. J. Comput. Phys. 1999, 155, 223–247. [Google Scholar] [CrossRef]
- Taylor, G.K.; Nudds, R.L.; Thomas, A.L.R. Flying and swimming animals cruise at a Strouhal number tuned for high power efficiency. Nature 2003, 425, 707–711. [Google Scholar] [CrossRef]
- Rohr, J.J.; Fish, F.E. Strouhal numbers and optimization of swimming by odontocete cetaceans. J. Exp. Biol. 2004, 207, 1633–1642. [Google Scholar] [CrossRef] [PubMed]
- Triantafyllou, G.S.; Triantafyllou, M.S.; Grosenbaugh, M.A. Optimal Thrust Development in Oscillating Foils with Application to Fish Propulsion. J. Fluids Struct. 1993, 7, 205–224. [Google Scholar] [CrossRef]
- Floc’h, F.; Phoemsapthawee, S.; Laurens, J.M.; Leroux, J.B. Porpoising foil as a propulsion system. Ocean. Eng. 2012, 39, 53–61. [Google Scholar] [CrossRef]
- Lighthill, M.J. Aquatic animal propulsion of high hydromechanical efficiency. J. Fluid Mech. 1970, 44, 265–301. [Google Scholar] [CrossRef]
- Barrett, D.; Grosenbaugh, M.; Triantafyllou, M. The optimal control of a flexible hull robotic undersea vehicle propelled by an oscillating foil. In Proceedings of the Autonomous Underwater Vehicle Technology, Monterey, CA, USA, 2–6 June 1996. [Google Scholar]
- Du, R.X.; Zheng, L.; Youcef-Toumi, K.; Alvarado, P.V. Robot Fish: Bio-Inspired Fishlike Underwater Robots; Springer Tracts in Mechanical Engineering: New York, NY, USA, 2015; pp. 97–101. [Google Scholar]
- Taylor, G. The Action of Waving Cylindrical Tails in Propelling Microscopic Organisms. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1952, 211, 225–239. [Google Scholar]
- Taylor, G. Analysis of the swimming of microscopic organisms. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1952, 209, 225–239. [Google Scholar]
- Scaradozzi, D.; Palmieri, G.; Costa, D.; Pinelli, A. BCF swimming locomotion for autonomous underwater robots: A review and a novel solution to improve control and efficiency. Ocean Eng. 2017, 130, 437–453. [Google Scholar] [CrossRef]
- Sfakiotakis, M.; Lane, D.M.; Davies, J.B.C. Review of Fish Swimming Modes for Aquatic Locomotion. IEEE J. Ocean. Eng. 1999, 24, 237–252. [Google Scholar] [CrossRef]
- Duraisamy, P.; Kumar Sidharthan, R.; Nagarajan Santhanakrishnan, M. Design, Modeling, and Control of Biomimetic Fish Robot: A Review. J. Bionic Eng. 2019, 16, 967–993. [Google Scholar] [CrossRef]
- Wang, W.; Rodrigue, H.; Kim, H.I.; Han, M.W.; Ahn, S.H. Soft composite hinge actuator and application to compliant robotic gripper. Compos. Part B Eng. 2016, 98, 397–405. [Google Scholar] [CrossRef]
- Hunter, I.W.; Lafontaine, S. A Comparison of Muscle With Artificial Actuators. In Proceedings of the Technical Digest IEEE Solid-State Sensor and Actuator Workshop, Hilton Head, SC, USA, 22–25 June 1992. [Google Scholar]
- Li, J.; He, J.; Wang, Y.W.; Yu, K.; Woźniak, M.; Wei, W. A biomimetic flexible fishtail embedded with shape memory alloy wires. IEEE Access 2019, 7, 166906–166916. [Google Scholar] [CrossRef]
- William, C.; Claudio, R.; Curet, O.M.; Diego, C. Design and assessment of a flexible fish robot actuated by shape memory alloys. Bioinspiration Biomim. 2018, 13, 056009. [Google Scholar]
- William, C.; Claudio, R.; Irene, P.M. Bio-inspired morphine caudal fin using shape memory alloy composites for a fish-like robot: Design, fabrication and analysis. In Proceedings of the 2015 12th International Conference on Informatics in Control, Automation and Robotics, Colmar, France, 21–23 July 2015. [Google Scholar]
- Muralidharan, M.; Palani, I.A. Development of Subcarangiform Bionic Robotic Fish Propelled by Shape Memory Alloy Actuators. Def. Sci. J. 2021, 71, 94–101. [Google Scholar] [CrossRef]
- Chen, Z.; Um, T.I.; Bart-Smith, H. A novel fabrication of ionic polymer–metal composite membrane actuator capable of 3-dimensional kinematic motions. Sens. Actuators A Phys. 2011, 168, 131–139. [Google Scholar] [CrossRef]
- Safari, Y.; Naghavi, N.; Malayjerdi, M.; Kalani, H. Design and test of wirelessly powered IPMC artificial muscle for aquatic ecosystem health applications. J. Intell. Mater. Syst. Struct. 2022, 33, 2074–2085. [Google Scholar] [CrossRef]
- Chen, Z.; Hou, P.; Ye, Z. Robotic Fish Propelled by a Servo Motor and Ionic Polymer-Metal Composite Hybrid Tail. J. Dyn. Syst. Meas. Control 2019, 141, 071001. [Google Scholar] [CrossRef]
- Sunkara, V.; Chakravarthy, A.; Yi, X.; Zuo, W.; Chen, Z. Cooperative Optimal Collision Avoidance Laws for a Hybrid-Tailed Robotic Fish. IEEE Trans. Control Syst. Technol. 2019, 28, 1569–1578. [Google Scholar] [CrossRef]
- Yi, X.Y.; Chen, Z.; Chakravarthy, A. Cooperative Collision Avoidance Control of Robotic Fish Propelled by a Servo/IPMC Driven Hybrid Tail. In Proceedings of the ASME 2019 Dynamic Systems and Control Conference, Park City, UT, USA, 8–11 October 2019. [Google Scholar]
- Zhao, W.J.; Ming, A.G.; Shimojo, M. Development of High-Performance Soft Robotic Fish by Numerical Coupling Analysis. Appl. Bionics Biomech. 2018, 2018, 5697408. [Google Scholar] [CrossRef]
- Lou, J.; Yang, Y.A.; Wu, C.C.; Li, G.A.; Chen, T.; Ma, J.A. Underwater oscillation performance and 3D vortex distribution generated by miniature caudal fin-like propulsion with macro fiber composite actuation. Sens. Actuators A Phys. 2020, 303, 111587. [Google Scholar]
- Zhao, Q.L.; Liu, S.Q.; Chen, J.H.; He, G.P.; Di, J.J.; Zhao, L.; Su, T.T.; Zhang, M.Y.; Hou, Z.L. Fast-moving piezoelectric micro-robotic fish with double caudal fins. Robot. Auton. Syst. 2021, 140, 103733. [Google Scholar] [CrossRef]
- Zhao, Q.L.; Chen, J.H.; Zhang, H.K.; Zhang, Z.H.; Liu, Z.K.; Liu, S.Q.; Di, J.J.; He, G.P.; Zhao, L.; Zhang, M.Y.; et al. Hydrodynamics Modeling of a Piezoelectric Micro-Robotic Fish With Double Caudal Fins. J. Mech. Robot. 2022, 14, 034502. [Google Scholar] [CrossRef]
- Tan, D.; Wang, Y.C.; Kohtanen, E.; Erturk, A. Trout-like multifunctional piezoelectric robotic fish and energy harvester. Bioinspiration Biomim. 2021, 16, 046024. [Google Scholar] [CrossRef]
- Liu, R.; Wang, L.; Jin, J.; Zhao, H.; Zhang, A.; Chen, D. A novel 3-DoF piezoelectric robotic pectoral fin: Design, simulation, and experimental investigation. Smart Mater. Struct. 2022, 31, 065003. [Google Scholar] [CrossRef]
- Berlinger, F.; Duduta, M.; Gloria, H.; Clarke, D.; Nagpal, R. A Modular Dielectric Elastomer Actuator to Drive Miniature Autonomous Underwater Vehicles. IEEE Int. Conf. Robot. Autom. 2018, 2018, 3429–3435. [Google Scholar]
- Kim, H.S.; Lee, J.Y.; Chu, W.S.; Ahn, S.H. Design and fabrication of soft morphing ray propulsor: Undulator and oscillator. Soft Robot. 2016, 4, 49–60. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Um, T.I.; Bart-Smith, H. Bio-inspired robotic manta ray powered by ionic polymer–metal composite artificial muscles. Int. J. Smart Nano Mater. 2012, 3, 296–308. [Google Scholar] [CrossRef]
- Hubbard, J.J.; Fleming, M.; Palmre, V.; Pugal, D.; Kim, K.J.; Leang, K.K. Monolithic IPMC Fins for Propulsion and Maneuvering in Bioinspired Underwater Robotics. IEEE J. Ocean. Eng. 2014, 39, 540–551. [Google Scholar] [CrossRef]
- Li, T.; Li, G.; Liang, Y.; Cheng, T.; Dai, J.; Yang, X.; Liu, B.; Zeng, Z.; Huang, Z.; Luo, Y.A. Fast-moving soft electronic fish. Sci. Adv. 2017, 3, e1602045. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.Y.; Liu, J.C.; Pan, J.; Wang, J.; Yu, J.Z. A fellow-following-principle based group model and its application to fish school analysis. Bioinspiration Biomim. 2023, 18, 016016. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Yang, T.; Zhang, T.; Zhou, F.; Xie, G. Global Vision-Based Formation Control of Soft Robotic Fish Swarm. Soft Robot. 2022, 8, 310–318. [Google Scholar] [CrossRef]
- Li, G.; Chen, X.; Zhou, F.; Liang, Y.; Xiao, Y.; Cao, X.; Zhang, Z.; Zhang, M.; Wu, B.; Yin, S.; et al. Self-powered soft robot in the Mariana Trench. Nature 2021, 591, 67–71. [Google Scholar] [CrossRef]
- Zhang, C.W.; Zou, W.; Yu, H.C.; Hao, X.P.; Li, G.; Li, T.; Yang, W.; Wu, Z.L.; Zheng, Q. Manta Ray Inspired Soft Robotic fish with Tough Hydrogels as Structural Elements. ACS Appl. Mater. Interfaces 2022, 14, 52430–52439. [Google Scholar] [CrossRef]
- Klausewitz, W. Der lokomotionsmodus der flugelrochen (myliobatoidei). Zool. Anz 1964, 173, 110–120. [Google Scholar]
- Xu, J.H.; Dong, Y.L.; Yang, J.; Jiang, Z.Y.; Tang, L.C.; Chen, C.J.; Cao, K. The Soft Ray-Inspired Robots Actuated by Solid–Liquid Interpenetrating Silicone-Based Dielectric Elastomer Actuator. Soft Robot. 2022, 10, 354–364. [Google Scholar] [CrossRef] [PubMed]
- Kristi, A.M.; Benjamin, I.T.; Daniel, J.K. Geometric Methods for Modeling and Control of Free-Swimming Fin-Actuated Underwater Vehicles. IEEE Trans. Robot. 2007, 23, 1184–1199. [Google Scholar]
- Alessandro, C.; Daisy, L.; Ariane, P.; Auke, J.I. Controlling swimming and crawling in a fish robot using a central pattern generator. Auton. Robot. 2007, 25, 3–13. [Google Scholar]
- Wang, Z.L.; Hang, G.R.; Wang, Y.W.; Li, J.; Du, W. Embedded SMA wire actuated biomimetic fin: A module for biomimetic underwater propulsion. Smart Mater. Struct. 2008, 17, 25039. [Google Scholar] [CrossRef]
- Guo, S.; Fukuda, T.; Asaka, K. A new type of fish-like underwater microrobot. IEEE/ASME Trans. Mechatron. 2003, 8, 136–141. [Google Scholar]
- Kim, H.S.; Heo, J.K.; Choi, I.G.; Ahn, S.H.; Chu, W.S. A biomimetic undulatory tadpole robot using ionic polymer–metal composite actuators. Smart Mater. Struct. 2005, 14, 1579. [Google Scholar] [CrossRef]
- Ming, A.; Park, S.; Nagata, Y.; Shimojo, Y. Development of underwater robots using piezoelectric fiber composite. In Proceedings of the 2009 IEEE International Conference on Robotics and Automation, Kobe, Japan, 12–17 May 2009; pp. 3821–3826. [Google Scholar]
- Asadnia, M.; Kottapalli, A.; Haghighi, R.; Cloitre, A.; Alvarado, P.; Miao, J.; Triantafyllou, M. MEMS sensors for assessing flow-related control of an underwater biomimetic robotic stingray. Bioinspiration Biomim. 2015, 10, 036088. [Google Scholar] [CrossRef]
- Nguyen, Q.S.; Heo, S.; Park, H.C.; Goo, N.S.; Kang, T.; Yoon, K.J.; Lee, S.S. A fish robot driven by piezoceramic actuators and a miniaturized power supply. Int. J. Control Autom. Syst. 2009, 7, 267–272. [Google Scholar] [CrossRef]
- Kim, H.S.; Heo, J.K.; Choi, I.G.; Ahn, S.H.; Chu, W.S. Shape memory alloy-driven undulatory locomotion of a soft biomimetic ray robot. Bioinspiration Biomim. 2021, 16, 066006. [Google Scholar] [CrossRef]
- Shintake, J.; Cacucciolo, V.; Shea, H.; Floreano, D. Soft Biomimetic Fish Robot Made of Dielectric Elastomer Actuators. Soft Robot. 2018, 5, 466–474. [Google Scholar] [CrossRef]
- Tuna. Available online: https://bwg.gdou.edu.cn/info/1020/1384.htm (accessed on 2 June 2018).
- Wardle, C. Limit of fish swimming speed. Nature 1975, 255, 725–727. [Google Scholar] [CrossRef] [PubMed]
- Zou, Q.Q.; Zhou, C.; Lu, B.; Liao, X.C.; Zhang, Z.L. Tail-stiffness optimization for a flexible robotic fish. Bioinspiration Biomim. 2022, 17, 066003. [Google Scholar] [CrossRef] [PubMed]
- Coral, W.; Rossi, C. Soft dorsal/anal fins pairs for roll and yaw motion in robotic fish. Bioinspiration Biomim. 2023, 18, 016008. [Google Scholar] [CrossRef] [PubMed]
Dimension | Reference Parameter | Non-Dimensional Number |
---|---|---|
Length | Lref = L | L* = L/Lref |
Velocity | uref = U | u* = u/uref |
Pressure | pref = ρ | p* = p/pref |
Time | tref = Lref/uref = L/U | t* = t/tref |
Gravity | gref = g | g* = g/gref |
Propulsion Mode | Actuator | Energy Supply | Weight (g) | Dimension (mm) | Thrust (mN) | Velocity (mm·s−1/BL·s−1) | Power Consumption (mW) |
---|---|---|---|---|---|---|---|
BCF | SMA | Tethered [58] | 416 | 250 × 88 × 88 | 390 | 24.5/0.098 b | |
Untethered [83] | 30 | 146 × 34 a | 112/0.77 | ||||
IPMC | Untethered [60] | 100 | 130 × 50 × 110 | 30/0.23 | 1500 | ||
Tethered [84] | 0.76 | 45 × 10 × 4 | 0.0036 | 5.21/0.116 | 300 | ||
Untethered [61] | 180 | 270 × 80 × 80 | 120/0.45 | ||||
Untethered [85] | 16.2 | 96 × 24 × 25 | 6.5 | 23.6/0.246 b | |||
Piezoelectric | Tethered [64] | 14.1 | 175 × 3.1 × 64 | 600/3.5 | |||
Tethered [86] | 14.98 | 110 × 65 | 330 | 320/2.91b | 8066 | ||
Tethered [87] | 450 | 360 | 0.71 | 144.45/0.4 | 65 | ||
Untethered [88] | 400 × 150 × 40 | 4.8 | 320/0.8 b | ||||
Tethered [68] | 305 × 286 × 286 | 80 | 280.6 b/0.92 | 250 | |||
Tethered [66] | 1.93 | 60 × 28 × 20 | 0.243 | 45/0.75 | 0.645 | ||
DE | Untethered [70] | 115 | 100 × 30 × 60 | 25 | 55/0.55 | 1.3 | |
MPF | SMA | Untethered [71] | 126 × 234 × 10 | 15 | 45/0.36 | ||
Untethered [89] | 225 × 330 × 50 | 58/0.25 | |||||
IPMC | Untethered [59] | 55.3 | 80 × 180 × 25 | 5 | 4.2/0.053 | 483 | |
Untethered [72] | 55 | 110 × 210 × 25 | 7.4/0.067 | 2500 | |||
Tethered [73] | 67.4 | 177 × 57 | 0.4 | 28/0.16 | 4000 | ||
DE | Tethered [74] | 42.5 | 185 × 220 × 40 | 18 | 135/1.45 | 2.43 | |
Untethered [77] | 450 | 220 × 280 | 51.9/0.45 | ||||
Tethered [90] | 4.4 | 150 × 35 × 0.75 | 37.2/0.25 | 920 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, S.; Zhao, Q.; Ding, M.; Zhang, M.; Zhao, L.; Huang, C.; Zhang, J.; Liang, X.; Yuan, J.; Wang, X.; et al. A Review of Robotic Fish Based on Smart Materials. Biomimetics 2023, 8, 227. https://doi.org/10.3390/biomimetics8020227
Ma S, Zhao Q, Ding M, Zhang M, Zhao L, Huang C, Zhang J, Liang X, Yuan J, Wang X, et al. A Review of Robotic Fish Based on Smart Materials. Biomimetics. 2023; 8(2):227. https://doi.org/10.3390/biomimetics8020227
Chicago/Turabian StyleMa, Shiwei, Quanliang Zhao, Meixi Ding, Mengying Zhang, Lei Zhao, Can Huang, Jie Zhang, Xu Liang, Junjie Yuan, Xingtao Wang, and et al. 2023. "A Review of Robotic Fish Based on Smart Materials" Biomimetics 8, no. 2: 227. https://doi.org/10.3390/biomimetics8020227
APA StyleMa, S., Zhao, Q., Ding, M., Zhang, M., Zhao, L., Huang, C., Zhang, J., Liang, X., Yuan, J., Wang, X., & He, G. (2023). A Review of Robotic Fish Based on Smart Materials. Biomimetics, 8(2), 227. https://doi.org/10.3390/biomimetics8020227