Performance Evaluation of an Ultrasonic Imaging System Using Tissue-Mimicking Phantoms for Quality Assurance
Abstract
:1. Introduction
2. Methods
3. Results and Discussions
3.1. Phantom 1
3.2. Phantom 2
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Depth (cm) | Diagram | Distance (mm) |
---|---|---|
14.0 | The horizontal distance cannot be measured for the image of this depth | - |
16.0 | The horizontal distance cannot be measured for the image of this depth | - |
18.0 | Axial resolution | D1 = 5.0 |
18.0 | Lateral resolution | D1 = 5.0 D2 = 4.1 |
24.0 | Axial resolution | D1 = 4.8 D2 = 4.1 |
24.0 | Lateral resolution | D1 = 5.3 |
Depth (cm) | Diagram | Distance (mm) |
---|---|---|
5.0 | The axial and lateral resolution cannot be measured for the image of this depth | - |
6.0 | - | |
7.0 | - | |
9.0 | - |
Depth (cm) | Diagram | Distance (mm) |
---|---|---|
14.0 | Axial resolution | D1 = 4.9 D2 = 4.2 |
Lateral resolution | D1 = 5.0 | |
16.0 | Axial resolution | D1 = 5.6 D2 = 4.1 D3 = 3.0 |
Lateral resolution | D1 = 5.0 | |
18.0 | Axial resolution | D1 = 5.0 D2 = 4.1 D3 = 3.1 |
Lateral resolution | D1 = 5.0 | |
24.0 | Axial resolution | D1 = 5.0 D2 = 4.1 |
Lateral resolution | D1 = 4.8 |
Depth (cm) | Diagram | Distance (mm) |
---|---|---|
5.0 | The horizontal distance cannot be measured for the image of this depth | - |
6.0 | - | |
7.0 | - | |
9.0 | - |
Appendix B
Depth (cm) | Diagram |
---|---|
14.0 | |
16.0 | |
18.0 | |
24.0 |
Depth (cm) | Diagram |
---|---|
5.0 | The horizontal distance cannot be measured for the image of this depth |
6.0 | The horizontal distance cannot be measured for the image of this depth |
7.0 | |
9.0 |
Depth (cm) | Diagram |
---|---|
5.0 | |
6.0 | |
7.0 | |
9.0 |
References
- Ortiz, S.H.C.; Chiu, T.; Fox, M.D. Ultrasound image enhancement: A review. Biomed. Signal Process. Control 2012, 7, 419–428. [Google Scholar] [CrossRef]
- Lawrence, J.P. Physics and instrumentation of ultrasound. Crit. Care Med. 2007, 35, S314–S322. [Google Scholar] [CrossRef] [PubMed]
- Gan, T.; Hutchins, D.; Billson, D.; Schindel, D. The use of broadband acoustic transducers and pulse-compression techniques for air-coupled ultrasonic imaging. Ultrasonics 2001, 39, 181–194. [Google Scholar] [CrossRef]
- Freudenrich, C. How ultrasound works. How Stuff Work 2001, 22, 1–8. [Google Scholar]
- Kessler, C.; Bhandarkar, S. Ultrasound training for medical students and internal medicine residents—A needs assessment. J. Clin. Ultrasound 2010, 38, 401–408. [Google Scholar] [CrossRef]
- Noguchi, S.; Kobayashi, T. Ultrasound Viscoelastic Properties of Biomass Polysaccharide Hydrogels as Evaluated by Rheometer Equipped with Sono-Device. Gels 2022, 8, 172. [Google Scholar] [CrossRef]
- Song, T.; Xiong, Z.; Shi, T.; Monto, A.R.; Yuan, L.; Gao, R.J.G. Novel Fabrication of Zein-Soluble Soybean Polysaccharide Nanocomposites Induced by Multifrequency Ultrasound, and Their Roles on Microstructure, Rheological Properties and Stability of Pickering Emulsions. Gels 2021, 7, 166. [Google Scholar] [CrossRef]
- Sakalauskas, A.; Jurkonis, R.; Gelman, S.; Lukoševičius, A.; Kupčinskas, L. Investigation of Radiofrequency Ultrasound-Based Fibrotic Tissue Strain Imaging Method Employing Endogenous Motion. J. Ultrasound Med. 2019, 38, 2315–2327. [Google Scholar] [CrossRef]
- Oglat, A.A.; Alshipli, M.; Sayah, M.A.; Ahmad, M.S. Artifacts in Diagnostic Ultrasonography; SAGE Publications Sage CA: Los Angeles, CA, USA, 2020. [Google Scholar]
- Shalbi, S.M.; Oglat, A.A.; Albarbar, B.; Elkut, F.; Qaeed, M.; Arra, A.A. A brief review for common doppler ultrasound flow phantoms. J. Med. Ultrasound 2020, 28, 138. [Google Scholar]
- Ahmad, M.S.; Suardi, N.; Shukri, A.; Ab Razak, N.N.A.N.; Oglat, A.A.; Makhamrah, O.; Mohammad, H. Dynamic Hepatocellular Carcinoma Model Within a Liver Phantom for Multimodality Imaging. Eur. J. Radiol. Open 2020, 7, 100257. [Google Scholar] [CrossRef]
- Afzal, S.; Zahid, M.; Rehan, Z.A.; Shakir, H.M.F.; Javed, H.; Aljohani, M.M.H.; Mustafa, S.K.; Ahmad, M.; Hassan, M.M. Preparation and Evaluation of Polymer-Based Ultrasound Gel and Its Application in Ultrasonography. Gels 2022, 8, 42. [Google Scholar] [CrossRef] [PubMed]
- Himabindu, M.; Palanisamy, A. Ultrasound- and Temperature-Induced Gelation of Gluconosemicarbazide Gelator in DMSO and Water Mixtures. Gels 2017, 3, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, D.L.; Smith, N.B.; Bailey, M.R.; Czarnota, G.J.; Hynynen, K.; Makin, I.R.S.; Bioeffects Committee of the American Institute of Ultrasound in Medicine. Overview of therapeutic ultrasound applications and safety considerations. J. Ultrasound Med. 2012, 31, 623–634. [Google Scholar] [CrossRef]
- Khanal, S.K.; Grewell, D.; Sung, S.; Van Leeuwen, J. Ultrasound applications in wastewater sludge pretreatment: A review. Crit. Rev. Environ. Sci. Technol. 2007, 37, 277–313. [Google Scholar] [CrossRef]
- Ammar, A.O.; Matjafri, M.; Suardi, N.; Oqlat, M.A.; Oqlat, A.A.; Abdelrahman, M.A.; Farhat, O.; Ahmad, M.S.; Alkhateb, B.N.; Gemanam, S.J. Characterization and Construction of a Robust and Elastic Wall-Less Flow Phantom for High Pressure Flow Rate Using Doppler Ultrasound Applications. Nat. Eng. Sci. 2018, 3, 359–377. [Google Scholar] [CrossRef]
- Wagner, J.M.; Monfore, N.; McCullough, A.J.; Zhao, L.; Conrad, R.D.; Krempl, G.A.; Alleman, A.M. Ultrasound-Guided Fine-Needle Aspiration with Optional Core Needle Biopsy of Head and Neck Lymph Nodes and Masses: Comparison of Diagnostic Performance in Treated Squamous Cell Cancer Versus All Other Lesions. J. Ultrasound Med. 2019, 38, 2275–2284. [Google Scholar] [CrossRef] [PubMed]
- Barnett, S.; Maulik, D. Guidelines and recommendations for safe use of Doppler ultrasound in perinatal applications. J. Matern. Fetal Med. 2001, 10, 75–84. [Google Scholar] [CrossRef]
- Mirza, W.A.; Imam, S.H.; Mohd Salim, K.; Aslam, M.; Ali, S.A.; Masroor, I.; Ahmad, M.N. Cleaning methods for ultrasound probes. J. Coll. Physicians Surg. Pak. 2008, 18, 286. [Google Scholar]
- Koibuchi, H.; Kotani, K.; Taniguchi, N. Ultrasound probes as a possible vector of bacterial transmission. Med. Ultrason. 2013, 15, 41–44. [Google Scholar] [CrossRef]
- Oglat, A.A.; Matjafri, M.; Suardi, N.; Oqlat, M.A.; Abdelrahman, M.A.; Oqlat, A.A. A review of medical doppler ultrasonography of blood flow in general and especially in common carotid artery. J. Med. Ultrasound 2018, 26, 3. [Google Scholar] [CrossRef]
- Oglat, A.A.; Suardi, N.; Matjafri, M.; Oqlat, M.A.; Abdelrahman, M.A.; Oqlat, A.A. A review of suspension-scattered particles used in blood-mimicking fluid for Doppler ultrasound imaging. J. Med. Ultrasound 2018, 26, 68. [Google Scholar] [PubMed]
- Oglat, A.A.; Matjafri, M.; Suardi, N.; Abdelrahman, M.A.; Oqlat, M.A.; Oqlat, A.A. A new scatter particle and mixture fluid for preparing blood mimicking fluid for wall-less flow phantom. J. Med. Ultrasound 2018, 26, 134. [Google Scholar] [CrossRef] [PubMed]
- Oglat, A.A.; Matjafri, M.; Suardi, N.; Abdelrahman, M.A.; Oqlat, M.A.; Oqlat, A.A.; Abdalrheem, R.; Almutairi, A. Acoustical and physical characteristic of a new blood mimicking fluid phantom. J. Phys. Conf. Ser. 2018, 1083, 012010. [Google Scholar] [CrossRef]
- Alshipli, M.; Sayah, M.A.; Oglat, A.A. Compatibility and validation of a recent developed artificial blood through the vascular phantom using doppler ultrasound color-and motion-mode techniques. J. Med. Ultrasound 2020, 28, 219. [Google Scholar] [CrossRef]
- Dakok, K.; Matjafri, M.; Suardi, N.; Oglat, A.A.; Nabasu, S.E. Determination of the effect of glucose and cholesterol on the flow velocity of Blood Mimicking Fluid in a Common Carotid Artery Wall-less Phantom. J. Posit. Sch. Psychol. 2022, 6, 394–405. [Google Scholar]
- Dakok, K.; Matjafri, M.; Suardi, N.; Oglat, A.A.; Sirisena, U.A. Influences of Body Composition on Carotid Artery Structure and function in Adult Humans. J. Posit. Sch. Psychol. 2022, 6, 406–417. [Google Scholar]
- Fatemi, M.; Greenleaf, J.F. Probing the dynamics of tissue at low frequencies with the radiation force of ultrasound. Phys. Med. Biol. 2000, 45, 1449. [Google Scholar] [CrossRef]
- Weng, L.; Perozek, D.M.; Zhang, J. Ultrasound Transducers for Imaging and Therapy. U.S. Patent 6,719,694, 13 April 2004. [Google Scholar]
- Maruvada, S.; Harris, G.R.; Herman, B.A.; King, R.L. Acoustic power calibration of high-intensity focused ultrasound transducers using a radiation force technique. J. Acoust. Soc. Am. 2007, 121, 1434–1439. [Google Scholar] [CrossRef]
- Oglat, A.A.; Matjafri, M.; Suardi, N.; Oqlat, M.A.; Abdelrahman, M.A.; Oqlat, A.A.; Abdalrheem, R. Measuring the acoustical properties of fluids and solid materials via dealing with a-SCAN (GAMPT) Ultrasonic. J. Phys. Conf. Ser. 2018, 1083, 012053. [Google Scholar] [CrossRef]
- Kulkarni, N.M.; Griffin, M.O., Jr.; O’Connor, S.D.; Sudakoff, G. Sonographic Appearances of Portal Vein Abnormalities. Ultrasound Q. 2019, 35, 316–324. [Google Scholar] [CrossRef]
- Maller, V.V.; Cohen, H.L. Neonatal Head Ultrasound: A Review and Update—Part 1: Techniques and Evaluation of the Premature Neonate. Ultrasound Q. 2019, 35, 202–211. [Google Scholar] [CrossRef] [PubMed]
- Oglat, A.A.; Dheyab, M.A. Performance evaluation of ultrasonic imaging system (Part I). J. Med. Ultrasound 2021, 29, 258–263. [Google Scholar] [CrossRef] [PubMed]
- Dakok, K.K.; Matjafri, M.Z.; Suardi, N.; Oglat, A.A.; Nabasu, S.E. A blood-mimicking fluid with cholesterol as scatter particles for wall-less carotid artery phantom applications. J. Ultrason. 2021, 21, e219. [Google Scholar] [CrossRef] [PubMed]
- Dakok, K.K.; Matjafri, M.Z.; Suardi, N.; Oglat, A.A.; Nabasu, S.E. A review of carotid artery phantoms for doppler ultrasound applications. J. Med. Ultrasound 2021, 29, 157. [Google Scholar]
- Athamnah, S.I.; Oglat, A.A.; Fohely, F. Diagnostice breast elastography estimation from doppler imaging using central difference (CD) and least-squares (LS) algorithms. Biomed. Signal Process. Control 2021, 68, 102667. [Google Scholar] [CrossRef]
- Kim, P.N.; Lim, J.W.; Kim, H.C.; Yoon, Y.C.; Sung, D.J.; Moon, M.H.; Kim, J.S.; Kim, J.C. Quality assessment of ultrasonographic equipment using an ATS-539 multipurpose phantom. J. Korean Radiol. Soc. 2008, 58, 533–541. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Lu, J.-Y. Effects of phase aberration and noise on extended high frame rate imaging. Ultrason. Imaging 2007, 29, 105–121. [Google Scholar] [CrossRef]
- Park, J.H.; Heo, Y.C.; Han, D.K. A Study on the Quality Control of Transvaginal Ultrasound Transducer using ATS-539 Ultrasound Phantom. J. Korean Soc. Radiol. 2021, 15, 463–472. [Google Scholar]
- Narayana, P.; Ophir, J. A closed form method for the measurement of attenuation in nonlinearly dispersive media. Ultrason. Imaging 1983, 5, 17–21. [Google Scholar] [CrossRef]
- Wu, W.-T.; Chang, K.-V.; Hsu, Y.-C.; Hsu, P.-C.; Ricci, V.; Özçakar, L.J.D. Artifacts in musculoskeletal ultrasonography: From physics to clinics. Diagnostics 2020, 10, 645. [Google Scholar] [CrossRef]
Axial Resolution (mm) | Lateral Resolution (mm) |
---|---|
D1 = 5.0 D2 = 4.0 D3 = 3.0 D4 = 2.0 | D1 = 5.0 D2 = 4.0 D3 = 3.0 D4 = 2.0 |
Depth (cm) | Distance (mm) | |
---|---|---|
Axial Resolution | Lateral Resolution | |
14.0 | D1 = 4.6 D2 = 3.9 D3 = 3.2 D4 = 1.9 | D1 = 5.1 D2 = 4.1 |
16.0 | D1 = 5.2 D2 = 3.9 D3 = 2.9 | D1 = 5.0 D2 = 4.0 |
18.0 | D1 = 4.9 D2 = 4.0 D3 = 3.1 | D1 = 5.0 D2 = 3.8 |
24.0 | D1 = 4.7 D2 = 4.1 D3 = 3.2 | D1 = 5.0 D2 = 4.2 |
Depth (cm) | Diagram | Distance (mm) |
---|---|---|
5.0 | The horizontal distance cannot be measured for the image of this depth | - |
6.0 | The horizontal distance cannot be measured for the image of this depth | - |
7.0 | The horizontal distance cannot be measured for the image of this depth | - |
9.0 | Axial resolution | D1 = 4.9 D2 = 4.1 D3 = 3.1 D4 = 2.2 |
Lateral resolution | D1 = 5.0 D2 = 4.0 D3 = 3.0 D4 = 2.2 |
Depth (cm) | Distance (mm) | |
---|---|---|
Axial Resolution | Lateral Resolution | |
14.0 | D1 = 5.0 D2 = 4.0 D3 = 2.9 | D1 = 5.0 D2 = 4.1 |
16.0 | D1 = 4.8 D2 = 4.0 D3 = 3.0 | D1 = 4.8 D2 = 3.9 |
18.0 | D1 = 5.0 D2 = 4.0 D3 = 3.0 | D1 = 5.0 D2 = 4.0 |
24.0 | D1 = 5.0 D2 = 4.1 D3 = 2.9 | D1 = 4.7 D2 = 3.9 |
Depth (cm) | Diagram | Distance (mm) |
---|---|---|
5.0 | Axial resolution | D1 = 5.1 D2 = 4.0 D3 = 3.1 D4 = 2.1 |
5.0 | Lateral resolution | D1 = 5.1 D2 = 4.0 D3 = 3.0 D4 = 1.9 |
6.0 | Axial resolution | D1 = 4.9 D2 = 4.0 D3 = 3.1 D4 = 1.9 |
Lateral resolution | D1 = 5.1 D2 = 4.1 D3 = 3.0 D4 = 2.0 | |
7.0 | Axial resolution | D1 = 5.0 D2 = 3.9 D3 = 2.9 D4 = 2.2 |
Lateral resolution | D1 = 5.1 D2 = 4.0 D3 = 3.0 D4 = 1.9 | |
9.0 | Axial resolution | D1 = 5.0 D2 = 3.9 D3 = 3.0 D4 = 2.2 |
Lateral resolution | D1 = 4.9 D2 = 4.1 D3 = 2.9 D4 = 2.0 |
Depth (cm) | Diagram | Distance (mm) |
---|---|---|
5.0 | Axial resolution | D1 = 3.0 D2 = 2.0 D3 = 1.0 D4 = 0.5 |
5.0 | Lateral resolution | D1 = 3.0 D2 = 2.0 D3 = 1.0 D4 = 0.5 |
6.0 | Axial resolution | D1 = 3.0 D2 = 2.0 D3 = 1.0 D4 = 0.6 |
6.0 | Lateral resolution | D1 = 3.0 D2 = 2.0 D3 = 1.0 D4 = 0.6 |
7.0 | Axial resolution | D1 = 3.0 D2 = 2.0 D3 = 1.0 D4 = 0.5 |
7.0 | Lateral resolution | D1 = 3.0 D2 = 2.0 D3 = 1.0 D4 = 0.5 |
9.0 | Axial resolution | D1 = 3.0 D2 = 2.1 D3 = 1.1 D4 = 0.5 |
9.0 | Lateral resolution | D1 = 3.0 D2 = 2.1 D3 = 1.1 D4 = 0.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oglat, A.A. Performance Evaluation of an Ultrasonic Imaging System Using Tissue-Mimicking Phantoms for Quality Assurance. Biomimetics 2022, 7, 130. https://doi.org/10.3390/biomimetics7030130
Oglat AA. Performance Evaluation of an Ultrasonic Imaging System Using Tissue-Mimicking Phantoms for Quality Assurance. Biomimetics. 2022; 7(3):130. https://doi.org/10.3390/biomimetics7030130
Chicago/Turabian StyleOglat, Ammar A. 2022. "Performance Evaluation of an Ultrasonic Imaging System Using Tissue-Mimicking Phantoms for Quality Assurance" Biomimetics 7, no. 3: 130. https://doi.org/10.3390/biomimetics7030130
APA StyleOglat, A. A. (2022). Performance Evaluation of an Ultrasonic Imaging System Using Tissue-Mimicking Phantoms for Quality Assurance. Biomimetics, 7(3), 130. https://doi.org/10.3390/biomimetics7030130