Biomimetic Nanomembranes: An Overview
Abstract
:1. Introduction
2. Principles
2.1. Definitions and Terminology
2.2. Properties of Non-Functionalized Synthetic Nanomembranes
2.3. Types of Synthetic Nanomembranes
2.3.1. Inorganic Nanomembranes
Metal Nanomembranes
Metal Nanocomposite (Mixed Matrix) and Alloy Nanomembranes
Diamond
Diamondoids
Diamond-Like Carbon
Semiconductor Nanomembranes
Freestanding Monatomic Sheets
Freestanding Inorganic Monomolecular Sheets
2.3.2. Organic/Inorganic Hybrids
Interpenetrated Structures
Metal-Organic Frameworks
2.3.3. Organic Nanomembranes
Single-Compound (Pure) Organic Nanomembranes
Polymer-Composite (Copolymer) Organic Nanomembranes
Carbon Nanomembranes
2.3.4. Model Lipid Bilayers
3. Fabrication
3.1. General Strategies
3.1.1. Solid Substrates and Etching of Sacrificial Structures
3.1.2. Fabrication on a Liquid-Air Interface
3.1.3. Exfoliation
3.2. Nanomembrane Production Methods
3.2.1. Top-Down Approach: Thin Film Technologies
3.2.2. Bottom-Up Approach: Self-Assembly Methods
Langmuir-Blodget Method
Layer-by-layer (LbL) Self-Assembly
Block Copolymer Self-Assembly
Sol-Gel Process
Dip-Coating
Drop-Coating
4. Functionalization
4.1. Five Basic Methods of Functionalization
4.1.1. Lamination/Multilayering
4.1.2. Nanofillers
4.1.3. Nanopatterning
Top-Down Approach to Additive/Subtractive Patterning
Bottom-Up Approach to Additive/Subtractive Patterning
4.1.4. 3D Sculpting
4.1.5. Surface Activation
4.2. Structures for Nanomembrane Multifunctionalization
4.2.1. Synthetic Ion Channels
4.2.2. Synthetic Ion Pumps
4.2.3. Artificial Water Channels
4.2.4. Artificial Nuclear Pore Complexes
4.2.5. Artificial Organic Nanotubes
4.2.6. Carbon Nanotubes
4.2.7. Antifouling Structures
Fouling Agent Repellents
Self-Cleaning
4.2.8. DNA Transmembrane Channels
4.2.9. Summary of the Artificial Structures for Nanomembrane Multifunctionalization
5. Applications
5.1. Active Nanofluidic Devices Based in Ion Transport
5.2. Two-Dimensional Nanofluidics
5.3. Biosensors
5.4. Renewable Energy
5.4.1. Fuel Cells Based on Proton Exchange Membranes
5.4.2. Solar Cells
5.4.3. Hydrogen Economy—Water Splitting
5.5. Nanomembrane Separation
5.5.1. Remediation and Environmental Protection
5.5.2. Food and Beverages
5.5.3. Desalination and Potable Water Production
5.6. Biomedical Applications
5.6.1. Two-Dimensional Scaffolds for Tissue Regrowth
5.6.2. Neural Interfaces/Neural Cuffs
5.6.3. Wearable Artificial Kidneys
5.6.4. Portable Artificial Lungs
5.6.5. Selective Drug Delivery and Therapy
6. Future Outlook
6.1. Novel Types and Architectures of Artificial Pore Complexes
6.2. “Living” Plasmonics and Metamaterials
6.3. Quantum Functionalities
6.4. Meta-Bilayers Adding Functionalities beyond Natural to Biomimetic Nanomembranes
6.5. Shape-Shifting Nanomembrane Bulges with Active External Control
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Robertson, J.L. The lipid bilayer membrane and its protein constituents. J. Gen. Physiol. 2018, 150, 1472–1483. [Google Scholar] [CrossRef] [Green Version]
- Jacobson, K.; Liu, P.; Lagerholm, B.C. The lateral organization and mobility of plasma membrane components. Cell 2019, 177, 806–819. [Google Scholar] [CrossRef]
- Shi, Z.; Graber, Z.T.; Baumgart, T.; Stone, H.A.; Cohen, A.E. Cell membranes resist flow. Cell 2018, 175, 1769–1779. e13. [Google Scholar] [CrossRef] [Green Version]
- Goñi, F.M. The basic structure and dynamics of cell membranes: An update of the Singer–Nicolson model. Biochim. Et Biophys. Acta (Bba)-Biomembr. 2014, 1838, 1467–1476. [Google Scholar] [CrossRef] [Green Version]
- Sezgin, E. Super-resolution optical microscopy for studying membrane structure and dynamics. J. Phys. Condens. Matter 2017, 29, 273001. [Google Scholar] [CrossRef] [PubMed]
- Pabby, A.K.; Rizvi, S.S.H.; Sastre, A.M. (Eds.) Handbook of Membrane Separations: Chemical, Pharmaceutical, Food, and Biotechnological Applications; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Rambabu, K.; Bharath, G.; Monash, P.; Velu, S.; Banat, F.; Naushad, M.; Arthanareeswaran, G.; Show, P.L. Effective treatment of dye polluted wastewater using nanoporous CaCl2 modified polyethersulfone membrane. Process Saf. Environ. Prot. 2019, 124, 266–278. [Google Scholar] [CrossRef]
- Fuwad, A.; Ryu, H.; Malmstadt, N.; Kim, S.M.; Jeon, T.-J. Biomimetic membranes as potential tools for water purification: Preceding and future avenues. Desalination 2019, 458, 97–115. [Google Scholar] [CrossRef]
- Giwa, A.; Hasan, S.; Yousuf, A.; Chakraborty, S.; Johnson, D.; Hilal, N. Biomimetic membranes: A critical review of recent progress. Desalination 2017, 420, 403–424. [Google Scholar] [CrossRef] [Green Version]
- Singh, B.; Mahato, T.H.; Srivastava, A.K.; Prasad, G.K.; Ganesan, K.; Vijayaraghavan, R.; Jain, R. Significance of porous structure on degradatin of 2 2′ dichloro diethyl sulphide and 2 chloroethyl ethyl sulphide on the surface of vanadium oxide nanostructure. J. Hazard. Mater. 2011, 190, 1053–1057. [Google Scholar] [CrossRef] [PubMed]
- Ojha, A. Nanomaterials for removal of waterborne pathogens: Opportunities and challenges. In Waterborne Pathogens: Detection and Treatment; Narasimha, M., Prasad, V., Grobelak, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 385–432. [Google Scholar] [CrossRef]
- Rahmah, W.; Wardani, A.K.; Lugito, G.; Wenten, I. Membrane Technology in Deep Seawater Exploration: A Mini Review. J. Membr. Sci. Res. 2019. [Google Scholar] [CrossRef]
- Liu, T.; Wang, Y.; Zhong, W.; Li, B.; Mequanint, K.; Luo, G.; Xing, M. Biomedical Applications of Layer-by-Layer Self-Assembly for Cell Encapsulation: Current Status and Future Perspectives. Adv. Healthc. Mater. 2019, 8, 1800939. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knowlton, S.; Anand, S.; Shah, T.; Tasoglu, S. Bioprinting for neural tissue engineering. Trends Neurosci. 2018, 41, 31–46. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Qiu, X.; Wang, L.; Zhong, W.; Kong, J.; Xing, M.M. Free-standing cell sheet assembled with ultrathin extracellular matrix as an innovative approach for biomimetic tissues. Adv. Funct. Mater. 2014, 24, 2216–2223. [Google Scholar] [CrossRef]
- O’brien, F.J. Biomaterials & scaffolds for tissue engineering. Mater. Today 2011, 14, 88–95. [Google Scholar] [CrossRef]
- Assad, O.N.; Gilboa, T.; Spitzberg, J.; Juhasz, M.; Weinhold, E.; Meller, A. Light-enhancing plasmonic-nanopore biosensor for superior single-molecule detection. Adv. Mat. 2017, 29, 1605442. [Google Scholar] [CrossRef]
- ElAfandy, R.T.; AbuElela, A.F.; Mishra, P.; Janjua, B.; Oubei, H.M.; Büttner, U.; Majid, M.A.; Ng, T.K.; Merzaban, J.S.; Ooi, B.S. Nanomembrane-Based, Thermal-Transport Biosensor for Living Cells. Small 2017, 13, 1603080. [Google Scholar] [CrossRef] [Green Version]
- Albisa, A.; Espanol, L.; Prieto, M.; Sebastian, V. Polymeric nanomaterials as nanomembrane entities for biomolecule and drug delivery. Curr. Pharm. Des. 2017, 23, 263–280. [Google Scholar] [CrossRef]
- Mossu, A.; Rosito, M.; Khire, T.; Li Chung, H.; Nishihara, H.; Gruber, I.; Luke, E.; Dehouck, L.; Sallusto, F.; Gosselet, F. A silicon nanomembrane platform for the visualization of immune cell trafficking across the human blood–brain barrier under flow. J. Cereb. Blood Flow Metab. 2019, 39, 395–410. [Google Scholar] [CrossRef] [Green Version]
- Dutta, G.; Rainbow, J.; Zupancic, U.; Papamatthaiou, S.; Estrela, P.; Moschou, D. Microfluidic Devices for Label-Free DNA Detection. Chemosensors 2018, 6, 43. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Chen, Y.; Schmidt, O.G.; Yan, C. Engineered nanomembranes for smart energy storage devices. Chem. Soc. Rev. 2016, 45, 1308–1330. [Google Scholar] [CrossRef]
- Wang, Y.; Diaz, D.F.R.; Chen, K.S.; Wang, Z.; Adroher, X.C. Materials, technological status, and fundamentals of PEM fuel cells–a review. Mater. Today 2020, 32, 178–203. [Google Scholar] [CrossRef]
- Cornell, B.A.; Braach-Maksvytis, V.L.B.; King, L.G.; Osman, P.D.J.; Raguse, B.; Wieczorek, L.; Pace, R.J. A biosensor that uses ion-channel switches. Nature 1997, 387, 580–583. [Google Scholar] [CrossRef] [PubMed]
- Yanik, A.A.; Huang, M.; Kamohara, O.; Artar, A.; Geisbert, T.W.; Connor, J.H.; Altug, H. An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media. Nano Lett. 2010, 10, 4962–4969. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berini, P.; Lahoud, N.; Charbonneau, R. Fabrication of surface plasmon waveguides and integrated components on ultrathin freestanding membranes. J. Vac. Sci. Tech. A 2008, 26, 1383–1391. [Google Scholar] [CrossRef]
- Jakšić, Z.; Vuković, S.M.; Buha, J.; Matovic, J. Nanomembrane-Based Plasmonics. J. Nanophotonics 2011, 5, 051818.1–051818.20. [Google Scholar] [CrossRef]
- Malekian, B.; Schoch, R.L.; Robson, T.; Ferrand-Drake del Castillo, G.; Xiong, K.; Emilsson, G.; Kapinos, L.E.; Lim, R.Y.; Dahlin, A. Detecting Selective Protein Binding Inside Plasmonic Nanopores: Toward a Mimic of the Nuclear Pore Complex. Front. Chem. 2018, 6, 637. [Google Scholar] [CrossRef]
- Kim, J.Y.; Kim, H.; Kim, B.H.; Chang, T.; Lim, J.; Jin, H.M.; Mun, J.H.; Choi, Y.J.; Chung, K.; Shin, J. Highly tunable refractive index visible-light metasurface from block copolymer self-assembly. Nat. Comm. 2016, 7, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Zanotto, S.; Colombano, M.; Navarro-Urrios, D.; Biasiol, G.; Sotomayor-Torres, C.M.; Tredicucci, A.; Pitanti, A. Broadband dynamic polarization conversion in optomechanical metasurfaces. Front. Phys. 2019, 7, 231. [Google Scholar] [CrossRef]
- Winch, R.P. Photoelectric properties of thin unbacked gold films. Phys. Rev. 1931, 38, 321–324. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [Green Version]
- Yu, X.; Cheng, H.; Zhang, M.; Zhao, Y.; Qu, L.; Shi, G. Graphene-based smart materials. Nat. Rev. Mater. 2017, 2, 1–13. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, H.; Yu, Z.; Quhe, R.; Zhou, S.; Wang, Y.; Liu, C.C.; Zhong, H.; Han, N.; Lu, J. Rise of silicene: A competitive 2D material. Prog. Mater. Sci. 2016, 83, 24–151. [Google Scholar] [CrossRef]
- Yang, P.; Zou, X.; Zhang, Z.; Hong, M.; Shi, J.; Chen, S.; Shu, J.; Zhao, L.; Jiang, S.; Zhou, X. Batch production of 6-inch uniform monolayer molybdenum disulfide catalyzed by sodium in glass. Nat. Comm. 2018, 9, 1–10. [Google Scholar] [CrossRef]
- Mannix, A.J.; Zhang, Z.; Guisinger, N.P.; Yakobson, B.I.; Hersam, M.C. Borophene as a prototype for synthetic 2D materials development. Nat. Nanotech. 2018, 13, 444–450. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Bo, G.; Liu, Y.; Xu, X.; Du, Y.; Dou, S.X. Recent Progress on Germanene and Functionalized Germanene: Preparation, Characterizations, Applications, and Challenges. Small 2019, 15, 1805147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saxena, S.; Chaudhary, R.P.; Shukla, S. Stanene: Atomically thick free-standing layer of 2D hexagonal tin. Sci. Rep. 2016, 6, 31073. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.; Zhang, C.-W.; Ji, W.-X.; Zhang, R.-W.; Li, S.-S.; Yan, S.-S.; Zhang, B.-M.; Li, P.; Wang, P.-j. Unexpected giant-gap quantum spin Hall insulator in chemically decorated plumbene monolayer. Sci. Rep. 2016, 6, 20152. [Google Scholar] [CrossRef]
- Anasori, B.; Lukatskaya, M.R.; Gogotsi, Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2017, 2, 1–17. [Google Scholar] [CrossRef]
- Huang, K.; Li, Z.; Lin, J.; Han, G.; Huang, P. Two-dimensional transition metal carbides and nitrides (MXenes) for biomedical applications. Chem. Soc. Rev. 2018, 47, 5109–5124. [Google Scholar] [CrossRef]
- Khazaei, M.; Ranjbar, A.; Arai, M.; Sasaki, T.; Yunoki, S. Electronic properties and applications of MXenes: A theoretical review. J. Mater. Chem. C 2017, 5, 2488–2503. [Google Scholar] [CrossRef] [Green Version]
- Shahzad, F.; Alhabeb, M.; Hatter, C.B.; Anasori, B.; Hong, S.M.; Koo, C.M.; Gogotsi, Y. Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 2016, 353, 1137–1140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xia, Y.; Mathis, T.S.; Zhao, M.-Q.; Anasori, B.; Dang, A.; Zhou, Z.; Cho, H.; Gogotsi, Y.; Yang, S. Thickness-independent capacitance of vertically aligned liquid-crystalline MXenes. Nature 2018, 557, 409–412. [Google Scholar] [CrossRef] [PubMed]
- Mannix, A.J.; Kiraly, B.; Hersam, M.C.; Guisinger, N.P. Synthesis and chemistry of elemental 2D materials. Nat. Rev. Chem. 2017, 1, 1–14. [Google Scholar] [CrossRef]
- Jiang, C.; Markutsya, S.; Pikus, Y.; Tsukruk, V.V. Freely suspended nanocomposite membranes as highly sensitive sensors. Nat. Mater. 2004, 3, 721–728. [Google Scholar] [CrossRef] [PubMed]
- Angelova, P.; Gölzhäuser, A. Carbon Nanomembranes. Phys. Sci. Rev. 2017, 2. [Google Scholar] [CrossRef]
- Fink, J.M.; Kalaee, M.; Pitanti, A.; Norte, R.; Heinzle, L.; Davanço, M.; Srinivasan, K.; Painter, O. Quantum electromechanics on silicon nitride nanomembranes. Nat. Comm. 2016, 7, 1–10. [Google Scholar] [CrossRef]
- Li, Z. Nanofluidics: An Introduction; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar] [CrossRef]
- Katiyar, A.K.; Davidson, A.A.; Jang, H.; Hwangbo, Y.; Han, B.; Lee, S.; Hagiwara, Y.; Shimada, T.; Hirakata, H.; Kitamura, T. Ultrasoft silicon nanomembranes: Thickness-dependent effective elastic modulus. Nanoscale 2019, 11, 15184–15194. [Google Scholar] [CrossRef]
- Vendamme, R.; Onoue, S.Y.; Nakao, A.; Kunitake, T. Robust free-standing nanomembranes of organic/inorganic interpenetrating networks. Nat. Mater. 2006, 5, 494–501. [Google Scholar] [CrossRef]
- Jakšić, Z.; Filipović, M. On Feasibility Of Building Minimally Invasive Neural Interfaces Using Nanomembranes. In Proceedings of the 54th Conference for Electronics, Telecommunications, Computers, Automation and Nuclear Engineering ETRAN, Donji Milanovac, Serbia, 7–11 June 2010. MO3.6-1-4. [Google Scholar]
- Timoshenko, S.P.; Woinowsky-Krieger, S. Theory of Plates and Shells; McGraw-hill: New York, NY, USA, 1959. [Google Scholar]
- Altenbach, H.; Mikhasev, G.I. Shell and Membrane Theories in Mechanics and Biology; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar] [CrossRef]
- Matović, J.; Jakšić, Z. Simple and reliable technology for manufacturing metal-composite nanomembranes with giant aspect ratio. Microelectron. Eng. 2009, 86, 906–909. [Google Scholar] [CrossRef]
- Rogers, J.A.; Ahn, J.-H. (Eds.) Silicon Nanomembranes: Fundamental Science and Applications; John Wiley & Sons: Weinheim, Germany, 2016. [Google Scholar] [CrossRef]
- Yoon, J. Flexible and Transparent Solar Cells Using Si Nanomembranes. In Silicon Nanomembranes: Fundamental Science and Applications; Rogers, J.A., Ahn, J.-H., Eds.; Wiley-VCH Verlag GmbH: Weinheim, Germany, 2016. [Google Scholar] [CrossRef]
- Kang, J.; Tok, J.B.-H.; Bao, Z. Self-healing soft electronics. Nat. Electron. 2019, 2, 144–150. [Google Scholar] [CrossRef]
- Ma, Z.; Kong, D.; Pan, L.; Bao, Z. Skin-inspired electronics: Emerging semiconductor devices and systems. J. Semicond. 2020, 41, 041601. [Google Scholar] [CrossRef]
- Jakšić, Z.; Vuković, S.M.; Matovic, J.; Tanasković, D. Negative Refractive Index Metasurfaces for Enhanced Biosensing. Materials 2011, 4, 1–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jia, P.; Zuber, K.; Guo, Q.; Gibson, B.C.; Yang, J.; Ebendorff-Heidepriem, H. Large-area freestanding gold nanomembranes with nanoholes. Mater. Horiz. 2019, 6, 1005–1012. [Google Scholar] [CrossRef]
- Mönch, I.; Schumann, J.; Stockmann, M.; Arndt, K.-F.; Schmidt, O.G. Multifunctional nanomembranes self-assembled into compact rolled-up sensor–actuator devices. Smart Mater. Struct. 2011, 20, 085016. [Google Scholar] [CrossRef]
- Fairchild, B.A.; Olivero, P.; Rubanov, S.; Greentree, A.D.; Waldermann, F.; Taylor, R.A.; Walmsley, I.; Smith, J.M.; Huntington, S.; Gibson, B.C. Fabrication of ultrathin single-crystal diamond membranes. Adv. Mat. 2008, 20, 4793–4798. [Google Scholar] [CrossRef] [Green Version]
- Jung, T.; Kreiner, L.; Pauly, C.; Mücklich, F.; Edmonds, A.M.; Markham, M.; Becher, C. Reproducible fabrication and characterization of diamond membranes for photonic crystal cavities. Phys. Status Solidi (a) 2016, 213, 3254–3264. [Google Scholar] [CrossRef]
- Tian, Z.; Zhang, L.; Fang, Y.; Xu, B.; Tang, S.; Hu, N.; An, Z.; Chen, Z.; Mei, Y. Deterministic self-rolling of ultrathin nanocrystalline diamond nanomembranes for 3D tubular/helical architecture. Adv. Mat. 2017, 29, 1604572. [Google Scholar] [CrossRef]
- Tian, Z.; Huang, W.; Xu, B.; Li, X.; Mei, Y. Anisotropic rolling and controlled chirality of nanocrystalline diamond nanomembranes toward biomimetic helical frameworks. Nano Lett. 2018, 18, 3688–3694. [Google Scholar] [CrossRef]
- Yoshikawa, T.; Gao, F.; Zuerbig, V.; Giese, C.; Nebel, C.E.; Ambacher, O.; Lebedev, V. Pinhole-free ultra-thin nanocrystalline diamond film growth via electrostatic self-assembly seeding with increased salt concentration of nanodiamond colloids. Diam. Relat. Mater. 2016, 63, 103–107. [Google Scholar] [CrossRef]
- Stauss, S.; Terashima, K. Diamondoids: Synthesis, Properties, and Applications; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar] [CrossRef]
- Yang, W.L.; Fabbri, J.; Willey, T.; Lee, J.; Dahl, J.; Carlson, R.; Schreiner, P.; Fokin, A.; Tkachenko, B.; Fokina, N. Monochromatic electron photoemission from diamondoid monolayers. Science 2007, 316, 1460–1462. [Google Scholar] [CrossRef] [Green Version]
- Aisenberg, S.; Chabot, R. Ion-Beam Deposition of Thin Films of Diamondlike Carbon. J. Appl. Phys. 1971, 42, 2953–2958. [Google Scholar] [CrossRef]
- Karan, S.; Samitsu, S.; Peng, X.; Kurashima, K.; Ichinose, I. Ultrafast viscous permeation of organic solvents through diamond-like carbon nanosheets. Science 2012, 335, 444–447. [Google Scholar] [CrossRef] [PubMed]
- Rogers, J.A.; Lagally, M.; Nuzzo, R.G. Synthesis, assembly and applications of semiconductor nanomembranes. Nature 2011, 477, 45–53. [Google Scholar] [CrossRef]
- Geim, A.K. Graphene: Status and prospects. Science 2009, 324, 1530–1534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geim, A.K.; Novoselov, K.S. The rise of graphene. Nat. Mater. 2007, 6, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Xia, G.; Du, M.; Lu, Y.; Xu, H. Scotch-tape-like exfoliation effect of graphene quantum dots for efficient preparation of graphene nanosheets in water. Appl. Surf. Sci. 2019, 483, 52–59. [Google Scholar] [CrossRef]
- Waduge, P.; Larkin, J.; Upmanyu, M.; Kar, S.; Wanunu, M. Programmed synthesis of freestanding graphene nanomembrane arrays. Small 2015, 11, 597–603. [Google Scholar] [CrossRef] [Green Version]
- Jakšić, Z.; Obradov, M.; Tanasković, D.; Jakšić, O.; Radović, D.V. Electromagnetic simulation of MXene-based plasmonic metamaterials with enhanced optical absorption. Opt. Quant. Electron. 2020, 52, 83. [Google Scholar] [CrossRef]
- Vendamme, R.; Ohzono, T.; Nakao, A.; Shimomura, M.; Kunitake, T. Synthesis and Micromechanical Properties of Flexible, Self-Supporting Polymer− SiO2 Nanofilms. Langmuir 2007, 23, 2792–2799. [Google Scholar] [CrossRef]
- Furukawa, H.; Ko, N.; Go, Y.B.; Aratani, N.; Choi, S.B.; Choi, E.; Yazaydin, A.O.; Snurr, R.Q.; O’Keeffe, M.; Kim, J.; et al. Ultrahigh porosity in metal-organic frameworks. Science 2010, 329, 424–428. [Google Scholar] [CrossRef] [Green Version]
- Jakšić, Z.; Popović, Z.; Djerdj, I.; Jaćimović, Ž.K.; Radulović, K. Functionalization of plasmonic metamaterials utilizing metal-organic framework thin films. Phys. Scr. 2012. [Google Scholar] [CrossRef]
- Weber, M.; Kim, J.-H.; Lee, J.-H.; Kim, J.-Y.; Iatsunskyi, I.; Coy, E.; Drobek, M.; Julbe, A.; Bechelany, M.; Kim, S.S. High-performance nanowire hydrogen sensors by exploiting the synergistic effect of Pd nanoparticles and metal–organic framework membranes. Acs Appl. Mater. Interfaces 2018, 10, 34765–34773. [Google Scholar] [CrossRef] [PubMed]
- Hillmann, R.; Viefhues, M.; Goett-Zink, L.; Gilzer, D.; Hellweg, T.; Gölzhäuser, A.; Kottke, T.; Anselmetti, D. Characterization of Robust and Free-Standing 2D-Nanomembranes of UV-Polymerized Diacetylene Lipids. Langmuir 2018, 34, 3256–3263. [Google Scholar] [CrossRef] [PubMed]
- Schuster, C.; Rodler, A.; Tscheliessnig, R.; Jungbauer, A. Freely suspended perforated polymer nanomembranes for protein separations. Sci. Rep. 2018, 8, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Arif, S.; Umar, M.; Kim, S. Interacting Metal–Insulator–Metal Resonator by Nanoporous Silver and Silk Protein Nanomembranes and Its Water-Sensing Application. Acs Omega 2019, 4, 9010–9016. [Google Scholar] [CrossRef] [Green Version]
- Cheng, W.; Campolongo, M.J.; Cha, J.J.; Tan, S.J.; Umbach, C.C.; Muller, D.A.; Luo, D. Free-standing nanoparticle superlattice sheets controlled by DNA. Nat. Mater. 2009, 8, 519–525. [Google Scholar] [CrossRef]
- Han, D.; Park, Y.; Kim, H.; Lee, J.B. Self-assembly of free-standing RNA membranes. Nat. Comm. 2014, 5, 1–7. [Google Scholar] [CrossRef]
- Nosheen, S. Nanomembrane Applications in Environmental Engineering. In Nanotechnology Applications in Environmental Engineering; Nazir, R., Ed.; IGI Global: Hershey, PA, USA, 2019; pp. 103–120. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, H.; Kunitake, T. A large, freestanding, 20 nm thick nanomembrane based on an epoxy resin. Adv. Mat. 2007, 19, 909–912. [Google Scholar] [CrossRef]
- Salvatore, S. Optical Metamaterials by Block Copolymer Self-assembly; Springer: Cham, Switzerland, 2014. [Google Scholar] [CrossRef] [Green Version]
- Agboola, O.; Sadiku, E.R.; Mokrani, T. Nanomembrane materials based on polymer blends. In Design and Applications of Nanostructured Polymer Blends and Nanocomposite Systems; Thomas, S., Shanks, R., Chandrasekharakurup, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 101–123. [Google Scholar] [CrossRef]
- Castro-Muñoz, R.; Agrawal, K.V.; Coronas, J. Ultrathin permselective membranes: The latent way for efficient gas separation. Rsc Adv. 2020, 10, 12653–12670. [Google Scholar] [CrossRef]
- Xie, W.; Lee, J.-H. Dynamics of Entangled Networks in Ultrafast Perforation of Polystyrene Nanomembranes. Macromolecules 2020, 53, 1701–1705. [Google Scholar] [CrossRef]
- Watanabe, H.; Vendamme, R.; Kunitake, T. Development of fabrication of giant nanomembranes. Bull. Chem. Soc. Jpn. 2007, 80, 433–440. [Google Scholar] [CrossRef]
- Puspasari, T.; Yu, H.; Peinemann, K.V. Charge-and size-selective molecular separation using ultrathin cellulose membranes. ChemSusChem 2016, 9, 2908–2911. [Google Scholar] [CrossRef] [PubMed]
- Bandari, V.K.; Nan, Y.; Karnaushenko, D.; Hong, Y.; Sun, B.; Striggow, F.; Karnaushenko, D.D.; Becker, C.; Faghih, M.; Medina-Sánchez, M. A flexible microsystem capable of controlled motion and actuation by wireless power transfer. Nat. Electron. 2020, 3, 172–180. [Google Scholar] [CrossRef]
- Chiang, P.J.; Tang, G.; Kwon, I.S.; Eristoff, S.; Bettinger, C.J. Reversible Chemo-Topographic Control of Adhesion in Polydopamine Nanomembranes. Macromol. Mater. Eng. 2018, 303, 1800258. [Google Scholar] [CrossRef]
- Watanabe, H.; Fujimoto, A.; Takahara, A. Manipulation of surface properties: The use of nanomembrane as a nanometre-thick decal. Soft Matter 2011, 7, 1856–1860. [Google Scholar] [CrossRef]
- Molina, B.G.; Cuesta, S.; Puiggalí-Jou, A.; del Valle, L.J.; Armelin, E.; Alemán, C. Perforated polyester nanomebranes as templates of electroactive and robust free-standing films. Eur. Polym. J. 2019, 114, 213–222. [Google Scholar] [CrossRef]
- Puiggalí-Jou, A.; Medina, J.; del Valle, L.J.; Alemán, C. Nanoperforations in poly (lactic acid) free-standing nanomembranes to promote interactions with cell filopodia. Eur. Polym. J. 2016, 75, 552–564. [Google Scholar] [CrossRef] [Green Version]
- Turchanin, A.; Gölzhäuser, A. Carbon nanomembranes. Adv. Mat. 2016, 28, 6075–6103. [Google Scholar] [CrossRef]
- Yang, Y.; Hillmann, R.; Qi, Y.; Korzetz, R.; Biere, N.; Emmrich, D.; Westphal, M.; Büker, B.; Hütten, A.; Beyer, A. Ultrahigh Ionic Exclusion through Carbon Nanomembranes. Adv. Mat. 2020, 1907850. [Google Scholar] [CrossRef] [Green Version]
- Mueller, P.; Rudin, D.O.; Tien, H.T.; Wescott, W.C. Reconstitution of cell membrane structure in vitro and its transformation into an excitable system. Nature 1962, 194, 979–980. [Google Scholar] [CrossRef]
- Siontorou, C.G.; Nikoleli, G.-P.; Nikolelis, D.P.; Karapetis, S.K. Artificial lipid membranes: Past, present, and future. Membranes 2017, 7, 38. [Google Scholar] [CrossRef] [PubMed]
- Dong, A.; Chen, J.; Vora, P.M.; Kikkawa, J.M.; Murray, C.B. Binary nanocrystal superlattice membranes self-assembled at the liquid–air interface. Nature 2010, 466, 474–477. [Google Scholar] [CrossRef] [PubMed]
- Geim, A.K.; Novoselov, K.S. The rise of graphene. In Nanoscience and Technology: A Collection of Reviews From Nature Journals; World Scientific: Singapore, 2010; pp. 11–19. [Google Scholar] [CrossRef]
- Hantanasirisakul, K.; Zhao, M.Q.; Urbankowski, P.; Halim, J.; Anasori, B.; Kota, S.; Ren, C.E.; Barsoum, M.W.; Gogotsi, Y. Fabrication of Ti3C2Tx MXene transparent thin films with tunable optoelectronic properties. Adv. Electron. Mater. 2016, 2, 1600050. [Google Scholar] [CrossRef]
- Su, C.-Y.; Lu, A.-Y.; Xu, Y.; Chen, F.-R.; Khlobystov, A.N.; Li, L.-J. High-quality thin graphene films from fast electrochemical exfoliation. ACS Nano 2011, 5, 2332–2339. [Google Scholar] [CrossRef] [PubMed]
- Ciesielski, A.; Samorì, P. Graphene via sonication assisted liquid-phase exfoliation. Chem. Soc. Rev. 2014, 43, 381–398. [Google Scholar] [CrossRef]
- Madou, M.J. Fundamentals of Microfabrication and Nanotechnology; vols. 1–3; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar] [CrossRef]
- Matović, J.; Jakšić, Z. Nanomembrane: A New MEMS/NEMS Building Block. In Micro Electronic and Mechanical Systems; Takahata, K., Ed.; In-Tech: Vienna, Austria, 2010; pp. 61–84. [Google Scholar] [CrossRef] [Green Version]
- Whitesides, G.M.; Grzybowski, B. Self-assembly at all scales. Science 2002, 295, 2418–2421. [Google Scholar] [CrossRef] [Green Version]
- Cheng, W.; Campolongo, M.J.; Tan, S.J.; Luo, D. Freestanding ultrathin nano-membranes via self-assembly. Nano Today 2009, 4, 482–493. [Google Scholar] [CrossRef]
- Roberts, G. Langmuir-Blodgett Films; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar] [CrossRef]
- Mai, Y.; Eisenberg, A. Self-assembly of block copolymers. Chem. Soc. Rev. 2012, 41, 5969–5985. [Google Scholar] [CrossRef]
- Hillmann, R.; Gilzer, D.; Knust, S.; Biere, N.; Viefhues, M.; Toensing, K.; Kottke, T.; Anselmetti, D. Preparation of 2D Phospholipid and Copolymer Nanomembranes. Mater. Today: Proc. 2017, 4, S87–S92. [Google Scholar] [CrossRef]
- Sim, K.; Rao, Z.; Zou, Z.; Ershad, F.; Lei, J.; Thukral, A.; Chen, J.; Huang, Q.-A.; Xiao, J.; Yu, C. Metal oxide semiconductor nanomembrane–based soft unnoticeable multifunctional electronics for wearable human-machine interfaces. Sci. Adv. 2019, 5, eaav9653. [Google Scholar] [CrossRef]
- Jakšić, Z.; Matovic, J. Functionalization of Artificial Freestanding Composite Nanomembranes. Materials 2010, 3, 165–200. [Google Scholar] [CrossRef] [Green Version]
- Pimpin, A.; Srituravanich, W. Review on micro-and nanolithography techniques and their applications. Eng. J. 2012, 16, 37–56. [Google Scholar] [CrossRef] [Green Version]
- Sebastian, E.M.; Jain, S.K.; Purohit, R.; Dhakad, S.; Rana, R. Nanolithography and its current advancements. Mater. Today Proc. 2020, in press, corrected proof. [Google Scholar] [CrossRef]
- Luo, Y.; Jiang, X.; Liu, L.; Si, G. Recent advances in plasmonic nanolithography. Nanosci. Nanotechnol. Lett. 2018, 10, 1–12. [Google Scholar] [CrossRef]
- Traub, M.C.; Longsine, W.; Truskett, V.N. Advances in nanoimprint lithography. Annu. Rev. Chem. Biomol. Eng. 2016, 7, 583–604. [Google Scholar] [CrossRef]
- Matovic, J.; Kettle, J.; Brousseau, E.; Adamovic, N. Patterning of nanomembranes with a focused-ion-beam. In Proceedings of the 26th IEEE International Conference on Microelectronics MIEL, Nis, Serbia, 11–14 May 2008; pp. 103–106. [Google Scholar] [CrossRef]
- Huang, G.; Mei, Y. Assembly and Self-Assembly of Nanomembrane Materials—From 2D to 3D. Small 2018, 14, 1703665. [Google Scholar] [CrossRef]
- Aliprandi, A.; Mauro, M.; De Cola, L. Controlling and imaging biomimetic self-assembly. Nat. Chem. 2016, 8, 10. [Google Scholar] [CrossRef]
- Kudernac, T.; Lei, S.; Elemans, J.A.; De Feyter, S. Two-dimensional supramolecular self-assembly: Nanoporous networks on surfaces. Chem. Soc. Rev. 2009, 38, 402–421. [Google Scholar] [CrossRef]
- Matović, J.; Jakšić, Z. Three-dimensional surface sculpting of freestanding metal-composite nanomembranes. Microelectron. Eng. 2010, 87, 1487–1490. [Google Scholar] [CrossRef]
- Ye, C.; Nikolov, S.V.; Calabrese, R.; Dindar, A.; Alexeev, A.; Kippelen, B.; Kaplan, D.L.; Tsukruk, V.V. Self-(Un) rolling Biopolymer Microstructures: Rings, Tubules, and Helical Tubules from the Same Material. Angew. Chem. Int. Ed. 2015, 54, 8490–8493. [Google Scholar] [CrossRef]
- Cavallo, F.; Lagally, M.G. Nano-origami: Art and function. Nano Today 2015, 10, 538–541. [Google Scholar] [CrossRef] [Green Version]
- Song, Z.; Lv, C.; Liang, M.; Sanphuang, V.; Wu, K.; Chen, B.; Zhao, Z.; Bai, J.; Wang, X.; Volakis, J.L. Microscale silicon origami. Small 2016, 12, 5401–5406. [Google Scholar] [CrossRef]
- Zhang, Y.; Yan, Z.; Nan, K.; Xiao, D.; Liu, Y.; Luan, H.; Fu, H.; Wang, X.; Yang, Q.; Wang, J. A mechanically driven form of Kirigami as a route to 3D mesostructures in micro/nanomembranes. Proc. Natl. Acad. Sci. USA 2015, 112, 11757–11764. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Shyu, T.C.; Kotov, N.A. Origami and kirigami nanocomposites. ACS Nano 2017, 11, 7587–7599. [Google Scholar] [CrossRef]
- Mei, Y.; Thurmer, D.J.; Deneke, C.; Kiravittaya, S.; Chen, Y.-F.; Dadgar, A.; Bertram, F.; Bastek, B.; Krost, A.; Christen, J. Fabrication, self-assembly, and properties of ultrathin AlN/GaN porous crystalline nanomembranes: Tubes, spirals, and curved sheets. ACS Nano 2009, 3, 1663–1668. [Google Scholar] [CrossRef]
- Guo, Q.; Di, Z.; Lagally, M.G.; Mei, Y. Strain engineering and mechanical assembly of silicon/germanium nanomembranes. Mater. Sci. Eng. R Rep. 2018, 128, 1–31. [Google Scholar] [CrossRef]
- Mei, Y.; Huang, G.; Solovev, A.A.; Ureña, E.B.; Mönch, I.; Ding, F.; Reindl, T.; Fu, R.K.; Chu, P.K.; Schmidt, O.G. Versatile approach for integrative and functionalized tubes by strain engineering of nanomembranes on polymers. Adv. Mat. 2008, 20, 4085–4090. [Google Scholar] [CrossRef]
- Fabbri, P.; Messori, M. Surface modification of polymers: Chemical, physical, and biological routes. In Modification of Polymer Properties; Elsevier: Amsterdam, The Netherlands, 2017; pp. 109–130. [Google Scholar] [CrossRef]
- Scott, S.; Peng, W.; Kiefer, A.; Jiang, H.; Knezevic, I.; Savage, D.; Eriksson, M.; Lagally, M. Influence of Surface Chemical Modification on Charge Transport Properties in Ultrathin Silicon Membranes. ACS Nano 2009, 3, 1683–1692. [Google Scholar] [CrossRef]
- Salah, N.; Habib, S.S.; Khan, Z.H.; Al-Hamedi, S.; Djouider, F. Functionalization of gold and carbon nanostructured materials using gamma-ray irradiation. Radiat. Phys. Chem. 2009, 78, 910–913. [Google Scholar] [CrossRef]
- Kravets, L.I.; Dmitriev, S.N.; Gil’Man, A.B. Modification of properties of polymer membranes by low-temperature plasma treatment. High En. Chem. 2009, 43, 181–188. [Google Scholar] [CrossRef]
- Sharma, N.; Phan, H.T.; Yoda, T.; Shimokawa, N.; Vestergaard, M.d.C.; Takagi, M. Effects of Capsaicin on Biomimetic Membranes. Biomimetics 2019, 4, 17. [Google Scholar] [CrossRef] [Green Version]
- Lasseter, T.L.; Clare, B.H.; Abbott, N.L.; Hamers, R.J. Covalently modified silicon and diamond surfaces: Resistance to nonspecific protein adsorption and optimization for biosensing. J. Am. Chem. Soc. 2004, 126, 10220–10221. [Google Scholar] [CrossRef]
- Sakai, N.; Matile, S. Synthetic ion channels. Langmuir 2013, 29, 9031–9040. [Google Scholar] [CrossRef]
- Chen, J.-Y.; Hou, J.-L. Controllable synthetic ion channels. Org. Chem. Front. 2018, 5, 1728–1736. [Google Scholar] [CrossRef]
- Kennedy, S.J.; Roeske, R.W.; Freeman, A.R.; Watanabe, A.M.; Besche, H. Synthetic peptides form ion channels in artificial lipid bilayer membranes. Science 1977, 196, 1341–1342. [Google Scholar] [CrossRef]
- Tabushi, I.; Kuroda, Y.; Yokota, K. A, B, D, F-tetrasubstituted β-cyclodextrin as artificial channel compound. Tetrahedron Lett. 1982, 23, 4601–4604. [Google Scholar] [CrossRef]
- Negi, S.; Chandra, A. Ionic switch using nano-channels in polymeric membrane. Ionics 2019, 25, 1123–1130. [Google Scholar] [CrossRef]
- Hu, X.; Liu, N.; Yang, H.; Wu, F.; Chen, X.; Li, C.; Chen, X. A reversible ion transportation switch of ON–OFF–ON type by a ligand-gated calix [6] arene channel. Chem. Commun. 2019, 55, 3008–3011. [Google Scholar] [CrossRef]
- Beck, S.; Yu-Strzelczyk, J.; Pauls, D.; Constantin, O.M.; Gee, C.E.; Ehmann, N.; Kittel, R.J.; Nagel, G.; Gao, S. Synthetic light-activated ion channels for optogenetic activation and inhibition. Front. Neurosci. 2018, 12, 643. [Google Scholar] [CrossRef] [Green Version]
- Muraoka, T.; Umetsu, K.; Tabata, K.V.; Hamada, T.; Noji, H.; Yamashita, T.; Kinbara, K. Mechano-sensitive synthetic ion channels. J. Am. Chem. Soc. 2017, 139, 18016–18023. [Google Scholar] [CrossRef]
- Siwy, Z.; Fuliński, A. Fabrication of a synthetic nanopore ion pump. Phys. Rev. Lett. 2002, 89, 198103. [Google Scholar] [CrossRef] [PubMed]
- Marquet, C.; Buguin, A.; Talini, L.; Silberzan, P. Rectified motion of colloids in asymmetrically structured channels. Phys. Rev. Lett. 2002, 88, 168301. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Schatz, G.C. Advantages of conical pores for ion pumps. J. Phys. Chem. C 2017, 121, 161–168. [Google Scholar] [CrossRef]
- Kocsis, I.; Sun, Z.; Legrand, Y.M.; Barboiu, M. Artificial water channels—deconvolution of natural Aquaporins through synthetic design. npj Clean Water 2018, 1, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Song, W.; Joshi, H.; Chowdhury, R.; Najem, J.S.; Shen, Y.-x.; Lang, C.; Henderson, C.B.; Tu, Y.-M.; Farell, M.; Pitz, M.E.; et al. Artificial water channels enable fast and selective water permeation through water-wire networks. Nat. Nanotech. 2020, 15, 73–79. [Google Scholar] [CrossRef]
- Tunuguntla, R.H.; Henley, R.Y.; Yao, Y.-C.; Pham, T.A.; Wanunu, M.; Noy, A. Enhanced water permeability and tunable ion selectivity in subnanometer carbon nanotube porins. Science 2017, 357, 792–796. [Google Scholar] [CrossRef] [Green Version]
- Le Duc, Y.; Michau, M.; Gilles, A.; Gence, V.; Legrand, Y.M.; van der Lee, A.; Tingry, S.; Barboiu, M. Imidazole-quartet water and proton dipolar channels. Angew. Chem. Int. Ed. 2011, 50, 11366–11372. [Google Scholar] [CrossRef]
- Hu, X.-B.; Chen, Z.; Tang, G.; Hou, J.-L.; Li, Z.-T. Single-molecular artificial transmembrane water channels. J. Am. Chem. Soc. 2012, 134, 8384–8387. [Google Scholar] [CrossRef]
- Barboiu, M. Artificial water channels–incipient innovative developments. Chem. Commun. 2016, 52, 5657–5665. [Google Scholar] [CrossRef]
- Lin, D.H.; Stuwe, T.; Schilbach, S.; Rundlet, E.J.; Perriches, T.; Mobbs, G.; Fan, Y.; Thierbach, K.; Huber, F.M.; Collins, L.N. Architecture of the nuclear pore complex symmetric core. Science (New YorkNy) 2016, 352, aaf1015. [Google Scholar] [CrossRef] [Green Version]
- Jovanovic-Talisman, T.; Tetenbaum-Novatt, J.; McKenney, A.S.; Zilman, A.; Peters, R.; Rout, M.P.; Chait, B.T. Artificial nanopores that mimic the transport selectivity of the nuclear pore complex. Nature 2009, 457, 1023–1027. [Google Scholar] [CrossRef] [PubMed]
- Jovanovic-Talisman, T.; Zilman, A. Protein transport by the nuclear pore complex: Simple biophysics of a complex biomachine. Biophys. J. 2017, 113, 6–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bong, D.T.; Clark, T.D.; Granja, J.R.; Ghadiri, M.R. Self-assembling organic nanotubes. Angew. Chem. Int. Ed. 2001, 40, 988–1011. [Google Scholar] [CrossRef]
- Li, Y.D.; Li, X.L.; He, R.R.; Zhu, J.; Deng, Z.X. Artificial lamellar mesostructures to WS2 nanotubes. J. Am. Chem. Soc. 2002, 124, 1411–1416. [Google Scholar] [CrossRef] [PubMed]
- Ghadiri, M.R.; Granja, J.R.; Milligan, R.A.; McRee, D.E.; Khazanovich, N. Self-assembling organic nanotubes based on a cyclic peptide architecture. Nature 1993, 366, 324–327. [Google Scholar] [CrossRef]
- Ghadiri, M.R.; Granja, J.R.; Buehler, L.K. Artificial transmembrane ion channels from self-assembling peptide nanotubes. Nature 1994, 369, 301–304. [Google Scholar] [CrossRef]
- O’connell, M.J. (Ed.) Carbon Nanotubes: Properties and Applications; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar] [CrossRef]
- Saito, R.; Dresselhaus, G.; Dresselhaus, M.S. Physical Properties of Carbon Nanotubes; World Scientific: Singapore, 1998. [Google Scholar] [CrossRef]
- Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58. [Google Scholar] [CrossRef]
- Monthioux, M.; Kuznetsov, V.L. Who should be given the credit for the discovery of carbon nanotubes? Carbon 2006, 44, 1621–1623. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, R.; Liu, Y.; He, M.; Su, Y.; Gao, C.; Jiang, Z. Antifouling membrane surface construction: Chemistry plays a critical role. J. Membr. Sci. 2018, 551, 145–171. [Google Scholar] [CrossRef]
- Shen, Y.-X.; Saboe, P.O.; Sines, I.T.; Erbakan, M.; Kumar, M. Biomimetic membranes: A review. J. Membr. Sci. 2014, 454, 359–381. [Google Scholar] [CrossRef]
- Rothemund, P.W. Folding DNA to create nanoscale shapes and patterns. Nature 2006, 440, 297–302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, S.; Wang, D.; Kenaan, A.; Cheng, J.; Cui, D.; Song, J. Create Nanoscale Patterns with DNA Origami. Small 2019, 15, 1805554. [Google Scholar] [CrossRef] [PubMed]
- Göpfrich, K.; Li, C.-Y.; Ricci, M.; Bhamidimarri, S.P.; Yoo, J.; Gyenes, B.; Ohmann, A.; Winterhalter, M.; Aksimentiev, A.; Keyser, U.F. Large-conductance transmembrane porin made from DNA origami. ACS Nano 2016, 10, 8207–8214. [Google Scholar] [CrossRef] [PubMed]
- Göpfrich, K.; Li, C.-Y.; Mames, I.; Bhamidimarri, S.P.; Ricci, M.; Yoo, J.; Mames, A.; Ohmann, A.; Winterhalter, M.; Stulz, E. Ion channels made from a single membrane-spanning DNA duplex. Nano Lett. 2016, 16, 4665–4669. [Google Scholar] [CrossRef]
- Bocquet, L. Nanofluidics coming of age. Nat. Mater. 2020, 19, 254–256. [Google Scholar] [CrossRef] [Green Version]
- Daiguji, H.; Oka, Y.; Shirono, K. Nanofluidic diode and bipolar transistor. Nano Lett. 2005, 5, 2274–2280. [Google Scholar] [CrossRef]
- Guan, W.; Fan, R.; Reed, M.A. Field-effect reconfigurable nanofluidic ionic diodes. Nat. Comm. 2011, 2, 1–8. [Google Scholar] [CrossRef]
- Gajar, S.A.; Geis, M.W. An Ionic Liquid-Channel Field-Effect Transistor. J. Electrochem. Soc. 1992, 139, 2833–2840. [Google Scholar] [CrossRef]
- Karnik, R.; Fan, R.; Yue, M.; Li, D.; Yang, P.; Majumdar, A. Electrostatic control of ions and molecules in nanofluidic transistors. Nano Lett. 2005, 5, 943–948. [Google Scholar] [CrossRef] [Green Version]
- Matović, J.; Adamović, N.; Radovanović, F.; Jakšić, Z.; Schmid, U. Field effect transistor based on ions as charge carriers. Sens. Actuators B: Chem. 2012, 170, 137–142. [Google Scholar] [CrossRef]
- Prakash, S.; Conlisk, A. Field effect nanofluidics. Lab A Chip 2016, 16, 3855–3865. [Google Scholar] [CrossRef]
- Koltonow, A.R.; Huang, J. Two-dimensional nanofluidics. Science 2016, 351, 1395–1396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jakšić, Z.; Matović, J. Nanomembrane-Enabled MEMS Sensors: Case of Plasmonic Devices for Chemical and Biological Sensing. In Micro Electronic and Mechanical Systems; Takahata, K., Ed.; In-Tech: Vienna, Austria, 2009; pp. 85–107. [Google Scholar] [CrossRef] [Green Version]
- Jakšić, Z. Optical metamaterials as the platform for a novel generation of ultrasensitive chemical or biological sensors. In Metamaterials: Classes, Properties and Applications; Tremblay, E.J., Ed.; Nova Science Publishers: Hauppauge, NY, USA, 2010; pp. 1–42. [Google Scholar]
- Jakšić, Z.; Jakšić, O.; Djurić, Z.; Kment, C. A consideration of the use of metamaterials for sensing applications: Field fluctuations and ultimate performance. J. Opt. A-Pure Appl. Opt. 2007, 9, S377–S384. [Google Scholar] [CrossRef]
- Medina-Sánchez, M.; Ibarlucea, B.; Pérez, N.; Karnaushenko, D.D.; Weiz, S.M.; Baraban, L.; Cuniberti, G.; Schmidt, O.G. High-performance three-dimensional tubular nanomembrane sensor for DNA detection. Nano Lett. 2016, 16, 4288–4296. [Google Scholar] [CrossRef] [PubMed]
- Agmon, N. The Grotthuss mechanism. Chem. Phys. Lett. 1995, 244, 456–462. [Google Scholar] [CrossRef]
- Fischer, S.A.; Gunlycke, D. Analysis of Correlated Dynamics in the Grotthuss Mechanism of Proton Diffusion. J. Phys. Chem. B 2019, 123, 5536–5544. [Google Scholar] [CrossRef]
- Jakšić, Z. Micro and Nanophotonics for Semiconductor Infrared Detectors: Towards an Ultimate Uncooled Device; Springer International Publishing: Cham. Switzerland, 2014. [Google Scholar] [CrossRef]
- Wang, H.; Zhen, H.; Li, S.; Jing, Y.; Huang, G.; Mei, Y.; Lu, W. Self-rolling and light-trapping in flexible quantum well–embedded nanomembranes for wide-angle infrared photodetectors. Sci. Adv. 2016, 2, e1600027. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Huang, G.; Qiao, Y.; Wang, J.; Liu, Z.; Liu, X.; Mei, Y. Biocompatible and freestanding anatase TiO2 nanomembrane with enhanced photocatalytic performance. Nanotechnology 2013, 24, 305706. [Google Scholar] [CrossRef] [Green Version]
- Shojaei, F.; Mortazavi, B.; Zhuang, X.; Azizi, M. Silicon diphosphide (SiP2) and silicon diarsenide (SiAs2): Novel sTable 2D semiconductors with high carrier mobilities, promising for water splitting photocatalysts. Mater. Today Energy 2020, 16, 100377. [Google Scholar] [CrossRef]
- Wei, Y.; Ma, Y.; Wei, W.; Li, M.; Huang, B.; Dai, Y. Promising Photocatalysts for Water Splitting in BeN2 and MgN2 Monolayers. J. Phys. Chem. C 2018, 122, 8102–8108. [Google Scholar] [CrossRef]
- da Silva, R.; Barbosa, R.; Mançano, R.R.; Durães, N.; Pontes, R.B.; Miwa, R.; Fazzio, A.; Padilha, J.E. Metal Chalcogenides Janus Monolayers for Efficient Hydrogen Generation by Photocatalytic Water Splitting. Acs Appl. Nano Mater. 2019, 2, 890–897. [Google Scholar] [CrossRef]
- Wang, D.; Watanabe, F.; Zhao, W. Reduced graphene oxide-NiO/Ni nanomembranes as oxygen evolution reaction electrocatalysts. Ecs J. Solid State Sci. Technol. 2017, 6, M3049–M3054. [Google Scholar] [CrossRef]
- Ho, T.A.; Bae, C.; Nam, H.; Kim, E.; Lee, S.Y.; Park, J.H.; Shin, H. Metallic Ni3S2 films grown by atomic layer deposition as an efficient and stable electrocatalyst for overall water splitting. Acs Appl. Mater. Interfaces 2018, 10, 12807–12815. [Google Scholar] [CrossRef] [PubMed]
- McNaught, A.D.; Wilkinson, A. (Eds.) IUPAC, Compendium of Chemical Terminology, the “Gold Book”, 2nd ed.; Blackwell Scientific Publications: Oxford, UK, 1997. [Google Scholar] [CrossRef]
- Uragami, T. Science and Technology of Separation Membranes; John Wiley & Sons: Hoboken, NJ, USA, 2017. [Google Scholar] [CrossRef]
- Gin, D.L.; Noble, R.D. Designing the next generation of chemical separation membranes. Science 2011, 332, 674–676. [Google Scholar] [CrossRef] [PubMed]
- Anjum, M.; Miandad, R.; Waqas, M.; Gehany, F.; Barakat, M. Remediation of wastewater using various nano-materials. Arab. J. Chem. 2016. [Google Scholar] [CrossRef] [Green Version]
- Kumar, L.Y. Role and adverse effects of nanomaterials in food technology. J. Toxicol. Health 2015, 2, art. 2. [Google Scholar] [CrossRef] [Green Version]
- Madhura, L.; Kanchi, S.; Sabela, M.I.; Singh, S.; Bisetty, K. Membrane technology for water purification. Environ. Chem. Lett. 2018, 16, 343–365. [Google Scholar] [CrossRef]
- Fornasiero, F.; Park, H.G.; Holt, J.K.; Stadermann, M.; Grigoropoulos, C.P.; Noy, A.; Bakajin, O. Ion exclusion by sub-2-nm carbon nanotube pores. Proc. Natl. Acad. Sci. USA 2008, 105, 17250–17255. [Google Scholar] [CrossRef] [Green Version]
- Corry, B. Designing carbon nanotube membranes for efficient water desalination. J. Phys. Chem. B 2008, 112, 1427–1434. [Google Scholar] [CrossRef] [Green Version]
- Cohen-Tanugi, D.; Grossman, J.C. Water desalination across nanoporous graphene. Nano Lett. 2012, 12, 3602–3608. [Google Scholar] [CrossRef]
- Dang, M.; Saunders, L.; Niu, X.; Fan, Y.; Ma, P.X. Biomimetic delivery of signals for bone tissue engineering. Bone Res. 2018, 6, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Sousa, M.P.; Mano, J.F. Cell-adhesive bioinspired and catechol-based multilayer freestanding membranes for bone tissue engineering. Biomimetics 2017, 2, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qi, C.; Liu, J.; Jin, Y.; Xu, L.; Wang, G.; Wang, Z.; Wang, L. Photo-crosslinkable, injectable sericin hydrogel as 3D biomimetic extracellular matrix for minimally invasive repairing cartilage. Biomaterials 2018, 163, 89–104. [Google Scholar] [CrossRef] [PubMed]
- Abaci, H.E.; Coffman, A.; Doucet, Y.; Chen, J.; Jacków, J.; Wang, E.; Guo, Z.; Shin, J.U.; Jahoda, C.A.; Christiano, A.M. Tissue engineering of human hair follicles using a biomimetic developmental approach. Nat. Comm. 2018, 9, 1–11. [Google Scholar] [CrossRef]
- Zhu, K.; Duchamp, M.; Aleman, J.; Niu, W.; Alshihri, A.; Zhang, Y.S.; Yan10, M. Cardiovascular System Tissue Engineering. Stem Cell Biol. Regen. Med. 2017, 5, 77–99. [Google Scholar] [CrossRef]
- Xue, Y.; Sant, V.; Phillippi, J.; Sant, S. Biodegradable and biomimetic elastomeric scaffolds for tissue-engineered heart valves. Acta Biomater. 2017, 48, 2–19. [Google Scholar] [CrossRef]
- Ma, X.; Qu, X.; Zhu, W.; Li, Y.-S.; Yuan, S.; Zhang, H.; Liu, J.; Wang, P.; Lai, C.S.E.; Zanella, F. Deterministically patterned biomimetic human iPSC-derived hepatic model via rapid 3D bioprinting. Proc. Natl. Acad. Sci. USA 2016, 113, 2206–2211. [Google Scholar] [CrossRef] [Green Version]
- Farrell, K.; Joshi, J.; Kothapalli, C.R. Injectable uncrosslinked biomimetic hydrogels as candidate scaffolds for neural stem cell delivery. J. Biomed. Mater. Res. Part A 2017, 105, 790–805. [Google Scholar] [CrossRef]
- Kong, Y.; Xu, R.; Darabi, M.A.; Zhong, W.; Luo, G.; Xing, M.M.; Wu, J. Fast and safe fabrication of a free-standing chitosan/alginate nanomembrane to promote stem cell delivery and wound healing. Int. J. Nanomed. 2016, 11, 2543. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Ding, S.-J.; Lin, K.; Su, J. A review on the biocompatibility and potential applications of graphene in inducing cell differentiation and tissue regeneration. J. Mater. Chem. B 2017, 5, 3084–3102. [Google Scholar] [CrossRef]
- Hao, D.; Zhang, G.; Gong, Y.; Ma, Z. Development and biological evaluation of cerium oxide loaded polycaprolactone dressing on cutaneous wound healing in nursing care. Mater. Lett. 2020, 265, 127401. [Google Scholar] [CrossRef]
- Perrett, S.; Buell, A.K.; Knowles, T.P.J. (Eds.) Biological and Bio-inspired Nanomaterials: Properties and Assembly Mechanisms; Springer Nature: Singapore, 2019. [Google Scholar] [CrossRef]
- Kim, S.A.; Byun, K.M.; Lee, J.; Kim, J.H.; Kim, D.G.A.; Baac, H.; Shuler, M.L.; Kim, S.J. Optical measurement of neural activity using surface plasmon resonance. Opt. Lett. 2008, 33, 914–916. [Google Scholar] [CrossRef] [PubMed]
- Viventi, J.; Kim, D.-H.; Vigeland, L.; Frechette, E.S.; Blanco, J.A.; Kim, Y.-S.; Avrin, A.E.; Tiruvadi, V.R.; Hwang, S.-W.; Vanleer, A.C.; et al. Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo. Nat. Neurosci. 2011, 14, 1599–1605. [Google Scholar] [CrossRef] [Green Version]
- Filipović, M.; Jakšić, Z.; Matović, J. ‘Nano-Shrinkwrap’ Approach To Using Nanomembranes As Injectable External Cuff Electrodes For Plasmon-Based Readout of Neural Activity. In Proceedings of the Abstr. 3rd Mediterranean Conference on Nanophotonics MediNano-3, Belgrade, Serbia, 18–19 October 2010; p. 60. [Google Scholar]
- Van Dang, B.; Taylor, R.A.; Charlton, A.J.; Le-Clech, P.; Barber, T.J. Towards portable artificial kidneys: The role of advanced microfluidics and membrane technologies in implantable systems. IEEE Rev. Biomed. Eng. 2019, 13, 261–279. [Google Scholar] [CrossRef] [PubMed]
- Salani, M.; Roy, S.; Fissell IV, W.H. Innovations in wearable and implantable artificial kidneys. Am. J. Kidney Dis. 2018, 72, 745–751. [Google Scholar] [CrossRef] [PubMed]
- Huff, C. How artificial kidneys and miniaturized dialysis could save millions of lives. Nature 2020, 579, 186–188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guha, K.; Sateesh, J.; Dutta, A.; Sengupta, P.; Rao, K.S.; Agarwal, A. Mimicking kidney re-absorption using microfluidics by considering hydrostatic pressure inside kidney tubules: Structural and analytical study. Microsys. Tech. 2019, 1–8. [Google Scholar] [CrossRef]
- Hill, K.; Walker, S.N.; Salminen, A.; Chung, H.L.; Li, X.; Ezzat, B.; Miller, J.J.; DesOrmeaux, J.P.S.; Zhang, J.; Hayden, A. Second Generation Nanoporous Silicon Nitride Membranes for High Toxin Clearance and Small Format Hemodialysis. Adv. Healthc. Mater. 2020, 9, 1900750. [Google Scholar] [CrossRef]
- Burgin, T.; Johnson, D.; Chung, H.; Clark, A.; McGrath, J. Analytical and finite element modeling of nanomembranes for miniaturized, continuous hemodialysis. Membranes 2016, 6, 6. [Google Scholar] [CrossRef] [Green Version]
- Orizondo, R.A.; Gino, G.; Sultzbach, G.; Madhani, S.P.; Frankowski, B.J.; Federspiel, W.J. Effects of hollow fiber membrane oscillation on an artificial lung. Ann. Biomed. Eng. 2018, 46, 762–771. [Google Scholar] [CrossRef]
- Orizondo, R.A.; Cardounel, A.J.; Kormos, R.; Sanchez, P.G. Artificial Lungs: Current Status and Future Directions. Curr. Transplant. Rep. 2019, 6, 307–315. [Google Scholar] [CrossRef]
- Chen, W.H.; Luo, G.F.; Zhang, X.Z. Recent advances in subcellular targeted cancer therapy based on functional materials. Adv. Mat. 2019, 31, 1802725. [Google Scholar] [CrossRef] [PubMed]
- Waite, C.L.; Roth, C.M. Nanoscale drug delivery systems for enhanced drug penetration into solid tumors: Current progress and opportunities. Crit. Rev. ™ Biomed. Eng. 2012, 40. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.D.; Shin, D.M.; Simons, J.W.; Nie, S. Nanotechnology for targeted cancer therapy. Expert Rev. Anticancer Ther. 2007, 7, 833–837. [Google Scholar] [CrossRef]
- Singh, B.; Mitragotri, S. Harnessing cells to deliver nanoparticle drugs to treat cancer. Biotechnol. Adv. 2019. [Google Scholar] [CrossRef]
- Chu, M.; Shao, Y.; Peng, J.; Dai, X.; Li, H.; Wu, Q.; Shi, D. Near-infrared laser light mediated cancer therapy by photothermal effect of Fe3O4 magnetic nanoparticles. Biomaterials 2013, 34, 4078–4088. [Google Scholar] [CrossRef]
- Yao, M.; Ma, L.; Li, L.; Zhang, J.; Lim, R.X.; Chen, W.; Zhang, Y. A new modality for cancer treatment—nanoparticle mediated microwave induced photodynamic therapy. J. Biomed. Nanotechnol. 2016, 12, 1835–1851. [Google Scholar] [CrossRef]
- Huang, X.; Jain, P.K.; El-Sayed, I.H.; El-Sayed, M.A. Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med Sci. 2008, 23, 217. [Google Scholar] [CrossRef]
- Yang, M.-Y.; Zhao, R.-R.; Fang, Y.-F.; Jiang, J.-L.; Yuan, X.-T.; Shao, J.-W. Carrier-free nanodrug: A novel strategy of cancer diagnosis and synergistic therapy. Int. J. Pharm. 2019, 118663. [Google Scholar] [CrossRef]
- Chang, J.-K.; Emon, M.B.; Li, C.-S.; Yang, Q.; Chang, H.-P.; Yang, Z.; Wu, C.-I.; Saif, M.T.; Rogers, J.A. Cytotoxicity and in vitro degradation kinetics of foundry-compatible semiconductor nanomembranes and electronic microcomponents. ACS Nano 2018, 12, 9721–9732. [Google Scholar] [CrossRef]
- Soler, M.; Li, X.; John-Herpin, A.; Schmidt, J.; Coukos, G.; Altug, H. Two-dimensional label-free affinity analysis of tumor-specific CD8 T cells with a biomimetic plasmonic sensor. Acs Sens. 2018, 3, 2286–2295. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Feng, S.; Wang, L.; Zheng, Y. Lotus effect in wetting and self-cleaning. Biotribology 2016, 5, 31–43. [Google Scholar] [CrossRef]
- Zhou, C.-J.; Tian, D.; He, J.-H. What factors affect lotus effect? Therm. Sci. 2018, 22, 1737–1743. [Google Scholar] [CrossRef]
- Shao, Y.; Zhao, J.; Fan, Y.; Wan, Z.; Lu, L.; Zhang, Z.; Ming, W.; Ren, L. Shape memory superhydrophobic surface with switchable transition between “Lotus Effect” to “Rose Petal Effect”. Chem. Eng. J. 2020, 382, 122989. [Google Scholar] [CrossRef]
- Afferante, L.; Heepe, L.; Casdorff, K.; Gorb, S.N.; Carbone, G. A theoretical characterization of curvature controlled adhesive properties of bio-inspired membranes. Biomimetics 2016, 1, 3. [Google Scholar] [CrossRef]
Classes of Synthetic Nanomembranes | Types Belonging to the Class |
---|---|
Inorganic nanomembranes | Metal nanomembranes Metal composite and alloy nanomembranes Diamond nanomembranes Diamondoids Diamond-like carbon (DLC) nanomembranes Semiconductor nanomembranes—single element Semiconductor nanomembranes—compounds Freestanding monatomic sheets (incl. graphene) Freestanding inorganic monomolecular sheets |
Hybrid organic /Inorganic | Interpenetrated structures Metal–organic frameworks |
Organic nanomembranes | Single-polymer (pure) Copolymer (blended) Carbon nanomembranes (CNM) |
Synthetic biological nanomembranes | Model lipid bilayers (black lipid membranes, painted bilayers, synthetic lipid bilayers) |
Substrate | Fabrication Strategies | Particular Approach |
---|---|---|
Solid | Sacrificial structure | Top-down (thin film technologies) |
Exfoliation | Mechanical or chemical delamination | |
Liquid | Gas–liquid interface | Bottom-up (self-assembly) Thin film technologies |
Liquid–liquid interface | Self-assembly |
Application Field | Application Type |
---|---|
Environmental Protection | (1) Air pollution control—removal of pollutant particles and volatile compounds from airstreams (2) Wastewater treatment—removal of pollutants and recycling (3) Remediation |
Biosensing and chemical sensing | (1) Ultrasensitive chemical, biochemical and biological sensors (2) Simultaneous sensing of multiple analytes by a single sensor |
Toxicology, forensics and homeland defense | (1) Recognition of toxic inorganic, organic and biological agents (2) Removal of toxic agents |
Renewable energy & power industry | (1) Fuel cells (2) Solar cells (3) Water splitting (4) Micro-power sources and microbattery arrays (5) Nuclear fuel production, purification and enrichment (6) Hydrocarbon fractionation (7) Environment-friendly fuel purification (e.g., desulfurization) |
MEMS/NEMS | (1) Active nanofluidic devices based on ion transport (2) Self-healing micro and nanostructures (3) Stretchable and foldable devices (4) Very high frequency microoscillators and microresonators (5) Catalytic membrane microreactors (6) High temperature microreactors (7) Smart Labs on a chip |
Molecular sieves and Separators | (1) Water, oil, gas separation from undesired ingredients (2) Removal of heavy metals (3) Reclaiming of precious materials including noble metals (4) Desalination |
Biomedical applications | (1) Two-dimensional scaffolds for tissue regrowth (2) Biointerfaces including neural interfaces (3) Wearable and implantable artificial kidneys (4) Portable artificial lungs (5) Drugs delivery and disease control (6) Pathogenic bacteria, viruses, prions recognition and deactivation |
Bioengineering and genomics | (1) DNA analysis/separation/replication (2) Gene sequencing, genomics (3) Cell biotechnology (4) Biomarker detection |
Food and drinks industry | (1) Food and beverages purification (2) Potable water production through purification |
Chemical Engineering | (1) Multicomponent gas mixtures separation (2) Gas dehydration (3) Separation of liquid chemicals (4) Chemicals analysis (5) Microfiltration, ultrafiltration and nanofiltration (6) Environmentally friendly petrochemistry |
Class | Type | Mechanism and Action |
---|---|---|
Pore filtration | Particle filtration | Pressure-driven filtration through >1 μm pores and above, removes large suspended particles 1 |
Microfiltration | Pressure-driven filtration through 0.1 μm to 1 μm pores, removes bacteria and suspended organic and inorganic particles | |
Ultrafiltration | Pressure-driven filtration through 1–100 nm pores, removes all above plus viruses | |
Nanofiltration | Pressure-driven filtration through ~0.3–1 nm pores, removes all above plus large (polyvalent) ions | |
Filtration by diffusion | Reverse Osmosis | An applied pressure is used to overcome osmotic pressure for separation through a semi-permeable membrane, removes all above plus small (monovalent) ions |
Forward Osmosis | Separation driven by osmotic pressure gradient through a semi-permeable membrane | |
Dialysis | Solute separation is induced by the difference in solute diffusion transport through the membrane | |
Filtration assisted by liquid-gas phase transition | Pervaporation | Separation of mixtures of liquids by permeation through a membrane, followed by vaporization |
Membrane Distillation | Thermally driven separation of liquids where only vapor molecules move through a microporous hydrophobic membrane | |
Gas Permeation | Separation of gas mixtures permeating a membrane based on the fact that the flux of each gas is different | |
Evapomeation | Separation of mixtures of liquids by full vaporization through a non-porous or porous membrane |
Class | Type | Action |
---|---|---|
Water treatment | potable water | removal of organic pollutants, arsenic, ammonium, manganese, iron, etc. |
process water | removal of all process pollutants, especially heavy metals incl. lead, mercury, also dyes, organic by-products, aromatic hydrocarbons… | |
waste water | removal of contaminants, including bacteria, viruses, cyanobacteria, protozoans, organic and inorganic pollutants | |
remediation | removal of contaminants, including toxins, heavy metals and radioactive nuclides | |
chemical spillage | removal of contaminants | |
concentration of trace ingredients | harvesting of e.g., noble metals from seawater, present in it in trace amounts | |
Food and beverages treatment | food ingredients | removal of biological and other pollutants, sterilization |
sugar, oil production | organic and inorganic material removal | |
dairy products | biological contaminants removal | |
wine production | filtering, contaminants removal | |
Process industry | chemical processing | undesired species removal, refinement |
petrochemistry | separation of undesired compounds from liquids, gases | |
fertilizer production | removal of organic and inorganic contaminants | |
pulp and paper mills | refinement | |
pharmaceutical industry | removal of organic and inorganic contaminants, refinement | |
Power industry | refining of biofuels | refinement |
refining and fractioning of natural oil | hydrocarbons separation, desulfurization, refinement | |
refining of natural gas | hydrocarbons separation, removal of N2 and CO2, refinement | |
fuel cell membranes | water wires in PEM structures (incorporation as an integral part) | |
batteries production | removal of organic and inorganic contaminants, refinement (incorporation as an integral part) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jakšić, Z.; Jakšić, O. Biomimetic Nanomembranes: An Overview. Biomimetics 2020, 5, 24. https://doi.org/10.3390/biomimetics5020024
Jakšić Z, Jakšić O. Biomimetic Nanomembranes: An Overview. Biomimetics. 2020; 5(2):24. https://doi.org/10.3390/biomimetics5020024
Chicago/Turabian StyleJakšić, Zoran, and Olga Jakšić. 2020. "Biomimetic Nanomembranes: An Overview" Biomimetics 5, no. 2: 24. https://doi.org/10.3390/biomimetics5020024
APA StyleJakšić, Z., & Jakšić, O. (2020). Biomimetic Nanomembranes: An Overview. Biomimetics, 5(2), 24. https://doi.org/10.3390/biomimetics5020024