Bionic Artificial Neural Networks in Medical Image Analysis
- Bionic artificial intelligence;
- Bionic artificial neural networks;
- Bionic engineering;
- Deep learning;
- Evolutionary machine learning;
- Global optimization;
- Image processing;
- Machine learning;
- Metaheuristic;
- Optimization;
- Supervised learning;
- Transfer learning;
- Transformer;
- Unsupervised learning.
Funding
Conflicts of Interest
References
- Althubiti, S.; Kumar, M.; Goswami, P.; Kumar, K. Artificial neural network for solving the nonlinear singular fractional differential equations. Appl. Math. Sci. Eng. 2023, 31, 2187389. [Google Scholar] [CrossRef]
- He, H.; Yang, X.; Xu, Z.H.; Deng, N.; Shang, Y.J.; Liu, G.; Ji, M.Y.; Zheng, W.H.; Zhao, J.F.; Dong, L.Y. Implementing artificial neural networks through bionic construction. PLoS ONE 2019, 14, e0212368. [Google Scholar] [CrossRef] [PubMed]
- Terrile, S.; Lopez, A.; Barrientos, A. Use of finite elements in the training of a neural network for the modeling of a soft robot. Biomimetics 2023, 8, 56. [Google Scholar] [CrossRef] [PubMed]
- Tian, S.; Zhang, J.; Shu, X.Y.; Chen, L.Y.; Niu, X.; Wang, Y. A novel evaluation strategy to artificial neural network model based on bionics. J. Bionic Eng. 2022, 19, 224–239. [Google Scholar] [CrossRef]
- Yu, F.; Zhu, L.Q. Ionotronic neuromorphic devices for bionic neural network applications. Phys. Status Solidi-Rapid Res. Lett. 2019, 13, 1800674. [Google Scholar] [CrossRef]
- Wang, J.; Du, Z.Z.; Wang, X.Y.; He, Z.K. Bioinspired mitigation scheme for cascading failures in farmland wireless sensor networks. Complexity 2020, 2020, 1065810. [Google Scholar] [CrossRef]
- Uleru, G.I.; Hulea, M.; Barleanu, A. The influence of the number of spiking neurons on synaptic plasticity. Biomimetics 2023, 8, 28. [Google Scholar] [CrossRef]
- Vakaruk, S.; Karamchandani, A.; Sierra-Garcia, J.E.; Mozo, A.; Gomez-Canaval, S.; Pastor, A. Transformers for multi-horizon forecasting in an industry 4.0 use case. Sensors 2023, 23, 3516. [Google Scholar] [CrossRef]
- Alvarez, P.; Chabanas, M.; Sikora, S.; Rouze, S.; Payan, Y.; Dillenseger, J.L. Measurement and analysis of lobar lung deformation after a change of patient position during video-assisted thoracoscopic surgery. IEEE Trans. Biomed. Eng. 2023, 70, 931–940. [Google Scholar] [CrossRef]
- Zhang, Y.; Dong, Z. Medical imaging and image processing. Technologies 2023, 11, 54. [Google Scholar] [CrossRef]
- Alahmad, H.; Alnafea, M. Survey of quality control of panoramic X-ray machines in private dental clinics in saudi arabia. J. Radiat. Res. Appl. Sci. 2023, 16, 100571. [Google Scholar] [CrossRef]
- Alzoubi, F.Y.; Abu Noqta, O.; Al Zoubi, T.; Al-Khateeb, H.M.; Alqadi, M.K.; Abuelsamen, A.; Makhadmeh, G.N. A novel one-pot synthesis of pvp-coated iron oxide nanoparticles as biocompatible contrast agents for enhanced t-2-weighted mri. J. Compos. Sci. 2023, 7, 131. [Google Scholar] [CrossRef]
- Grewal, M.; Wiersma, J.; Westerveld, H.; Bosman, P.A.N.; Alderliesten, T. Automatic landmark correspondence detection in medical images with an application to deformable image registration. J. Med. Imaging 2023, 10, 014007. [Google Scholar] [CrossRef] [PubMed]
- Obayya, M.; Alhebri, A.; Maashi, M.; Salama, A.S.; Hilal, A.M.; Alsaid, M.I.; Osman, A.E.; Alneil, A.A. Henry gas solubility optimization algorithm based feature extraction in dermoscopic images analysis of skin cancer. Cancers 2023, 15, 2146. [Google Scholar] [CrossRef] [PubMed]
- Keser, G.; Bayrakdar, I.S.; Pekiner, F.N.; Celik, O.; Orhan, K. A deep learning algorithm for classification of oral lichen planus lesions from photographic images: A retrospective study. J. Stomatol. Oral Maxillofac. Surg. 2023, 124, 101264. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, E.; Baygin, M.; Barua, P.D.; Dogan, S.; Tuncer, T.; Altunisik, E.; Palmer, E.E.; Acharya, U.R. Exhif: Alzheimer’s disease detection using exemplar histogram-based features with ct and mr images. Med. Eng. Phys. 2023, 115, 103971. [Google Scholar] [CrossRef]
- Lu, C.G.; Yuan, J.L.; Xia, K.W.; Guo, Z.T.; Chen, M.X.; Yu, H.Y. Regional perception and multi-scale feature fusion network for cardiac segmentation. Phys. Med. Biol. 2023, 68, 105003. [Google Scholar] [CrossRef]
- Al-Hinnawi, A.R.M.; BaniMustafa, A.; Al-Latayfeh, M.; Tavakoli, M. Reconstruction and visualization of 5 μm sectional coronal views for macula vasculature in optovue octa. IEEE Access 2023, 11, 28280–28293. [Google Scholar] [CrossRef]
- Khan, S.; Banday, S.A.; Alam, M. Big data for treatment planning: Pathways and possibilities for smart healthcare systems. Curr. Med. Imaging 2023, 19, 19–26. [Google Scholar] [CrossRef]
- Canche, M.S.G. Latent code identification (lacoid): A machine learning-based integrative framework and open-source software to classify big textual data, rebuild contextualized/unaltered meanings, and avoid aggregation bias. Int. J. Qual. Methods 2023, 22, 16094069221144940. [Google Scholar] [CrossRef]
- Mourya, S.; Amuru, S.; Kuchi, K.K. A spatially separable attention mechanism for massive mimo csi feedback. IEEE Wirel. Commun. Lett. 2023, 12, 40–44. [Google Scholar] [CrossRef]
- Li, S.M.; Chen, H.L.; Wang, M.J.; Heidari, A.A.; Mirjalili, S. Slime mould algorithm: A new method for stochastic optimization. Future Gener. Comput. Syst.-Int. J. Escience 2020, 111, 300–323. [Google Scholar] [CrossRef]
- Wang, S.-H.; Khan, M.A. Wacpn: A neural network for pneumonia diagnosis. Comput. Syst. Sci. Eng. 2023, 45, 21–34. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Chen, J.; Cao, Y.Y.; Sun, Y.H.; Huang, L.Y.; Ji, J.S.; Voortman, T.; Vernooij, M.W.; Shen, J.; Zheng, Y.; et al. Sugary beverages and genetic risk in relation to brain structure and incident dementia: A prospective cohort study. Am. J. Clin. Nutr. 2023, 117, 672–680. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Chen, H.; Zhang, Y. Bionic Artificial Neural Networks in Medical Image Analysis. Biomimetics 2023, 8, 211. https://doi.org/10.3390/biomimetics8020211
Wang S, Chen H, Zhang Y. Bionic Artificial Neural Networks in Medical Image Analysis. Biomimetics. 2023; 8(2):211. https://doi.org/10.3390/biomimetics8020211
Chicago/Turabian StyleWang, Shuihua, Huiling Chen, and Yudong Zhang. 2023. "Bionic Artificial Neural Networks in Medical Image Analysis" Biomimetics 8, no. 2: 211. https://doi.org/10.3390/biomimetics8020211
APA StyleWang, S., Chen, H., & Zhang, Y. (2023). Bionic Artificial Neural Networks in Medical Image Analysis. Biomimetics, 8(2), 211. https://doi.org/10.3390/biomimetics8020211